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Abstract. In this paper, we apply the Evolving Junctions on Obstacle Bound-
aries (E-JOB) method for the shortest path problem developed in [3, 4] to three
related problems: 1) find the shortest path to move a disk, instead of a point,
from one position to another one; 2) calculate the Euclidean distance between two
sets in Rn; and 3) compute the shortest path in an environment with obstacles
appearing or disappearing at arbitrary times. The methods are based on solving
finite dimensional stochastic differential equations with given initial values. And
they are robust, efficient and easy to implement. We illustrate the methods by
some numerical examples.

1. Introduction

Finding the shortest path between two given points X and Y while avoiding all
the obstacles {Pi}Ni=1 in a region is a classical problem that carries different names,
such as piano mover’s problem, watchman route problem or zookeeper’s problem
in practice. It has received great attention since decades ago. Various methods
based on combinatorics or differential equations have been developed for different
scenarios. For polygonal obstacles in R2, an optimal algorithm based on Dijkstra
method with complexity O(n log n), n being the number of vortices, was obtained by
Hershberger and Suri [7]. However, the problem was shown to be NP-Hard in R3 [1].
For obstacles with smooth boundaries, a method of front propagation is often used.
The idea is to propagate a wave front from the starting point X with unit speed.
The moment that the front reaches Y is actually the length of the shortest path.
This arrival time can be conveniently computed by solving an Eikonal equation using
the fast marching [8] or fast sweeping [12] algorithms. The front propagation is in
fact a continuous version of Dijkstra method. Its requirement of updating the whole
domain is often undesirable in practice. For a survey, please see [6, 9].

The method of Evolving Junctions on Obstacle Boundaries(E-JOB) is a novel
and fast algorithm developed in [3, 4] for the shortest path problem. Unlike the
traditional methods using combinatorial or PDE approaches, E-JOB takes a com-
pletely different strategy. The key idea of E-JOB is based on a simple structure of
the shortest path, i.e. a shortest path consists of only line segments and boundary
arcs connected by junctions on the boundaries of obstacles. Figure 1 demonstrates
the structure of a shortest path in which the star symbol ‘*’s indicate the junctions.
To find the shortest path, only those junctions need to be determined. In this way,
E-JOB converts the original infinite dimensional problem into a finite dimensional
problem of finding points on the boundaries to connect those line segments and arcs.
In other words, the length of the optimal path is merely a function of those junction
points. This observation enables us to search for the shortest path in a much smaller
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Figure 1. Structure of a shortest path

set, namely a finite dimensional set K composed by all the paths that consist of line
segments and arc connected by the junctions on the boundaries.

To determine the optimal positions of the junctions , one may use the simplest
gradient descent method to decrease the length functional on K. However, gradient
descent method alone only finds local optimal solutions. To overcome this challenge,
E-JOB applies a recently developed global optimization strategy called Intermittent
Diffusion (ID). The resulting algorithm is a stochastic differential equation with
initial conditions, which can be computed by many existing numerical schemes. A
notable feature of ID is that, unlike other global optimization methods such as
Simulated Annealing and Metropolis algorithm, ID is able to obtain a series of local
minimizers in each realization, and it has a large (arbitrarily approaching 1 with
geometrical convergence rate if enough time is allowed) probability that the global
optimal solution is among them. A benefit of this feature is that if only limited
time is allowed, E-JOB can still find the best solution within the given time frame.
For more details of ID, please see [2]. Another feature of E-JOB is that it uses
level set method [10] to handle complicated geometries of the obstacles. This makes
transformations of obstacles straightforward and fast.

In this paper, we consider three different problems that can be solved by certain
variations of E-JOB.

The first problem concerns the shortest path for moving a disk between two
points. This is a more realistic model in robotics where the moving system, such as
the Unmanned Vehicle Systems (UVS), is a rigid body free only to translation. The
distance is defined to be the total distance traversed by the center of the moving
system. A main difference between moving a disk and moving a point is that some
feasible paths for a moving point may become infeasible for a disk due to its fixed
size. We propose to overcome the problem by changing the obstacles, i.e. using the
Minkowski sum of the obstacles and the disk to form new obstacles, which will be
used to replace the original obstacles. Meanwhile, we replace the disk by a point.
In this way, we convert the problem of moving a disk into a moving point problem
with new obstacles. Then, we apply E-JOB to find the solution. The shortest path
for the point mover with the new obstacles is the shortest path for the disk with the
original obstacles.

In the second problem, we consider the Euclidean distance between two sets P
and Q in Rn, i.e. the shortest path between them. This is an important problem
in computer-aided design and computer graphics in which people often want to
know whether two objects intersect or how far there are. In [5], the authors focus
only on convex sets. Later, another method is proposed to deal with non-convex
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objects by breaking them into convex components and then apply the algorithms for
convex sets to determine the distance between components [11]. The authors also
reduced the complexity significantly by eliminating the number of possible pairs of
components. In this paper, we demonstrate that E-JOB can be easily modified to
solve this problem. The idea is to treat the starting pointX and the ending pointY as
undetermined junctions and evolved on the boundaries of P and Q respectively. An
clear advantage of E-JOB is that it places no restrictions on the obstacles, whether
they are convex or non-convex, discrete or having smooth boundaries.

The last problem concerns the shortest path in an environment that the obstacles
appear or disappear over time. It is not our intention to investigate the time-varying
shortest path problem as described in [9] which studies how the robot moves to reach
Y with the minimal cost in a dynamic environment, which includes but not limited
to moving, shape changing(shrinking, expanding, etc) or appearing/disappearing
obstacles. Instead, we focus on how to recompute the shortest path with appearing or
disappearing obstacles assuming that E-JOB runs in real-time. This is an extremely
challenging situation for the existing methods. For example, in the method of front
propagation, the distance function at all grid points must be recomputed to find
the solution once an obstacle appears or disappears. This could be very costly due
to the involvement of solving PDEs multiple times. However, E-JOB can treat
it efficiently, because many junctions remain unchanged, although some of them
appear or disappear as the appearance or disappearance of obstacles. This means
the shortest path stays the same mostly regardless of the changing environment.
Since all of the remaining junctions already settle down, only local updates of the
junctions are required .

The paper is arranged as follows. In section one, we give an introduction to E-
JOB. We discuss only the relevant mathematics and algorithm. We refer readers to
[3, 4] for more details. Each of the three sections followed describes one problem as
stated above. In the last section, we give a conclusion and discuss some future work.
For simplicity, all the examples are given in R2. However, the methods presented
in this paper can be extended to higher dimensions without change.

2. An overview of E-JOB

In this section, we briefly introduce E-JOB algorithm proposed in [3] in the most
general form. When dealing with polygonal or polyhedron obstacles, a more spec-
ified and faster version of E-JOB is available in [4]. We only discuss setup and
mathematics relevant to the three particular applications we are going to introduce
in this paper.

Consider N obstacles Pk, 1 ≤ k ≤ N in R2. Each obstacle Pk can be represented
by its signed distance function φk(x),

φk(x) =

{
−dk(x), x ∈ Pk;
dk(x), x ∈ P ck

(1)

where dk(x) is the distance between x and the boundary of Pk.
A path is a curve γ in R2, which is a continuous map:

γ : [0, 1]→ R2.

and it is said to be feasible for a point mover if γ doesn’t intersect with any obstacle,
i.e.

φk(γ(t)) > 0, t ∈ [0, 1], 1 ≤ k ≤ N.
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Denote F the set of all feasible paths such that γ(0) = X and γ(1) = Y . The
shortest path connecting X and Y we are interested in is

γopt = argminγ∈F L(γ).

In [3], we developed an SDE based strategy to find the shortest path, using the
following observation,

Theorem 1. Let the boundaries of the obstacles be piecewise C2 and the total num-
ber of points of C2-discontinuity is finite. Let γopt be an optimal solution to the short-
est path problem. Then there exist intervals {Ik ⊂ [0, 1]} such that every γopt(t)|t∈Ik
is on the boundary of one obstacle. Outside these intervals, γ(t) is a union of straight
line segments. Moreover, each line segment is tangent to the obstacles.

In other words, for the optimal path γopt, there exists a sequence of junction
points (x∗0, x

∗
1, . . . , x

∗
n, x
∗
n+1) with x∗0 = X,x∗n+1 = Y , such that each x∗i is connected

to its two neighbors either by a line segment or a curve that is part of the boundary
of an obstacle. Now, we consider all feasible paths sharing the similar structure,
i.e. a path γ determined by a sequence of junctions (x0, x1, · · · , xn, xn+1) (please
note that the number of junctions n may vary in the algorithm). We denote xci the
neighboring point that is connected to xi by a curve and xsi the point connected
to xi by straight line segment (The superscripts are self-explanatory). We assume
xc0 = x0 and xxn+1 = xn+1. For any two points x, y on the boundary of Pk, let
dk(x, y) be the distance between them along the boundary. For each xi, we define

J(xi) = ‖xi − xsi‖+ dni(xi, x
c
i ).

The length of γ is then

L(γ) = L(x1, . . . , xn) =
1

2

n+1∑
i=0

J(xi).

The resulting problem becomes a finite dimensional optimization problem. Hence
gradient descent with Intermittent Diffusion for global optimization can be applied.
More precisely, one can solve the following stochastic differential equation to deter-
mine the optimal positions of junctions xi,

dxi = −∇J(xi)dt+ σ(t)TdW (t). (2)

Here T is the unit tangent in counter-clockwise direction, W (t) is the standard
brownian motion and σ(t) is a step function representing the magnitude of the
noise, i.e.,

σ(t) =
n∑
i=1

σi1[Si,Ti](t),

with 0 = S1 < T1 < S2 < T2 < · · · < Sn < Tn < Sn+1 = T , and 1[Si,Ti] being the
indicator function of interval [Si, Ti]. Intuitively, in the time interval that σ(t) is 0,
xi converges to a local minimizer following the negative gradient flow, while on the
contrary xi jumps out of a local trap and has a chance to converge to a different local
minimizer in the interval that σ(t) is positive. This particular choice of σ enables
us to obtain not only the global optimizer but also a series of local minimizers. In
our implementation, both the interval Si, Ti and the magnitude of σi are chosen
randomly. For more details of intermittent diffusion, we refer readers to [2].

Another crucial part of E-JOB is how to handle vanished or newly generated
junction points. New junctions are generated when a straight line segment of the
path intersects with a obstacle during the evolution. In this case, E-JOB simply
insert the intersection points into the sequence of junctions. On the other hand,
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when two straight components xiz, xjz share a common junction z, the path can
be shortened by connecting xi, xj directly. We hence remove z from the sequence of
junctions.

We excerpt the algorithm from [3] as follows.

(1) Initialization. The initial junctions consist of all the intersection points of
the straight line XY with the boundaries of the obstacles.

(2) Update each junction xi by computing the stochastic differential equation
(2) for t ∈ [0, T ] with x(0) = xi and record final state xT = x(T ). In each
time step of updating the junction, add or remove points according to the
following cases:
(a) Adding junctions. If xixsi or xixci intersects with obstacles, we add the

intersection points into the set of junctions.
(b) Eliminating junctions. If xi = xci , then we remove xi and xci from the set

of junctions. Then add the intersection points if xsix
s
j , where xj = xci ,

intersects with the obstacles.
(3) Update each junction xi by the gradient flow (2) with σ(t) = 0 until a

convergence criterion is satisfied. And record the path connecting xi at the
final states. In each time step of updating the junctions, add or remove
points according to case (a) and (b) respectively as described in step (2).

(4) Repeat (2)-(3) N times to obtain N sample paths and then sort them to
obtain the optimal one.

Equation (2) can be discretized by many well established schemes. In [3], Euler
scheme is used, in which the noisy term dW (t) is discretized by

dW (t) ∼
√

∆tξ,

where ξ ∼ N(0, 1) is standard normal random variable and ∆t is the step size. The
tangent direction T(x) is computed by rotating the normal n(x) which is readily
obtained via the level set function

n = ∇φk(x).

We note the updated junction is projected onto the boundary of Pk.

3. The shortest Path for Moving a Disk

In this section, we consider the shortest path between two points for a disk D
with radius r. Given the size of the mover, the feasible path for a point may
become infeasible for the disk. To cope the scenario, we take the idea of replacing
the obstacles, denoted their region by P , by their expanded versions to account
for the size of the disk. One way to achieve this is to form the Minkowski sums
P̄ = P ⊕(−D). In the level set framework, this can be accomplished easily. Suppose
φk(x) is the signed distance function that represents the obstacle, then φk(x) − r
represents the enlarged obstacle by length r as desired. In this case, A path is said
to be feasible if the disk centered at γ(t) doesn’t intersect with any obstacle, i.e.

φk(γ(t)) > r, t ∈ [0, 1], 1 ≤ k ≤ N
Let us define φ̄k = φk − r, then it is easy to see that

Theorem 2. A path γ(t) for the disk D is feasible if and only if

φ̄k(γ(t)) > 0, t ∈ [0, 1], 1 ≤ k ≤ N.

The length of the path is naturally taken to be the distance that the disk center
traverses. Thus the shortest path for a disk is equivalent to the shortest path for a
point in the new environment where level set function φk for the original obstacles
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are replaced by φ̄k. With this setup, the path can be readily computed by E-JOB.
The following is an example for moving a disk.

Example. In Figure (2), we illustrate how radius of the disk affects the shortest
path. The left picture shows the shortest path for a point mover obtained by E-JOB.
It goes through the tunnel. The middle picture is the path for a disk with radius
r = 0.02. The obstacles are flattened. The darker area is the new region in the
enlarged obstacles represented. The tunnel is narrowed. Since the radius of the disk
is relatively small, the tunnel is large enough for the disk to pass through. However,
when the radius increases up to 0.05, the tunnel is stuck which forces the shortest
path to go ”outside” of the obstacle (shown on the right of Figure 2).

(a) L = 0.6266, r = 0 (b) L = 0.6347, r = 0.02 (c) L = 0.6952, r = 0.05

Figure 2. Example: shortest path with disk movers: Left: a point
mover, the shortest path is through the tunnel. Middle: a disk with
radius r = 0.02. The tunnel is still large enough for the disk to pass
through. Right: A disk with radius r = 0.05, which is too large to
move through the tunnel. The shortest path must go outside.

4. The shortest path between two sets

We consider in this section the shortest path problem when the starting and
ending points X,Y become two sets P and Q, in other words, the distance between
two Euclidean regions. If P and Q are treated as two new obstacles, the problem
differs little to the original shortest path problem in the framework of E-JOB. In
fact, the length of the two segments adjacent to junction xi, J(xi), remains the same
while x0 and xn+1 now become two new undetermined junctions instead of being
fixed. Therefore, the length functional is

L(γ) = L(x0, x1, . . . , xn, xn+1) =
1

2

n+1∑
i=0

J(xi).

Theorem 3. Theorem 1 still holds for the shortest path problem between two sets,
except that line segments x0xs0 and xn+1xsn+1 are perpendicular instead of being tan-
gent to the boundaries.

Proof. The first part follows exactly as in the proof in [3]. For x0, its critical point
satisfies

∇J(x0) =
x0 − x1
||x0 − x1||

·T = 0 (3)

Hence, x0 − x1 is perpendicular to T, i.e. the boundary of the obstacle x0 is on.
�
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(a) L = 0.2840 (b) L = 0.2979

Figure 3. Shortest path between two sets. The left one is the global
optimal solution.

Unlike the initialization as stated in the algorithm in Section 2, it is more chal-
lenging to find a good initialization here. The reason is that the starting point x0
and ending point xn+1 are variables themselves. When X and Y are fixed, the ini-
tialization which consists of the intersections of the line segment XY and all the
obstacles is effective and efficient in the sense that it leads to the globally shortest
path more quickly. However, when X and Y varies, there is no particular criterion
to tell which initialization is better than the other. As a result, the initialization
we choose is simply randomly select x0 and xn+1 on the boundaries of P and Q
respectively. For the same reason, it usually takes more time to converge to the
global optimizer. We illustrate it by the following example,

Example We compute the distance between two islands whose boundaries have a
couple of bumps. It is not hard to see there are at least 16 local minimizers. We
show two of them in Figure 3. Among them, the left one is the globally shortest
path.

5. The shortest path with obstacles appearing or disappearing

This section concerns the shortest path between two fixed points in a dynamic
environment. More specifically, we consider the scenario in which obstacles appear or
disappear. We would like to stress that it is not the usual time-varying shortest path
problem as discussed, for example, in [9]. The main difference is that the functional
(length of the path) we want to minimize doesn’t involve time because the obstacles
are not in motion. This is still a common scenario in practice, especially in robotics.
And E-JOB provides an extremely low-cost solution as compared to other existing
algorithms, such as the PDE based methods. In fact, as we demonstrate in the
examples, it often requires only local updates to obtain the shortest path by E-JOB
with appearing or disappearing obstacles.

For simplicity, we only consider the scenario in which one obstacle pops out or
disappear. The case in which multiple obstacles appear or disappear can be handled
in the same manner. Suppose we have N obstacles initially and the shortest path
between X and Y is obtained by E-JOB with the following junctions,

γ = (x0, x1, . . . , xn, xn+1).

Assume that a new obstacle, denoted by PN+1, appears. Without loss of generality,
let us assume that PN+1 only intersects with line segment xkxk+1 for some k and
denote the intersections by

(xk, xn+2, xn+3, . . . , xn+l, xk+1). (4)
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The new set contains n + l + 1 junctions in total. One can apply E-JOB to obtain
the globally optimal solution if needed. However, if a local minimizer is needed,
only l+ 1 junctions need to be evolved. The junctions not in (4) are already settled
down. Moreover, from our experience and the examples showing in this section,
since x0, . . . , xn+1 is part of the globally optimal path, the local minimizer obtained
by evolving xn+2, . . . , xn+l is very likely to be the global minimizer, although this is
not necessarily always the case.

The case in which an obstacle disappears can be handled in a similar manner.
Assume obstacle Pk disappears at certain time. If there were no junctions on the
boundary of Pk, the shortest path remains the same. If xi and xi+1 were on Pk,
we shorten the length by directly connecting xsi and xsi+1 with a line segment and

removing junctions xi and xi+1. If line segment xsix
s
i+1 intersects with any existing

obstacles, we add the intersections as new junctions.

Examples. We give four examples with two showing obstacle appearing and two
for obstacle disappearing . In the first two examples (Figure 4a,5a), there are two
obstacles initially. At certain time, a new obstacle (in the middle) pops out and
changes the shortest path accordingly. In the first example, the local minimizer
(4b) obtained by evolving new junctions x3, x4 is the global optimizer. Notice that
x1, x6 remain the same. On the other hand, the second example demonstrates the
contrary situation. Local updates in Figure (5b) only leads to a local minimizer.
All the junctions x need to be recomputed in order to obtain the globally shortest
path (5c).

The case in which the middle obstacle disappears are represented by the same
figures with reversed orders. More specifically, Figure (4b,5c) are new initial envi-
ronments and Figure (4a,5a) are the globally shortest path respectively after the
middle obstacle disappears.

(a) Initial environment, shortest path
has length L = 0.9400

(b) One obstacle appears, globally min-
imizer has length L = 0.9992

Figure 4. Shortest path with obstacle appearing
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(a) Inital environemnt, shortest path
has length L = 1.0211

(b) One obstacle appears, local mini-
mizer has length L = 1.0784

(c) One obstacle appears, globally min-
imizer has length L = 1.0593

Figure 5. shortest path with obstacle appearing

6. Conclusion

In this paper, we apply E-JOB that we developed previously to three problems
from practice: moving a disk, computing the distance between sets, and re-calculated
the shortest path with appearing or disappearing obstacles. They can be solved by
E-JOB with minimal modifications, so they enjoy the advantages of E-JOB, which
we would like to summarize here,

(1) It can deal with any shape of obstacles by incorporating level set framework.
This is especially convenient when handling dynamical environment with
obstacles moving or changing geometry and topology.

(2) It’s dimension independent. It has been successfully applied to environment
with 3-D polyhedral obstacles, which is a NP-hard Problem in the classical
combinatorial framework.
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(3) It can find the globally optimal path. In addition, it obtains a series of
locally optimal paths in the process. This makes it especially useful when a
time limit is imposed.

As evident in our third application, E-JOB can successfully handle appearing or
disappearing obstacles. This shed the light on how to use E-JOB to tackle the clas-
sical time-varying shortest path problems with dynamical environment with moving
obstacles. It is a much harder problem with different considerations, such as tempo-
ral dependent cost functions associated with the optimal conditions. This is beyond
the scope of this paper and we will report our findings in the future.
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