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Abstract. A numerical method for computing the Teichmüller extremal map between multiply-
connected domains is presented. Given two multiply-connected domains, there exists a unique Te-
ichmüller map(T-Map) between them minimizing the conformality distortion. The extremal T-Map
can be considered as the ”most conformal” mapping between multiply-connected domains. In this
paper, we propose an iterative scheme to obtain the extremal T-Map using the Beltrami holomor-
phic flow (BHF). The BHF procedure iteratively adjusts the initial map based on a sequence of
Beltrami coefficients, which are complex-valued function defined on the source domain. It produces
a sequence of quasi-conformal maps, which converges to the T-Map minimizing the conformality
distortion. We test our method on synthetic data together with real human face data. Results show
that our algorithm computes the extremal T-Map between multiply-connected domains accurately
and efficiently.
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1. Introduction. Establishing meaningful mappings between different domains
is an important research topic in many fields. Applications can be found in different
areas such as registration, shape analysis and grid generation. Conformal mapping
has been widely used to establish good one-to-one correspondence between differ-
ent domains, since it preserves the local geometry well. According to the Riemann
mapping theorem, conformal mappings between simply-connected domains always
exist. However, this fact is not true for multiply-connected domains. Given two
multiply-connected domains with different conformal modules, there is generally no
conformal mapping between them. In this case, it is usually desirable to obtain a
mapping that minimizes the conformality distortion. Every mapping is associated
with a unique Beltrami coefficient(BC), which is a complex-valued function µf de-
fined on the source domain. The BC, µf , measures the deviation of the mapping from
a conformal map. Given two multiply-connected domains Ω1 and Ω2, there exists a
unique map f : Ω1 → Ω2, called the Teichmüller extremal map (extremal T-Map),
minimizing the L∞ norm of the BC. Therefore, the extremal T-Map can be considered
as the ”most conformal” mapping between multiply-connected domains, which is a
natural extension of conformal mappings.

In this work, our goal is to numerically solve the following mathematical problem:

f∗ = argminf :Ω1→Ω2
{||µf ||∞} (1.1)

such that f∗(∂Ω1) = ∂Ω2 (boundary condition).

We present in this paper a numerical method to compute the extremal T-Map
between arbitrary multiply-connected domains. The domains of interest can either
be planar domains or surfaces embedded in R3. We propose an iterative algorithm to
obtain the extremal T-Map using the Beltrami holomorphic flow (BHF). The BHF
procedure iteratively adjusts the initial map, based on a sequence of Beltrami co-
efficients. It produces a sequence of quasi-conformal maps, which converges to the
desired extremal T-Map. Numerical experiments have been carried out on synthetic
data together with real human face data. Results show that our algorithm computes
T-Map between multiply-connected domains accurately and efficiently.

1



2 Ng, Gu and Lui

Fig. 1.1. (A) illustrate how the conformality distortion under a quasi-conformal map can be
determined by µ. (B) shows a general quasi-conformal map visualized by texture mapping. Confor-
mality distortion is not uniform. (C) shows a Teichmüller map, whose conformality distortion is
uniform everywhere.

The paper is organized as follows. In section 2, we review some previous works
closely related to the current work. In section 3, we describe some basic mathematical
background necessary for explaining this work. In section 4, we formulate the mathe-
matical problem in details. Our proposed algorithm to compute the extremal T-Map
will be discussed in section 5. The detailed numerical implementation of our proposed
model will be explained in Section 6. In section 7, we show the experimental results
to demonstrate the effectiveness of the proposed method. A concluding remark will
be given in section 8.

2. Related work. Teichmüller extremal maps are closely related to conformal
maps. Simply-speaking, a Teichmüller extremal map is the optimal quasi-conformal
map that is closest to conformal. The computation of conformal maps have been ex-
tensively studied [4, 5, 7, 2, 8, 6]. For example, Hurdal et al. [8] proposed to compute
the conformal parameterizations using circle packing and applied it to registration
of human brains. Gu et al. [5, 7, 6] proposed to compute the conformal parame-
terizations of Riemann surfaces for registration using harmonic energy minimization
and holomorphic 1-forms. Later, the authors proposed the curvature flow method
to compute conformal parameterizations of high-genus surfaces onto their universal
covering spaces [16, 17, 18]. Conformal registration is advantageous for it preserves
the local geometry well.

In real world situations, mappings are usually quasi-conformal, which induce
bounded amount of conformality distortion. Numerical quasi-conformal maps have
also been widely studied. Lui et al. [11] proposes to compute quasi-conformal registra-
tion between hippocampal surfaces which matches geometric quantities (such as cur-
vatures) as much as possible. A method called the Beltrami Holomorphic flow is used
to obtain the optimal Beltrami coefficient associated to the registration [10, 9, 13, 22].
Beltrami coefficient has been applied to represent general surface homeomorphisms,
which is comparatively easier to manipulate than 3D coordinate functions. Using
Beltrami representation, compression of surface maps has been proposed [9], which
can be applied for video compression [13]. Wei et al. [15] also proposes to compute
quasi-conformal mapping for feature matching face registration. The Beltrami coef-
ficient associated to a landmark points matching parameterization is approximated.
However, either exact landmark matching or the bijectivity of the mapping cannot
be guaranteed, especially when very large deformations occur. In order to compute
quasi-conformal mapping from the Beltrami coefficients effectively. Quasi-Yamabe
method is introduced, which applies the curvature flow method to compute the quasi-
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conformal mapping [12]. The algorithm can deal with surfaces with general topologies.
Later, extremal quasi-conformal mapping, which minimizes conformality distortion
has been proposed. Zorin et al. [21] proposes a least square algorithm to compute
mapping between connected domains with given Dirichlet condition defined on the
whole boundaries. The extremal mapping is obtained by minimizing a least square
Beltrami energy, which is non-convex. The algorithm can obtain an extremal map-
ping when initialization is carefully chosen. However, the convergence to the global
minimum cannot be guaranteed. Recently, Lui et al. [23] proposed to compute the
unique Teichmüller map between simply-connected Riemann surfaces of finite type.
The proposed algorithm was applied for landmark-based surface registration.

3. Overview of quasi-conformal geometry. In this section, we describe some
basic mathematical concepts relevant to our algorithms. For details, we refer the
readers to [3, 14].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N , a map f : M → N is conformal if it preserves the surface
metric up to a multiplicative factor called the conformal factor. A generalization
of conformal maps is the quasi-conformal maps, which are orientation preserving
homeomorphisms between Riemann surfaces with bounded conformality distortion,
in the sense that their first order approximations takes small circles to small ellipses
of bounded eccentricity [3]. Mathematically, f : C → C is quasi-conformal provided
that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3.1)

for some complex valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, which is a measure of non-conformality. µf measures how far the map is
deviated from a conformal map. µ ≡ 0 if and only if f is conformal. Infinitesimally,
around a point p, f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z
= f(p) + fz(p)(z + µ(p)z).

(3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication of
fz(p), which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),
we can determine the angles of the directions of maximal magnification and shrinking
and the amount of them as well. Specifically, the angle of maximal magnification
is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; The angle of maximal shrinking is
the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor 1 − |µ(p)|. Thus, the
Beltrami coefficient µ gives us all the information about the properties of the map
(see Figure 1.1).

The maximal dilation of f is given by:

K(φ) =
1 + ||µ||∞
1− ||µ||∞

. (3.3)

Quasiconformal mapping between two Riemann surfaces R1 and R2 can also be
defined. Instead of the Beltrami coefficient, the Beltrami differential has to be used.
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A Beltrami differential µ(z)dzdz on the Riemann surface R1 is an assignment to each
chart (Uα, φα) of an L∞ complex-valued function µα, defined on local parameter zα
such that

µα(zα)
dzα
dzα

= µβ(zβ)
dzβ
dzβ

, (3.4)

on the domain which is also covered by another chart (Uβ , φβ), where dzβ
dzα

= d
dzα

φαβ
and φαβ = φβ ◦ φ−1

α .
An orientation preserving diffeomorphism f : R1 → R2 is called quasi-conformal

associated with µ(z)dzdz if for any chart (Uα, φα) on R1 and any chart (Vβ , ψβ) on R2,
the mapping fαβ := ψβ ◦ f ◦ f−1

α is quasi-conformal associated with µα(zα)dzαdzα
.

4. The mathematical formulation of the problem.

4.1. The extremal problem. Given two multiply-connected domains or sur-
faces Ω1 and Ω2, both with n + 1 boundaries. Denote the boundaries of Ω1 and
Ω2 by {γ0, γ1, ..., γn} and {γ′0, γ′1, ..., γ′n} respectively. Conformal maps between ar-
bitrary multiply-connected domains generally do not exist. One might be interested
in studying extremal quasi-conformal mappings, which are extremal in the sense of
minimizing the || · ||∞ over all Beltrami differentials corresponding to quasi-conformal
mappings between Ω1 and Ω2. The idea of extremality is to make K(f) as small as
possible such that f is as ”nearly conformal” as possible. Extremal mapping always
exists but needs not be unique.

Let f : Ω1 → Ω2 be a quasi-conformal mapping between Ω1 and Ω2. Assume
that f satisfies the boundary condition: f(γi) = γ′i for all i. Note that the point-wise
correspondence between the boundaries is not required. f is said to be an extremal
mapping if for any quasi-conformal mapping h : Ω1 → Ω2 satisfying the boundary
condition,

K(f) ≤ K(h) (4.1)

It is called uniquely extremal if the inequality (4.1) is strict [19, 20].

Note that an extremal mapping is not unique for general cases. According to
equation (3.3), K(f) is minimum if and only if ||µ(f)||∞ is minimized. The extremal
problem can therefore be expressed as finding f∗ : Ω1 → Ω2 that solves:

f∗ = argminf∈A{||µf ||∞} (4.2)

where A = {f : Ω1 → Ω2 : f(γi) = γ′i for 0 ≤ i ≤ n}.
The extremal map is closely related to another type of mapping, called the Te-

ichmüller map (T-Map). Simply-speaking, a T-Map is a quasi-conformal map with
uniform conformality distortion. Mathematically, a quasi-conformal map f is said
to be a Teichmüller mapping associated with an integrable holomorphic function
ϕ : Ω1 → C if its associated Beltrami coefficient is of the form:

µ(f) = k
ϕ

|ϕ|
(4.3)

for some constant 0 ≤ k < 1 and integrable holomorphic function ϕ 6= 0. The Beltrami
coefficient of this form is said to be of Teichmüller type.
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Fig. 4.1. Teichmüller maps with different maximal dilations. (A) and (B) shows two circle
domains with three holes. (B) shows a Teichmüller map, visualized by texture mapping. Its BC norm
is equal to 0.58. (C) shows the extremal Teichmüller map, whose BC norm (=0.11) is minimum
over all possible Teichmüller map.

Figure 1.1(B) and (C) shows the difference between a general quasi-conformal
map and a Teichmüller map. (B) shows a general quasi-conformal map visualized by
texture mapping. The small circles on (A) are mapped to small ellipses on (B) with
different eccentricity (see the histogram of the norm of its Beltrami coefficient). (C)
shows a T-Map visualized by texture mapping. The small circles on (A) are mapped
to small ellipses on (B) with uniform eccentricity everywhere. As we can see from the
histogram, the norm of the Beltrami coefficient accumulates at 0.3.

In general, there are many Teichmüller maps between two multiply-connected
domains with the same topology. In particular, given the boundary correspondence
h : ∂Ω1 → ∂Ω2 satisfying h′(eiθ) 6= 0 and |h′′(eiθ)| < ∞, there exists a unique
Teichmüller map f between Ω1 and Ω2 [20]. Also, f is uniquely extremal for its
boundary values.

Theorem 4.1. Let Ω1 and Ω2 be multiply-connected domains with the same
topology and h : ∂Ω1 → ∂Ω2. Suppose f : Ω1 → Ω2 is a Teichmüller map with a
quadratic differential of finite norm, with f |∂Ω1 = h . Then f is uniquely extremal
for its boundary values.

Proof. Suppose g is an extremal extension of h. Let the Beltrami coefficient of f
be µf = kϕϕ . Since f and g agrees on their boundaries, the following inequality holds
[20]:

∫
Ω1

(
|α|2 − |β|2

)
+ (1− |µf |)(|α| −Re( β̄α|α| ))

(1 + |µf |)(1− |β2|)
|ϕ|

≤ Re
∫

Ω1

ᾱ

α

(
|ϕ| − µf

|µf |
ϕ

)
(1− β̄α)(α− β)

(1− |µf |2)(1− |β2|)

(4.4)

where α = µf−1 ◦f ; β = µg−1 ◦g. Since µf = kϕϕ , the right-hand side of (4.4) vanishes.
Hence, α = β. This implies: µf−1 = µg−1 . Since f−1 and g−1 has the same boundary
values, namely, h, we have f−1 = g−1. Thus, f is the unique extremal map satisfying
the boundary values h.

Therefore, with different boundary value h : ∂Ω1 → ∂Ω2, different Teichmüller
map can be obtained (see Figure 4.1). We denote the collection of all possible Beltrami
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coefficients of Teichmüller type associated with quasi-conformal maps between Ω1 and
Ω2 by T (Ω1). In other words,

T (Ω1) := {ν : Ω1 → C : ν = k
ϕ̄

|ϕ|
, 0 ≤ k < 1,

∫
Ω1

|ϕ| <∞} (4.5)

Our goal is to look for the optimal ν∗ := k∗ ϕ̄
∗

|ϕ∗| ∈ T (Ω1) whose ||ν∗||∞ (= k∗)
is minimized over T (Ω1). It turns out that ν∗ is the unique minimizer. It is also the
Beltrami coefficient associated with the unique extremal map between Ω1 and Ω2 (see
Figure 4.1). This is guaranteed by the following theorem.

Theorem 4.2. Let Ω1 and Ω2 be multiply-connected domains with the same
topology. There exists a unique extremal map f : Ω1 → Ω2 satisfying the boundary
condition: f(γi) = γ′i for all i. Also, f is a Teichmüller map associated with an
integrable holomorphic quadratic function on Ω1.

Proof. By the compactness argument, there exists an extremal map fext : Ω1 →
Ω2 with f(γi) = γ′i for all i such that ||µ(fext)||∞ = inff :Ω1→Ω2{||µ(f)||∞} := k. Let
h = fext|∂Ω1 . We proceed to prove that fext is unique and is a Teichmüller map.

By Theorem 4.1, there exists a unique Teichmüller map f : Ω1 → Ω2 such that
f |∂Ω1 = h. f is the unique extremal map for the boundary value h. Hence, fext = f .
Hence, all extremal map between Ω1 and Ω2 must be a Teichmüller map.

Now, suppose g : Ω1 → Ω2 is another extremal map. Since g−1◦f is homotopic to
identity, we conclude that either there exists a set of positive measure on Ω1 for which
|µ(g)(z)| > k or µ(g) = µ(f). Since g is extremal, ||µ(g)||∞ = k. Hence, µ(g) = µ(f)
is of Teichmüller type.

4.2. Variational formulation of the extremal problem. In this section, we
give a variational formulation of the extremal problem. The T-Map can then be
computed through optimization techniques.

Recall that a Teichmüller extremal mapping is extremal in the sense of minimizing
the || · ||∞ over all Beltrami differentials. According to the Teichmüller theory, the
unique extremal map between multiply-connected domains is a Teichmüller map.
Therefore, our goal is to look for a T-Map minimizing the conformality distortion.
The extremal problem can then be formulated as follows:

f∗ = argminf :Ω1→Ω2
E1(f) = argminf :Ω1→Ω2

{||µ(f)||∞} (4.6)

subject to:
• f∗(∂Ω1) = ∂Ω2 (boundary condition);
• µ(f∗) = kϕϕ for some constant 0 ≤ k < 1 and integrable holomorphic function
ϕ : Ω1 → C (ϕ 6= 0).

However, minimizing E1(f) with respect to the space of diffeomorphisms between
Ω1 and Ω2 is difficult. In fact, let f = f1 + if2, the minimization problem can be
expanded as follows:

f = argminf{||µ(f)||∞} = argminf{||
∂f/∂z

∂f/∂z
||∞} (4.7)

subject to f(∂Ω1) = Ω2 and µ(f) = kϕϕ for some constant 0 ≤ k < 1 integrable
holomorphic function ϕ : Ω1 → C (ϕ 6= 0).
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In order to minimize the above constrained minimization problem effectively, we
propose to reformulate the energy functional to define it over the space of all Beltrami
coefficients:

(ν, f) = argminν:D1→CE2(ν) := argminν:Ω1→C{||ν||∞} (4.8)

subject to:
• ν = µ(f) and ||ν||∞ < 1;
• ν = kϕϕ for some constant 0 ≤ k < 1 and holomorphic function ϕ : D1 → C;
• f(∂Ω1) = Ω2 (boundary condition).

Minimizing E2 with respect to BCs subject to the constraints is advantageous
since the diffeomorphic property of the mapping can be easily controlled. Every
diffeomorphism is associated with a smooth Beltrami coefficient µ(f). µ(f) measures
the bijectivity (1-1 and onto) of f . In fact, µ(f) is related to the Jacobian J(f) of f
by the following formula:

|J(f)|2 = |∂f
∂z
|2(1− |µ(f)|2) (4.9)

Therefore, the map f is bijective if |µ(f)| is everywhere less than 1. When solving the
minimization problem (4.8), the bijectivity of the mapping in each iterations can be
ensured by enforcing ||ν||∞ < 1. Our goal is to look for a sequence of {νn}∞n=1 con-
verging to the optimal BC, ν∗, which corresponds to our desired Teichmüller extremal
map.

In section 5, we describe a numerical iterative scheme to obtain such a sequence.

5. Proposed algorithm. We describe our proposed method to compute the
T-Map in this section.

5.1. Beltrami holomorphic flow(BHF). The numerical computation of a T-
Map is equivalent to finding its associated Beltrami coefficient(BC). As BC varies, its
associated quasi-conformal map varies and vice versa. We first examine the relation-
ship between the variation of BCs and their associated quasi-conformal map.

Let fµ : Ω1 → Ω2 be a quasi-conformal map, whose BC is µ : Ω1 → C. Assume
µ varies by ω, and assume its associated quasiconformal map fµ+ω varies by ~V .
In other words, fµ+ω(z) = fµ(z) + ~V (z). Obviously, ~V depends on ν. In fact, if
fµ+tω(z) = fµ(z) + ~Vt(z) (t ∈ C), then ~Vt(z) depends holomorphically on t ∈ C. We
call the flow from fµ to fµ+tω = fµ(z) + ~Vt(z) the Beltrami holomorphic flow (BHF)
from µ to µ+ tω [10, 9, 13, 22]. In particular, ~V (z) = ~V1(z).

We shall develop an algorithm to obtain ~V . Let ν = µ+ ω. Our problem can be
simply put as finding the variation ~V as µ changes to ν. Hence, fν = fµ + ~V .

Theorem 5.1. Let fµ and fν be the quasi-conformal maps with Beltrami coeffi-
cients µ : Ω1 → C and ν : Ω1 → C respectively. Suppose fν = fµ + ~V . Let A be the
differential operator defined by A := ∂

∂z̄ − ν
∂
∂z . Then:

A~V = −Afµ (5.1)
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Proof. Since fν is the quasi-conformal map with Beltrami coefficient ν : Ω1 → C,
∂fν

∂z̄ = ν ∂f
ν

∂z . Equivalently,

Afν = (
∂

∂z̄
− ν ∂

∂z
)fν = 0. (5.2)

Now, since fν = fµ + ~V , we obtain

Afν = A(fµ + ~V ) =⇒ 0 = A(fµ + ~V ) (5.3)

Hence, A~V = −Afµ as required.
In other words, finding ~V is equivalent to solving the partial differential equation

(5.1) subject to the boundary condition that

fν + ~V (∂Ω1) = ∂Ω2 (5.4)

Using Theorem 5.1, we propose to iteratively deform fµ to fν . More specifically,
our goal is to obtain a sequence of quasi-conformal maps {fn}∞n=1 such that f0 = fµ

and f∞ = fν . To do this, we first set f0 = fµ. We then approximate the solution of
Equation (5.1) with the boundary constraint using the least square method to obtain
~V0. We get a new quasi-conformal map f1 := f0 + ~V0. Suppose at the nth iteration, we
have the quasi-conformal map fn with Beltrami coefficient νn. We then approximate
the solution of Equation (5.1) by putting µ = νn to obtain ~Vn. Set fn+1 := fn + ~Vn.
A sequence of quasi-conformal maps {fn}∞n=1is obtained, whose Beltrami coefficients
converge to ν. We call such a process to deform fµ to fν iteratively the Beltrami
holomorphic flow (BHF) from µ to ν, and denote it by: BHF(µ→ ν).

The iterative scheme to obtain the Beltrami holomorphic flow can be described
as follows:

Algorithm 6.1 : (Beltrami holomorphic flow)
Input : fµ : Ω1 → Ω2 with Beltrami coefficient µ
Output : Sequence of quasi-conformal maps {fn}∞n=1

1. Set f0 = fµ. Solve Equation (5.1) to obtain ~V0;
2. Given fn, compute νn := µ(fn); solve Equation (5.1) by putting µ = νn to

obtain ~Vn; Set fn+1 := fn + ~Vn;
3. If ||νn+1 − νn|| ≥ ε, repeat step 2. Otherwise, stop the iteration.

5.2. Iteration scheme for computing T-Maps. Our goal is to obtain a se-
quence of Beltrami coefficients {νn}∞n=1 converges to the optimal ν∗ associated to the
desired T-Map f∗.

Given an initial map f0 : Ω1 → Ω2 such that f0(∂Ω1) = ∂Ω2, let ν0 = µ(f0) be
the Beltrami coefficient associated with f0. We proceed to iteratively adjust ν0 to
solve the optimization problem (4.8).

Recall that our optimal ν∗ must be of Teichmüller type. That is, ν∗ ∈ T (Ω1)
where

T (Ω1) := {ν : Ω1 → C : ν = k
ϕ̄

|ϕ|
, 0 ≤ k < 1,

∫
Ω1

|ϕ| <∞} (5.5)

To find the desired T-Map, our strategy is to apply an iterative minimization
scheme over the space of T (Ω1) to minimize E2(ν) = ||ν||∞. Firstly, we descend ν
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to minimize E2 over the space B(Ω1) of all Beltrami coefficients. We then project
ν into T (Ω1). A sequence of Beltrami coefficients can be obtained, whose supreme
norms monotonically decreases. According to Theorem 4.2, the minimizer exists and is
unique. Hence, the sequence converges to an optimal Beltrami coefficient ν∗ associated
to our desired Teichmüller extremal map f∗.

The algorithm can be described more specifically as follows. Given ν0, we first
project it into the space of T (Ω1). To do this, we normalize ν0 by an averaging
operator:

N (ν) = (

∫
Ω1
|ν|dΩ1

A(Ω1)
)eiθ (5.6)

where ν = eiθ and A(Ω1) = area of Ω1.
We can then obtain a quasi-conformal map g := BHF(ν0 → N (ν0))), whose

Beltrami coefficient is given by ν. Note that ν is generally not in T (Ω1). We repeat
the process by updating g by g := BHF(ν → N (ν)). We stop the process until
|ν → N (ν)| < ε. Eventually, we obtain a Teichmüller map g : Ω1 → Ω2, whose
Beltrami coefficient ν ∈ T (Ω1) is closest to ν0. We call this process the projection of
ν0 into the space of T (Ω1), and denote it by (ν, g) = P(ν0).

Such a projection is guaranteed to exist and its supreme norm must be less than
||ν0||∞, according to Theorem 4.1. The convergence of the above process of obtaining
a T-Map, which is homotopic to ν0, can be verified by an argument of harmonic energy
minimization with respect to a special metric [24]. Simply speaking, each µ ∈ T (Ω1)
induces a metric on Ω1. A unique harmonic map between Ω1 and Ω2 with respect
to this metric exists, which is associated with a harmonic energy Eharmonic. The
function Eharmonic : B(Ω1) → R+ is convex. The minimizer is the unique Beltrami
coefficient associated with the T-Map homotopic to ν0. The minimizer can then be
obtained by a standard descent method.

Now, to minimize E2(ν) = ||ν||∞, we perform a damping operation on ν. That
is, we diffuse ν through

∂ν

∂t
= −ν (5.7)

We diffuse ν over a finite time over B(Ω1), and denote the damping operation on
ν by D(ν). It reduces ||ν||∞.

A new map g1 : Ω1 → Ω2 can then be obtained by BHF with the given ν0:

g1 := BHF(ν0 → P(D(ν0))) (5.8)

Let µ1 := µ(g1). We project µ1 into the space of T (Ω1) to get ν1 := P(µ1) and
Teichmüller map f1 associated to ν1. The iteration continues until it converges to the
optimal ν∗ associated to the desired extremal T-Map f∗. According to Theorem 4.2,
the minimizer uniquely exists and is of Teichmüller type.

Therefore, given fn : Ω1 → Ω2 whose Beltrami coefficient is νn, we adjust νn and
fn as follows:

gn+1 := BHF(νn → D(νn))
µn+1 := µ(gn+1)

(νn+1, fn+1) := P(µn+1)
(5.9)
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Fig. 5.1. Rate of convergency under different initializations. (A) shows the supreme norm of
νn versus iterations under an arbitrary initialization. The iterative scheme takes about 25 iterations
to converge. (B) shows the supreme norm of νn versus iterations under the initialization described
in section 5.3. The iterative scheme get to the optimal Beltrami coefficient in about 1 or 2 iteration.

As a result, we obtain a sequence of Beltrami coefficients {νn}∞n=1 converges to the
optimal ν∗ associated to the desired T-Map f∗, which solves the optimization problem
(4.8). In summary, the iterative scheme for computing T-Maps can be described as
follows:

Algorithm 6.2 : (Iteration scheme for computing T-Maps)
Input : Multiply-connected domains Ω1 and Ω2 of the same topology
Output : Optimal Beltrami coefficient ν∗ and the T-Map f∗

1. Obtain an initial map f0 : Ω1 → Ω2 with f0(∂Ω1) = ∂Ω2. Set ν0 = µ(f0);
2. Given νn, compute gn+1 := BHF(νn → D(νn)) and µn+1 := µ(gn); Project
µn+1 into T (Ω1) to obtain (νn+1, fn+1) := P(µn+1);

3. If ||νn+1 − νn|| ≥ ε, repeat step 2. Otherwise, stop the iteration.

5.3. Initialization of the iterative scheme. In practice, the iterative scheme
to obtain the T-Map converges fast if a good initialization is chosen.

We propose to obtain an initial map f0 whose Beltrami coefficient is closest to
µ = 0 in the least square sense, using Beltrami holomorphic flow. We first compute a
harmonic map h : Ω1 → Ω2 between Ω1 and Ω2 with arbitrary boundary correspon-
dence. Let µh be the Beltrami coefficient of h. We then obtain an initial map f0 by
f0 = BHF(µh → µ ≡ 0).

Experimental results show that with this initialization, the iterative scheme con-
verges very fast. As shown in Figure 5.1(A), we show the supreme norm of νn ver-
sus iterations under an arbitrary initialization. The iterative scheme takes about 25
iterations to converge. In 5.1(B), we perform the same experiment but using the
initialization introduced in this subsection. The iterative scheme get to the optimal
Beltrami coefficient in about 1 or 2 iterations. Despite that different initializations
are used, the iterative scheme converge to the same extremal map. It illustrates that
the extremal map is unique. In all experiments we have done, our iterative scheme
gets to the extremal map in about 1 or 2 iterations if the proposed initialization is
used.

6. Numerical implementation. In this section, we will explain in detail the
numerical implementation of the algorithms proposed in section 5.
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In practice, multiply-connected 2D domains or surfaces in R3 are usually rep-
resented discretely by triangular meshes. Suppose K1 and K2 are two meshes with
the same topology representing Ω1 and Ω2. We define the set of vertices on K1 and
K2 by V 1 = {v1

i }ni=1 and V 2 = {v2
i }ni=1 respectively. Similarly, we define the set of

triangular faces on K1 and K2 by F 1 = {T 1
j }mj=1 and F 2 = {T 2

j }mj=1. Our goal is to
look for a piecewise linear homeomorphism between K1 and K2 that approximates
the Teichmüller extremal mapping between Ω1 and Ω2.

6.1. Implementation details of BHF. The major step in computing the Bel-
trami holomorphic flow as described in Algorithm 6.1 is to solve equation (5.1). We
first discretize the operator A in equation (5.1). Let f = (u +

√
−1v) : K1 → K2.

To compute A, we simply need to approximate the partial derivatives at every face
T . We denote them by Dxf(T ) = Dxu +

√
−1Dxv and Dyf(T ) = Dyu +

√
−1Dyv

respectively. Note that f is piecewise linear. The restriction of f on each triangular
face T can be written as:

f |T (x, y) =
(
aTx+ bT y + rT
cTx+ dT y + sT

)
(6.1)

Clearly, Dxu(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT and Dyv(T ) = dT . Now, the
gradient ∇T f := (Dxf(T ), Dyf(T ))t on each face T can be computed by solving the
linear system:

(
~v1 − ~v0

~v2 − ~v0

)
∇T f̃i =

(
f̃i(~v1)−f̃i(~v0)
|~v1−~v0|

f̃i(~v2)−f̃i(~v0)
|~v2−~v0|

)
, (6.2)

where [~v0, ~v1] and [~v0, ~v2] are two edges on T . By solving equation 6.2, aT , bT , cT and
dT can be obtained. Hence on each face T ,

∇T f̃i =
1

2A

3∑
j=1

f̃i(~vj)~sj , (6.3)

where A is the area of T and

~sT1 = ~n× (~v3 − ~v2)

~sT2 = ~n× (~v1 − ~v3)

~sT3 = ~n× (~v2 − ~v1),

(6.4)

where ~n is the unit normal of T . On each face T , let ν(T ) ≡ νT . Using the relations
∂
∂z = (Dx−

√
−1Dy)/2 and ∂

∂z̄ = (Dx+
√
−1Dy)/2, the operator A can be discretized

on each face T as follows:

Af̃i(T ) =
1

4A
(1− νT ,

√
−1 +

√
−1νT )

3∑
j=1

f̃i(~vj)~sTj . (6.5)

Note that the right hand side of the above equation is linear in every ũi(~vj) and ṽi(~vj),
j = 1, 2, 3. Hence, the above discretization of A transforms (5.1) into a linear system
of ~V (~vi), i = 1, · · · , n. Let ~V (~vi) = (Pi, Qi)t and fµ(~vi) = ui +

√
−1vi, then for each
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face Tj , j = 1, · · · ,m, we have

1
4Area(Tj)

(1− νTj ,
√
−1 +

√
−1νTj )

3∑
i=1

(PTj(i) +
√
−1QTj(i))~s

Tj
i

=− 1
4Area(Tj)

(1− νTj ,
√
−1 +

√
−1νTj )

3∑
i=1

(uTj(i) +
√
−1vTj(i))~s

Tj
i ,

(6.6)

where Tj(i), i = 1, 2, 3, is such that Tj = [~vTj(1), ~vTj(2), ~vTj(3)].
Secondly, the boundary constraint (5.4) can be approximated by a linear con-

straint, so that the least square method can be applied to solve the problem. For
each boundary vertex ~vi ∈ ∂Ω1, we only require ~V (~vi) to be parallel to the tangent of
∂Ω2 at fµ(~vi) for each boundary vertex ~vi ∈ ∂Ω1,. That is, if ~V (~vi) = (Pi, Qi)t and
(ai, bi)t is the direction of the tangent, then

biPi − aiQi = 0, (6.7)

which is a linear constraint. The linear system (6.6) together with the constraint
(6.7) may be overdetermined. Therefore we solve the system by least square method.
However, it is equivalent to solve a non-singular linear system, so the system can be
solved effectively. For each iteration of Algorithm 6.1, ~Vn(~vi) is solved as above. Set
f̃n+1(~vi) := fn(~vi) + ~Vn(~vi). For each boundary vertex ~vi, it is not necessary that
f̃n+1(~vi) ∈ ∂Ω2. Nevertheless, when ||ν||∞ is small enough, f̃n+1(~vi) will not be far
away from ∂Ω2. Hence we can project f̃n+1(~vi) onto ∂Ω2 and obtain the solution
fn+1(~vi) such that fn+1(∂Ω1) = ∂Ω2, i.e.

fn+1(~vi) := argminf∗∈∂Ω2
‖f̃n+1(~vi)− f∗‖2. (6.8)

6.2. Implementation details of the iterative scheme. The main operators
involved in the iterative scheme proposed in section (5.2) are: BHF(µ→ ν), L and P.
The numerical implementation of BHF(µ→ ν) was described in the last subsection.
We now describe the numerical implementation of L and P in detail.

Recall that the Laplace smooth L(ν) diffuses ν through ∂ν
∂t = −ν. In the discrete

case, we define the damping operator as follows:

D(ν)(T ) := ν(T )− εν(T ) (6.9)

where T is a triangular face of K1, ε > 0.
Another operator is the projection operator P(ν), which projects ν into the space

of BCs of Teichmüller type T (Ω1). In the discrete case, the projection is defined as
follows: is defined as follows:

P(ν)(T ) := (

∑
T∈ all faces of K1

|ν|(T )
No. of faces of K1

)
ν(T )
|ν(T )|

(6.10)

where T is a triangular face of K1, Nbhd(T ) is the set of neighborhood faces of T and
|Nbhd(T )| is the number of neighborhood faces in the set Nbhd(T ).

7. Experiments. We have tested our proposed algorithms on synthetic data
together with real 3D surface data obtain from the 3D scanner. All experiments are
carried out on a laptop with an Intel Core i7 2.10 GHz CPU and 12GB RAM.
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Fig. 7.1. (A) and (B) shows two triply-connected domains. A quasi-conformal map f between
(A) and (B) is given and its associated Beltrami coefficient is µf . (C) shows the reconstructed map
obtained from µf using BHF.

Fig. 7.2. (A) and (B) show the error in coordinates ||f−fn||∞ and error in BC ||µf−µ(fn)||∞
versus iterations respectively of the experiment in Figure 7.1.

7.1. Performance of BHF. We first examine the performance of BHF to it-
eratively flow a map to another quasi-conformal map with the prescribed Beltrami
coefficient(BC). In Figure 7.1, we apply the BHF to get a quasi-conformal map with
prescribed BC between two triply-connected domains. (A) and (B) shows two triply-
connected domains. Given a quasi-conformal map f between (A) and (B), we obtain
a Beltrami coefficient µf corresponding to f . Using BHF, we can reconstruct the map
f from µf . (C) shows the reconstructed map, which closely resembles to the original
one. Figure 7.2(A) and (B) show the error in coordinates ||f − fn||∞ and error in BC
||µf −µ(fn)||∞ versus iterations respectively. Both converge to 0 quickly in less than
10 iterations.

We repeat the experiment to compute the quasi-conformal map between two circle
domains with three holes using BHF. Figure 7.5(A) and (B) shows two circle domains
with three holes. We compute the Beltrami coefficient µf corresponding to a given
map f . Using BHF, we reconstruct f from µf . (C) shows the reconstructed map,
which closely resembles to the original one. Figure 7.7 shows the error in coordinates
||f − fn||∞ and error in BC ||µf − µ(fn)||∞ versus iterations. Again, both converge
to 0 quickly in less than 10 iterations.

7.2. T-Maps between 2D multiply-connected domains. We test our pro-
posed iterative scheme to compute the Teichmüller extremal map on synthetic 2D
multiply-connected domains. In Figure 7.5, we compute the Teichmuller extremal
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Fig. 7.3. (A) and (B) shows two circle domains with three holes. A quasi-conformal map f be-
tween (A) and (B) is given and its associated Beltrami coefficient is µf . (C) shows the reconstructed
map obtained from µf using BHF.

Fig. 7.4. (A) and (B) show the error in coordinates ||f−fn||∞ and error in BC ||µf−µ(fn)||∞
versus iterations respectively of the experiment in Figure 7.5.

map between two circle domains with three holes. (A) and (B) shows the two multiply-
connected domains. The obtained extremal T-Map is visualized using texture map-
ping. The small circles on (A) are mapped to small ellipses on (B) under the extremal
T-Map, with the uniform eccentricity. In (C), we show the histogram of the norm of
the BC. It accumulates at 0.53, meaning that the conformality distortion is uniform
over the whole domain. It means the computed extremal map is indeed a Teichmüller
map.

Our proposed algorithm automatically determines the optimal boundary corre-
spondence such that the conformality distortion is minimized. Figure 7.6 shows the
boundary correspondence for each boundary component, plotted as a monotonic func-
tion from [0, 2π] to [0, 2π].

Figure 7.7(A) shows ||µ(fn)||∞ versus iterations. (B) shows the zoom-in of (A).
The plots show that our proposed algorithm iteratively minimize the supreme norm
of BC. The optimal Beltrami coefficient is associated to our desired extremal map,
which is a Teichmüller map.

We also test the algorithm on synthetic circle domains with more holes. Figure
7.8 shows the Teichmüller extremal map between two multiply-connected domains
with 5 holes obtained by our proposed method. The histogram of the BC norm is
shown in (C), which means that the conformality distortion is uniform everywhere.
In Figure 7.9, we test our method on circle domains with 9 holes. (B) shows the
obtained Teichmüller extremal map visualized by texture mapping. The histogram
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Fig. 7.5. (A) and (B) shows the two multiply-connected domains with three holes. The obtained
extremal T-Map is visualized by texture mapping. The small circles on (A) are mapped to small
ellipses on (B) under the extremal T-Map, with the same eccentricity. (C) shows the histogram of
the norm of the BC.

Fig. 7.6. This figure shows the boundary correspondence for each boundary component, plotted
as a monotonic function from [0, 2π] to [0, 2π].

of the BC norm is shown in (C), which means the obtained map is indeed a T-Map.
This example demonstrates the effectiveness of our algorithm even on complicated
domains with many holes.

Furthermore, our method can be applied to any multiply-connected domains with
arbitrary shapes (not restricted to circle domains). Figure 7.10 shows the com-
puted Teichmüller extremal map between two multiply-connected domains of arbi-
trary shapes with two holes, visualized by texture mapping. Again, the histogram
of the BC norm (as shown in (C)) shows that the conformality distortion is uniform
everywhere, meaning that the extremal map is indeed of Teichmüller type.

7.3. T-Maps between multiply-connected surfaces. The proposed method
can be easily extended to compute extremal T-Map between general multiply-connected
surfaces through conformal parameterization. We test the proposed method to com-
pute extremal map between multiply-connected 3D human faces. We also apply the
algorithm to obtain the extremal parameterization of the human face onto a simple
user-defined parameter domain, which is important for grid generation.

Figure 7.11(A) and (B) shows two multiply-connected human faces. The extremal
T-Map between them is computed, which is visualized using texture mapping. The
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Fig. 7.7. (A) shows ||µ(fn)||∞ versus iterations of the experiment in Figure 7.5. (B) shows
the zoom-in of (A).

Fig. 7.8. (A) and (B) shows the two multiply-connected domains with five holes. The obtained
extremal T-Map is visualized by texture mapping. The small circles on (A) are mapped to small
ellipses on (B) under the extremal T-Map, with the uniform eccentricity. (C) shows the histogram
of the norm of the BC.

small circles on (A) are mapped to small ellipses on (B) under the T-Map, with the
same eccentricity. In (C), we show the histogram of the norm of the BC. It accumulates
at 0.21, meaning that the conformality distortion is uniform everywhere. Figure
7.12(A) shows the supreme norm of BC, ||µ(fn)||∞ in each iterations. (B) shows
the zoom-in of (A). Again, the plots show that our proposed algorithm iteratively
minimizes the supreme norm of BC. The optimal Beltrami coefficient is associated to
our desired extremal map between the two multiply-connected human faces.

In Figure 7.13, we compute the extremal parameterization of the multiply-connected
human faces with three holes. (A) shows a simple user-defined parameter domain.
Using our algorithm, an extremal map parameterizing the human face onto the simple
parameter domain with least conformality distortion can be obtained. On the simple
parameter domain, structured grids can easily obtained as shown in (A). Using the
extremal T-Map, we map the structured grid onto the multiply-connected human face
as shown in (B). (C) shows the histogram of the BC norm which illustrates that the
obtained map is indeed of Teichmüller type. In (D), we map the checkerboard tex-
ture on the parameter domain onto the human face using the T-Map. This example
demonstrates that the Teichmüller extremal map can be applied for grid generation
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Fig. 7.9. (A) and (B) shows the two multiply-connected domains with nine holes. The obtained
extremal T-Map is visualized by texture mapping. The small circles on (A) are mapped to small
ellipses on (B) under the extremal T-Map, with the uniform eccentricity. (C) shows the histogram
of the norm of the BC.

Fig. 7.10. (A) and (B) shows the two multiply-connected domains of arbitrary shapes with two
holes. The obtained extremal T-Map is visualized by texture mapping. The small circles on (A)
are mapped to small ellipses on (B) under the extremal T-Map, with the uniform eccentricity. (C)
shows the histogram of the norm of the BC.

on multiply-connected domains or surfaces.

8. Conclusion. In this paper, we present a numerical method to compute the
Teichmüller extremal map between arbitrary multiply-connected domains. The do-
mains of interest can either be planar domains or surfaces embedded in R3. Given
two multiply-connected domains with boundaries, there exists a unique Teichmüller
map(T-Map) between them minimizing the conformality distortion. The T-Map can
be considered as the ”most conformal” mapping between multiply-connected domains.
In this work, we propose an iterative algorithm to obtain the T-Map using the Bel-
trami holomorphic flow (BHF). The BHF procedure iteratively adjusts the map, based
on a sequence of complex-valued functions converging to an optimal Beltrami coef-
ficient associated to the desired T-Map. It produces a sequence of quasi-conformal
maps, which converges to the T-Map minimizing the conformality distortion. We test
our proposed algorithms on synthetic 2D multiply-connected domains together with
real 3D human faces. Experimental results show that our algorithm computes T-Map
between multiply-connected domains accurately and efficiently.

In the future, we will extend our algorithm to compute Teichmüller extremal map
between high-genus surfaces and between surfaces represented by point clouds.
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Fig. 7.11. A) and (B) shows two multiply-connected human faces. The extremal T-Map between
them is computed, which is visualized using texture mapping. (C) shows the histogram of the norm
of the BC.

Fig. 7.12. (A) shows the supreme norm of BC, ||µ(fn)||∞ in each iterations of the experiment
in Figure 7.11. (B) shows the zoom-in of (A).
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[1] B. Lévy, S. Petitjean, N. Ray and J. Maillot, Least Squares Conformal Maps for Automatic
Texture Atlas Generation, ACM SIGGRAPH conference proceedings, 2002

[2] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Conformal surface
parameterization for texture mapping, IEEE Transaction of Visualization and Computer
Graphics, 6, 181-189, 2000.

[3] F. Gardiner and N. Lakic. Quasiconformal Teichmuller Theory. American Mathematics Soci-
ety, 2000.

[4] B. Fischl, M. Sereno, R. Tootell, and A. Dale. High-resolution intersubject averaging and a
coordinate system for the cortical surface. Human Brain Mapping, 8, 272-284, 1999.

[5] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau. Genus zero surface conformal
mapping and its application to brain, surface mapping. IEEE Transactions on Medical
Imaging, 23(8), 949-958, 2004.

[6] Y. Wang, L. M. Lui, X. Gu, K. M. Hayashi, T. F. Chan, A. W. Toga, P. M. Thompson, and S.-
T. Yau. Brain surface conformal parameterization using riemann surface structure. IEEE
Transactions on Medical Imaging, 26(6), 853-865, 2007.

[7] X. Gu and S. Yau. Computing conformal structures of surfaces, Communication in Information
System, 2(2), 121-146, 2002.

[8] M. K. Hurdal and K. Stephenson. Discrete conformal methods for cortical brain flattening,
Neuroimage, 45, 86-98, 2009.



Teichmüller map between multiply-connected domains 19

Fig. 7.13. The extremal parameterization of the multiply-connected human faces with three
holes. (A) shows a simple user-defined parameter domain. On the simple parameter domain, struc-
tured grids can easily obtained as shown in (A). In (B), the structured grid is mapped onto the
multiply-connected human face using the extremal T-Map. (C) shows the histogram of the BC norm
which illustrates that the obtained map is indeed of Teichmüller type. In (D), the checkerboard
texture on the parameter domain is mapped onto the human face using the T-Map.

[9] L.M. Lui, T.W. Wong, X.F. Gu, T.F. Chan and S.T. Yau. Compression of Surface Diffeomor-
phism using Beltrami coefficient, IEEE Computer Vision and Pattern Recognition(CVPR),
2839-2846, 2010

[10] L.M. Lui, T.W. Wong, W. Zeng, X.F. Gu, P.M. Thompson, T.F. Chan and S.T. Yau. Opti-
mization of Surface Registrations Using Beltrami Holomorphic Flow, Journal of Scientific
Computing, 50(3), 557-585, 2012

[11] L.M. Lui, T.W. Wong, X.F. Gu, P.M. Thompson, T.F. Chan and S.T. Yau. Hippocampal Shape
Registration using Beltrami Holomorphic flow, Medical Image Computing and Computer
Assisted Intervention(MICCAI), Part II, LNCS 6362, 323-330 (2010)

[12] W. Zeng, L.M. Lui, F. Luo, T.F. Chan, S.T. Yau, X.F. Gu Computing quasiconformal maps
using an auxiliary metric and discrete curvature flow. Numerische Mathematik, 121(4),
671-703, 2012

[13] L.M. Lui, K.C. Lam, T.W. Wong, X.F. Gu Beltrami Representation and its applications to
texture map and video compression. arXiv:1210.8025 (http://arxiv.org/abs/1210.8025)

[14] O. Lehto and K. Virtanen. Quasiconformal Mappings in the Plane. Springer-Verlag, New York,
1973.

[15] W. Zeng and X. Gu. Registration for 3D Surfaces with Large Deformations Using Quasi-
Conformal Curvature Flow. IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR11), Jun 20-25, 2011, Colorado Springs, Colorado, USA.

[16] M. Jin, J. Kim, F. Luo and X. Gu. Discrete surface Ricci flow.. IEEE Transaction on Visual-
ization and Computer Graphics, 14(5), 1030-1043, 2008

[17] Y.L. Yang, J. Kim, F. Luo, S. Hu, X.F. Gu Optimal Surface Parameterization Using Inverse
Curvature Map. IEEE Transactions on Visualization and Computer Graphics , 14(5),
1054-1066, 2008.

[18] W. Zeng, L.M. Lui, L. Shi, D. Wang, W.C. Chu, J.C. Cheng, J. Hua, S.T. Yau, X.F. Gu. Shape
Analysis of Vestibular Systems in Adolescent Idiopathic Scoliosis Using Geodesic Spectra.
Medica Image Computing and Computer Assisted Intervation 13(3), 538-546, 2010.

[19] Kurt Strebel. On Quasiconformal Mappings of Open Riemann Surfaces. Comment. Math.
Helvetici, 53, 301-321, 1978.

[20] Edgar Reich. Extremal Quasi-conformal Mappings of the Disk. Handbook of Complex Analysis:
Geometric Function Theory, Vol 1, Chapter 3, 75-135, 2002.

[21] O. Weber, A. Myles, D. Zorin. Computing Extremal Quasiconformal Maps. Computer Graphics
Forum, 31(5), 16791689 (2012)

[22] Tsz Wai Wong, Hongkai Zhao Computation of quasiconformal surface maps using discrete
Beltrami flow. UCLA CAM report 12-85, 2013

[23] L.M. Lui, K.C. Lam, S.T. Yau, X.F. Gu Teichmller extremal mapping and its applications to
landmark matching registration. arXiv:1211.2569(http://arxiv.org/abs/1210.8025)

[24] L.M. Lui, X.F. Gu and S.T. Yau Harmonic Teichmüller map. Preprint on arXiv


