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Abstract

Photography is the art of acquiring as many photons as possible of a given scene. In classic
cameras, the aperture time is irremediably limited by the risk of a motion blur, when the camera
and the scene are in relative motion. Nevertheless two recent camera concepts, the Agarawal et al.
flutter shutter, and the Levin et al. motion-invariant photography permit to extend indefinitely the
exposure time, while guaranteeing an invertible motion blur. In this paper, a complete mathematical
theory of these new technologies is proposed. Modeling the capture noise, the theory furnishes explicit
formulas for the SNR of the final image after deconvolution, when the motion is uniform. It puts in
evidence the existence of two variants, the analog and the digital flutter shutter. The results of the
resulting quantitative comparison are slightly paradoxical. First, it is shown that the best camera
aperture strategies are always flutter shutters, even when the aperture time is a priori fixed. Second,
it is shown that the SNR increase obtained by using a flutter shutter in presence of a known motion
remains bounded, even with an infinite exposure time. Incidentally, the theory gives the formula
of the optimal classic snapshot in presence of motion and compares its performance to the optimal
flutter shutter.
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1 Introduction

Classic digital cameras are devices counting at each pixel sensor the number of photons emitted by the
observed scene during an interval of time ∆t called exposure time. Due to the nature of photon emission
the counted number of photons is a Poisson random variable. Its mean would be the ideal pixel value.
The difference between this ideal mean value and the actual value counted by the sensor is called (shot)
noise. The ratio of the mean of the photon count over its standard-deviation is called signal to noise
ratio (SNR). At (very) low SNR the noise is so strong compared to the underlying signal that it is almost
impossible to distinguish the scene being observed from the noise. Therefore, photography has been
striving to achieve the highest possible SNR. In passive imaging systems, the only way to increase the
SNR is to accumulate more photons by increasing the exposure time ∆t.

If the scene being photographed moves during the exposition process, or if the scene is still and
the camera moves, the resulting images are degraded by motion blur. Obtaining longer exposure time
without blur can be therefore seen as one of the core problems of photography. The first photographs
taken by Nicephore Niepce required several hours, a time incompatible with live subjects or even with
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2outdoors static scenes exposed to the sun. Ever since, photography has been subject to the problem of
finding the right compromise between a short exposure time, which avoids the effects of motion blur, and
a longer exposure time, which permits many more photons to reach the sensor and therefore increases
the SNR.

Motion deblurring is the combination of two dependent problems a) the kind of kernel applied to the
images which depends here on the motion b) the actual deblurring method, where the kernel may have to
be estimated a posteriori, or not. Motion blur arises from multiples causes and is very common even for
consumer level photography where it is partly compensated by optical, mechanical, or digital stabilizers.
Stabilizers cannot compensate for motion blur of arbitrary length (support), since they are limited by
mechanical and technical issues. In most cases the size of the blur support will increase proportionally
to the exposure time. Thus they require a “small” exposure time despite the stabilization device. The
difficulty of motion blur is illustrated by its simplest example, the one dimensional uniform motion blur.
The result of a too long exposure during the motion on the image is nothing but a convolution of the
image with a one-dimensional window shaped kernel. The support of the kernel increases linearly with
the exposure time and the velocity of the motion. As soon as the exposure time is too long, this blur is
no more invertible, and the restoration problem is ill posed.

A revolutionary alternative to classic photography was proposed in [3, 4, 6, 75, 74] where the authors
suggest modifications in the acquisition process to get invertible motion blur kernels by using a flutter
shutter. These authors propose to use a binary shutter sequence interrupting the flux of incoming photons
on well chosen time sub-intervals of the exposure time interval. If the shutter sequence is well chosen,
invertibility is guaranteed for blurs with arbitrary size support. Hence, replacing the classic camera
shutter by a flutter shutter, it becomes possible to use any integration time. This also means that the
exposure time on a given scene can be much longer: many more photons are therefore sensed by the
camera. Thus, the flutter shutter looks like a magic solution that should equip all cameras. Yet, does
that mean that one can increase indefinitely the SNR by an increased exposure, at no cost from the
motion blur side?

This paper starts by modeling realistically the stochastic photon capture by a light sensor, taking
into account both the classic shot noise and the obscurity noise. To cope with the fact that the image
noise may be colored after deconvolution, the “spectral” SNR function defined in [12] by Boracchi et al
is used and extended to a “spectral SNR on average” to reflect the final RMSE.

The modeling will treat in the same formalism all possible types of flutter shutter, including an analog
model, a digital model, the classic Agrawal et al. flutter shutter, and the Levin et al. motion-invariant
photography as well. For all, a closed formula will be given for the spectral SNR, permitting to compare
them theoretically.

Among the kinds of possible set ups, the most flexible, adaptive to all kinds of motions, is the digital
numerical flutter shutter, which allows for negative gains. It is proven that it also can realize the best
SNR. One of the striking results of this mathematical analysis is the proof that, when the object velocity
is a priori known, the best numerical flutter shutter code is given by the Fourier series coefficients of
a (zoomed) sinc function. The proposed formalism also permits to compute by a closed formula the
optimal aperture time for a classic snapshot, when the velocity of the photographed object is known.
This snapshot theory allows us to match on an equal footing the new flutter shutter apparatus against
a plain old camera. This comparison leads to what we call the two flutter shutter paradoxes. The first
surprising result is that the flutter shutter always beats slightly a standard camera, even when using
exactly the same exposure time. On the other hand, an infinite exposure time, accumulating many more
photons than a classic snapshot, does not grant an infinite SNR. This rather disappointing fact makes
motion photography significantly different from the classic steady photography where, by increasing the
aperture time, any SNR can be achieved.

1.1 Related work

Blind deconvolution techniques [15, 49, 88, 30, 54, 14, 44] aim at estimating the blur and recovering the
sharp image directly from the blurred one. Deconvolution algorithms have been developed intensively, [39,
71, 95, 21, 106, 34, 81]. For example in [111, 109] the authors suggest a modification of the Richardson-
Lucy method [80, 57] to control the artifacts of the restored image. Other priors have been investigated
in [112, 60, 42]. In [50] Fergus et al. use natural image statistics to estimate the blur. In [91, 87, 7, 79,
103, 41, 90, 35, 18, 36, 9, 23, 43, 22, 38, 104, 40, 25, 86, 85] good results are shown for the blur estimation
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Figure 1: Simulated observed (blurry and noisy) image (left). The blur interval length is 52 pixels. Notice
the stroboscopic effect of the flutter shutter apparatus. Reconstructed image (right). Such reconstruction
is not possible without a flutter shutter camera.

and/or deblurring problem. Using the compressive sensing framework, the question of the order of the
pair image estimation/motion estimation for deconvolution is addressed in [37]. Nevertheless, the power
spectrum of images acquired with a blur of more than two pixels contains several zero crossings. Thus,
useful information for image quality is irreversibly lost. Hence, no matter how sophisticated the image
reconstruction is, it is virtually impossible to recover a de-blurred image without strong hypotheses
on the underlying landscape. Such strong hypotheses are unrealistic for most images. The results are
therefore in practice poor [84]. In an attempt to transform the blur problem into a well posed problem
the authors of [16, 17, 76, 19] proposed to use two photographs with different blurs instead of one.
In [110] the authors use a long exposure image and another one, sharp but noisy, to deblur the first.
In [6] the authors suggest to take several images with several exposure times so that the blur in each
image is different. If the zeroes of each Fourier transform do not coincide then it is possible to deblur
by picking non zero coefficients in each image. In [92] a similar hybrid scheme is used where an image
at high resolution and long exposure is taken simultaneously with a burst of low resolution and short
exposure. In [11] a Mumford-Shah like variational model is proposed to simultaneously estimate the blur
and deblur in presence of multiple objects motion from videos.

In [83] the authors address the question of an automatic tuning of the exposure time to avoid overex-
posure in the case of still imaging. Finally, in [12] the authors treat the question of the optimal exposure
time depending on the SNR of the restored image using a conventional camera. They consider the case of
non invertible blurs with supports larger than two pixels, using a regularized deconvolution [26]. In [96]
the authors use a full multi-image framework acquiring a bunch of sharp but noisy images and recovering
a sharp image with increased SNR. For a review on multi image denoising the reader can refer to [13].
Conversely in [33] the authors reconstruct a movie from a single image using a temporally and spa-
tially varying mask placed on the aperture. The mask helps to encode the spatio-temporal information.
In [70, 93, 105, 27, 102, 107] the authors use hybrid or complex camera systems. Unfortunately this kind
of scheme may lead to other problems such as an expensive computational cost or hardware issues.

The simplest hardware set up seems to be proposed in [3, 4, 6] by Agrawal et al. The new acquisition
process modulates the photon flux into the camera by opening and closing the camera shutter according
to certain well chosen pseudo random binary codes. In the case of a uniform motion in front of the camera,
the resulting blur kernel becomes invertible (there are no zeroes in its Fourier transform), however big



4the velocity is. The visual result of an image acquired by flutter shutter is close to a stroboscopic image,
which can nonetheless give back a neat image by deconvolution. A compressive sensing flutter shutter
camera was designed in [89] using random sequences where a blurry and low resolution image is acquired
and processed to a neat and at high resolution image. Roughly speaking, the flutter shutter ensures
that no information is lost by the motion blur; the compressed sensing technique deals with the increase
of resolution. The compressed sensing technique is also used in [77] for spatio-temporal up-sampling.
Alternatively the case of periodic events was investigated in [78]. In [45, 99, 62, 69] the authors use an
active dynamic lighting pattern in place of the shutter to recreate a flutter shutter effect. The theory
presented herewith works for this set up. In [63] the flutter shutter apparatus is applied to iris images and
in [108] to bar-codes. In [61] the authors propose to optimize the binary flutter shutter code in function
of the velocity of the scene. In [94] the authors use a local deblurring user-driven scheme on a flutter
shutter embedded camera to deal with spatially varying blurs caused by the presence of several velocities
in the observed scene. In [82] the authors treat the question of denoising an image taken by a flutter
shutter camera, and also suggest an user assisted estimation of the blur. Their conclusion is that the
denoising should be applied both before and after deconvolution. In [24] the authors treat the question
of a posteriori motion estimation using a flutter shutter. In [31] a per pixel flutter shutter is used to
build a camera that allows a post-capture balance between spatial and temporal resolutions of movies. A
multi-camera equipped with flutter shutters is investigated in [2] and used to increase the frame rate of a
single camera while having an increased amount of light captured compared to the equivalent hight-speed
camera. A single camera equipped with a mask on the aperture and an array of light sources is used in [47]
to construct the visual hull of an object (shape from silhouette). In [100] four projectors projecting an
handcrafted pattern on the scene are used to detect the depth edges. Another solution to get an invertible
motion blur using only one image was found in [52] where Levin et al. suggested to move the camera in
the direction of the motion during the exposure time. The authors use a constant acceleration motion
in order to make the resulting kernel invertible and spatially invariant to the velocity. Hence an a priori
knowledge of the motion direction is required. This approach has been generalized in [20] to the case
of unknown directions, but it uses two images instead of one. In [64] the motion-invariant photography
apparatus is implemented using the lens of the camera. In any cases, these approaches cause blur in
static parts of the scene. Yet, thanks to the invertibility (well-posedness of the recovery problem), in
both cases, the sharp image can be recovered by a deconvolution. Notice that only one image is acquired
and recovered at the end of the process. Alternatively in [51, 101, 55, 10, 28, 65, 67, 59] authors use
a temporally fixed and spatially varying mask in order to estimate the depth, and/or refocus the out
of focus part to get an always in focus (neat) image. In [32] the authors deal with the question of the
optimal tradeoff between depth of field and exposure time. In [29] the authors take advantage of CMOS
imaging sensors to implement a coded rolling shutter to trade vertical resolution for an increased dynamic
range. The authors of [98] also suggest to use a camera equipped with a mask on the aperture camera
and to take purposely out of focus images with a mask to increase the dynamic range. Their conclusion
is rather negative “None of the possible combinations of aperture filter and deconvolution algorithm were
able to consistently reduce the dynamic range of the captured image without excessively degrading image
quality”. Another computational camera is designed in [66] where the aperture is equipped with a mask
and the sensor is moved at a constant velocity during the exposure. It is used to control the depth of
field, create bokeh or a depth invariant blur size. Another camera prototype was designed in [56], where
the authors suggest a programmable aperture (mask). It is also used for depth and digital refocusing.
An interesting implementation of many computational photography, the Frankencamera, was proposed
in [1]. An even more complex scheme involving a fixed mask close to the sensor and dynamic one on
the aperture is investigated in [5], where the authors explore the feasibility of post processing trade offs
between spatial, angular and temporal resolutions. Finally reviews of computational photography can
be found in [113, 58, 72, 73].

1.2 Overview

Section 2 proposes a general mathematical framework for image acquisition using a physical Poisson
model for the photons capture process, including the obscurity noise. This model suits well our context
since all noise terms inherent to image sensing are taken into account without any approximation.

In section 3 the mathematical model of section 2 is used to analyze the numerical flutter shutter, a
digital implementation of the classic flutter shutter method. This set up is the most flexible, adaptive to



5all motion and allows for negative gains. The numerical flutter shutter does not reduce the number of
photons caught by the sensor and it is proven later on that it yields the best possible SNR. It is proven
that it actually works and, for any flutter shutter gain function a formula providing the SNR of the neat
deconvolved image is given. The numerical flutter shutter gain function is in principle piecewise constant.
Nevertheless, it is useful for the theory to extend it to continuous gain functions. In section 3.2 a reverse
formula permits to get back an equivalent piecewise constant numerical flutter shutter.

Section 4 investigates classic analog implementation of the flutter shutter. This analog flutter shutter
is a generalization of the original Agrawal et al. flutter shutter which allows for smoother, non binary,
gain functions. For any analog flutter shutter apparatus, an explicit formula to measure directly the
SNR of the deconvolved sharp image is given.

Section 5 proves that the numerical flutter shutter SNR is always larger than the analog flutter shutter
SNR with the same gain function. A snapshot theory is also developed in section 5. The standard
camera apparatus is explored as a particular flutter shutter strategy. The SNR of the deconvolved image
is calculated, for any standard acquisition strategy. The standard camera is optimized to get the best
SNR possible, taking the deconvolution into account. This yields a precise definition of the best possible
snapshot in presence of known motion. This best snapshot is used later on as a reference in terms of
SNR.

In section 6 the Levin et al. motion-invariant photography is proven to be a particular case of
the general analog flutters shutter theory. The SNR of the motion-invariant photography apparatus is
computed and compared with the other flutter shutter strategies. This section also proposes to implement
the motion-invariant photography kernel using a numerical flutter shutter. This permits to generalize
the motion-invariant photography method to the case where the direction of the relative velocity v is not
a priori known.

Section 7 proves that the use of any flutter shutter does not increase indefinitely the SNR of the sharp
recovered image. It is proven that the best flutter shutter entails a 17% increase of the SNR compared to
the best snapshot. It is also proven that, even though the exposure time remains unchanged, the flutter
shutter does beat the standard camera with classic aperture. These two results are the flutter shutter
paradoxes.

All of the results are developed for 1D sampling in the direction of motion. For a 2D sampling coupled
with motion blur, some adaptation of the results may be required. Indeed, for a sake of simplicity, we
are assuming that the motion blur is parallel to one of the sampling grid axes. Obviously, this is
generally not true for uncontrolled camera or unknown object motions. By assuming this parallelism
we are simply avoiding unnecessary complications. Nevertheless, the study requires an extension to 2D
sampling. Indeed, the results herewith apply exactly to 2D sampling only in the case where the motion is
parallel to one axis. Common sense suggests that the conclusions will be essentially the same in a general
2D sampling geometry. But we shall sketch the adaptation to general 2D sampling in a few sentences.

Assuming as we do that the image acquisition is Shannonian, namely that the frequency cut off is
compatible with the image grid sampling, an easy extension to any 2D grid can be made by considering
the rotation resampling operator on L2(R2) that computes from the image samples on the current grid
its samples on a grid parallel to the motion. By this image rotation, which is isometric in L2, a Gaussian
noise in the captors remains a white Gaussian noise after resampling. Thus, the extension of the study
from 1D to 2D becomes easy if we can replace the white Poisson noise on the initial samples, which is
signal dependent, by a white Gaussian noise. By a classical trick, this can be done by the Anscombe
transform [8] commonly used in denoising papers [48]. By assuming an application of the Anscombe
transform to all samples, we could have presented the whole theory in the Gaussian white noise frame-
work, which is immediately adaptable to any 2D grid. But we preferred in the current exposition to
avoid this simplification, and to treat the actual Poisson noise.

2 Image acquisition model

Formalizing the flutter shutter requires an accurate continuous stochastic model of the photon capture by
a sensor array. Without loss of generality the formalization will be done in the case where the sensor array
is 1D and where the photographed object is conceived as a “landscape” moving in a direction parallel to
the sensor array. Let Pl : R+×R be a bi-dimensional Poisson process of intensity l(t, x), ∀(t, x) ∈ R+×R
(here l is called landscape, t and x are the time and spatial positions, respectively). This means that the



6observation of a pixel sensor (photon counter) of unit length centered at x using a exposure time of ∆t

is a Poisson random variable Pl

(
[0,∆t]× [x− 1

2 , x+ 1
2 ]
)
∼ P

(∫∆t

0

∫ x+ 1
2

x− 1
2

l(t, y)dydt
)
,

where ∆t is the exposure time, [x − 1
2 , x + 1

2 ] represents the normalized sensor unit, X ∼ P means
that a random variable X has law P , and ∗ denotes the convolution (viii). (Here and in the rest
of the text, Latin numerals refer to the formulas in the final glossary page 25.) In other terms the
probability to observe k photons coming from the landscape l seen at the position x on the time interval

[0,∆t] and using a normalized sensor is

(∫∆t
0

∫ x+ 1
2

x− 1
2

l(t,y)dydt

)k
e

−
∫∆t
0

∫x+ 1
2

x− 1
2

l(t,y)dydt

k!
. From now on we assume

l(t, x) = l(x − tv(t)), and mainly v(t) ≡ v. For sampling purposes we assume that the theoretical
landscape l is seen through an optical system with a point spread function g.

Definition We call ideal landscape the deterministic function u = 1[− 1
2 ,

1
2 ] ∗ g ∗ l, where g is the point

spread function of the optical system providing a cutoff frequency.

In other words, thanks to the convolution with g the acquisition system is able to sample u. We shall
denote by u(x) the ideal (noiseless) pixel landscape value at a pixel centered at x, as it could only be
obtained after infinite exposure. Notice that the landscape u contains in itself all spatial integrations
required, from the PSF g and from the normalized pixel sensor.

Definition (Ideal acquisition system.) The image acquired by the ideal acquisition system, before
sampling, corresponds to samples of the Poisson process Pl. The intensity u (ideal landscape value) is
related to the landscape l by (2) and is band limited.

Pl([t1, t2]× [x− 1

2
, x+

1

2
]) ∼ P

(∫ t2

t1

∫ x+ 1
2

x− 1
2

(g ∗ l)(y − vt)dydt

)
∼ P

(∫ t2

t1

u(x− vt)dt
)
. (1)

Definition (Real acquisition system with noise included in the landscape.) A realistic acquisition system
adds a landscape independent noise also known as dark noise (or obscurity noise or thermal noise).
Assuming that this noise has variance η (1) entails

Pl+η([t1, t2]× [x− 1

2
, x+

1

2
])) ∼ P

(∫ t2

t1

(u(x− vt) + η) dt

)
. (2)

Since all computations using the ”noisy” landscape u+η remain formally the same as with a noiseless ideal
system, we will assume that u already contains the obscurity noise in itself. Notice that η being a constant,
u+η and u have the same cut off frequency. We assume in the sequel that u ∈ L1∩L2(R). This assumption
will be necessary to apply some of the mathematical formulas, but represents no artificial restriction on
the acquisition physical model. Indeed, first, the average photon emission is always bounded. Second,
taking a large enough support, we can always suppose w.l.o.g. that the landscape has bounded support
and that the acquisition time is large but not infinite. Thus we can assume that the noise is zero at
infinity. Under these conditions u ∈ L1 ∩ L2.

2.1 Sampling, interpolation

Since the optical kernel g provides a cutoff frequency, u is band-limited, namely û(ξ) (see the defini-
tion (xxiv) of Fourier transform in the glossary) is supported in [−π, π]. It could therefore be sampled
at unit rate. The discrete sensor observations, or samples, will be denoted by e(n) for n ∈ Z. Given
a discrete array observation e(n), n ∈ Z, its band limited interpolate e(x) x ∈ R is defined by the
Shannon-Whittaker interpolation as

e(x) =
∑
n∈Z

e(n)sinc(x− n) (sinc(x) = sin(πx)
πx ) (3)



72.2 Noise measurement

We call signal to noise ratio (SNR) of a random variable X the ratio SNR(X) := |EX|√
var(X)

.

For example if ûest(ξ) is an estimation of the landscape û(ξ) based on a noisy observation of u, Likewise,
we call “spectral SNR” of uest the frequency dependent ratio defined by

SNRspectral(ûest(ξ)) :=
|Eûest(ξ)|√
(var(ûest(ξ))

for ξ ∈ [−π, π] (4)

and introduced by Boracchi et al. in [12]. We call “spectral-averaged” SNR the ratio defined by

SNRaveraged(ûest) :=
1

2π

∫
|Eûest(ξ)|1[−π,π](ξ)dξ√

1
2π

∫
var(ûest(ξ)1[−π,π](ξ))dξ

. (5)

Proposition 2.1. Given ûest(ξ) an unbiased estimator of û(ξ) then

SNRspectral−averaged(ûest) =
C

RMSE(u, uest)
.

The proof is a direct consequence of Fubini’s theorem applied to the bias and variance decomposition
of the MSE. In the sequel, all estimators are unbiased and the flutter shutter is optimized in terms
of RMSE. In the case of still photography, namely when v = 0, then (2) and the above definitions
permit to prove that the SNR satisfies SNR(x) =

√
u(x)L∆t, where L∆t is the total exposure time. It

is therefore proportional to the square root of both the exposure time and the light intensity.

Remark In a passive optical system we have no control over the landscape light emission u(x). No
lighting is possible, to boost the photon emission. Thus the only secure way to increase the SNR is to
increase the exposure time L∆t.

From now on we assume l(t, x) = l(x− tv(t)), and mainly v(t) ≡ v. Hence all the former discussion
made on the acquisition system, sampling and interpolation holds.

Theorem 2.2. The standard motion blur is equivalent to an image obtained by a convolution of the ideal
landscape u by a fixed (window shaped) kernel 1[0,b] where b is the blur length, equal to Lv∆t.

Proof. The ideal landscape u is moving in the camera frame at a speed v (counted in pixels per second)
and using (2) we get that the acquired image at position x can be any realization of Pl([0, L∆t]× [x−
1
2 , x+ 1

2 ]) ∼ P
(∫ L∆t

0
u(x− vt)dt

)
∼ P

(
( 1
v1[0,Lv∆t] ∗ u)(x)

)
.

In this case the expected value and variance of a pixel sensor at position x are equal to 1
v (1[0,Lv∆t] ∗

u)(x). The quantity Lv∆t is nothing but the length of the blur b (in pixels).

Remark The convolution with h = 1[0,Lv∆t] (standard blur) function is a non-invertible transformation
as soon as the first zero of the Fourier transform (FT) of h is in the support of û. This makes ill posed
any restoration process of u. The purpose of the flutter shutter method will be to replace 1[0,Lv∆t] with

a function whose convolution remains invertible for arbitrary Lv∆t = b. If the first zero of ĥ is outside
the support of û, then the motion blur is said negligible and it is actually invertible.

3 The numerical flutter shutter

After having treated the classic image acquisition strategies, we are now in a position to treat the various
flutter shutter strategies and to compare them to the classic ones. Two things are at stake: first, to
prove that the various flutter shutters actually work, and second to evaluate the SNR of the resulting
image and to compare it to the SNR of classic strategies. The hope would be that the flutter shutter
retains the very interesting feature of the multi image denoising, namely an increase of the SNR by a
factor proportional to

√
L∆t, the total exposure time. We shall see that this is not so. The numerical

flutter shutter method consists in a numerical sensor gain modification taking place after the acquisition



8by the sensor. Roughly speaking the camera takes a burst of L images using an exposure time ∆t.
The k-th image is multiplied, for k ∈ 0, ..., L− 1, by an αk ∈ R gain. Then all images are added to
obtain one observed image, the flutter shutter. The exposure time ∆t must be small enough so the
blur of each image is negligible (definition in section 5). This technique is similar to the multi-image
acquisition strategy but does not use any registration technique. According to, for example, [68, 46]
an image sensor can have a duty ratio of nearly 100% (the duty ratio is the ratio of light integration
time over readout, storage, reset times - that is the percentage of useful time). It means that a sensor
can integrate light without interruption. Thus, the numerical flutter shutter, as it is described below
without “dead time” between two consecutive gains ak is perfectly reasonable from a technological point
of view. Nevertheless, it seems that its interest is limited: why not keeping all images instead of adding
them all? One of the obvious reasons is compression, particularly for Earth observation satellites. In
that case the motion blur due to a drift in satellite trajectory estimate could be eliminated by a flutter
shutter, without any additional transmission (or computational) burden if only the flutter shutter image
(the sum) is transmitted. The k-th acquired elementary image at a pixel at position n is a realization

of P
(∫ (k+1)∆t

k∆t
u(n− vt)dt

)
. The flutter shutter observation is obtained by combining the k-th output

with weight αk. Thus the flutter shutter output at a pixel centered at n is

obs(n) ∼
L−1∑
k=0

αkP

(∫ (k+1)∆t

k∆t

u(n− vt)dt

)
(6)

where by construction obs(n) are obtained for n ∈ Z and are independent. Indeed, the sensors are
disjoint and do not receive the same photons. In the following it will be useful to associate with the
flutter shutter its code defined as the vector (αk)k=0,··· ,L−1, and its flutter shutter function defined by
α(t) = αk for t ∈ [k∆t, (k + 1)∆t[.

Definition Let (α0, ..., αL−1) ∈ RL be a flutter shutter code. We call numerical flutter shutter samples
at position n of the landscape u at velocity v the random variable

obs(n) ∼
L−1∑
k=0

αkP

(∫ (k+1)∆t

k∆t

u(n− vt)dt

)
. (7)

We call numerical flutter shutter its band limited interpolate obs(x) ∼
∑
n∈Z obs(n)sinc(x− n). We call

flutter shutter function the function

α(t) =

L−1∑
k=0

αk1[k∆t,(k+1)∆t[(t). (8)

Remark It is good to keep in mind the following trivial and less trivial examples:

1. αk = 1 ∀k ∈ {0, ..., L− 1} (pure accumulation prone to motion blur)

2. αk = 0 or 1 ∀k ∈ {1, ..., L − 1} with
∑
αk = L

2 (Agrawal et al.’s flutter shutter has this generic
form)

3. α0 = 1 and αk = 0 ∀k ∈ {1, ..., L− 1} (standard snapshot)

Theorem 3.1. The observed samples of the numerical flutter shutter are such that, for n ∈ Z

E (obs(n)) =

(
1

v
α
( .
v

)
∗ u
)

(n) and var(obs(n)) =

(
1

v
α2
( .
v

)
∗ u
)

(n). (9)



9Proof. From the numerical flutter shutter samples definition (7),

E (obs(x)) =

L−1∑
k=0

αk

∫ (k+1)∆t

k∆t

u(x− vt)dt =

∫ L∆t

0

α(s)u(x− vs)ds (10)

Thus,

E (obs(x)) =

∫ Lv∆t

0

1

v
α(
y

v
)u(x− y)dy =

(
1

v
α
( .
v

)
∗ u
)

(x). (11)

Similarly from (6) var(obs(x)) =
∑L−1
k=0 α

2
k

∫ (k+1)∆t

k∆t
u(x− vt)dt =

(
1
vα

2
(
.
v

)
∗ u
)

(x).

Notice that obs(x) is not necessarily a Poisson random variable. However, if all αk are equal to 0 or 1
then by (10) obs(x) ∼ P

(
1
vα
(
.
v

)
∗ u
)

(x), because we are adding independent Poisson random variables.
On the other hand, if for some k, αk 6∈ {0, 1}, then if X ∼ P(λ) then αkX is not a Poisson random
variable.

Ideal numerical flutter shutter The formulas of Theorem 3.1 giving the samples obtained by flutter
shutter appear not to depend on the particular form of α as a piecewise constant function on a finite set
of intervals with length ∆t. As a matter of fact, we can envisage any function α ∈ L2(R) to be numerical
flutter shutter, for an ideally controlled camera where at each instant the gain α(t) is changed. This
leads to the following definition and corollary.

Corollary 3.2. We call continuous numerical flutter shutter any band-limited and bounded gain function
α ∈ L2(R). Then the formulas (9) of Theorem 3.1 are still valid.

Proof. By assumption the observed ideal landscape u belongs to L1∩L2(R). We recall that L1 ∗L2 ⊂ L2

and L2 ∩ L2 ⊂ C0(R) (the set of continuous functions on R tending to 0 at infinity). Furthermore, α
being band limited is continuous. Being also bounded, the expectation and variance functions of (9) are
continuous and therefore well defined at any point. It remains to show that these formulas are valid for
a general gain function. Consider for this an approximation of α(t) by a finite numerical flutter shutter
code (αk)k such that (αk)k tends to α in L1, L2 and L∞, (that is, uniformly) when k →∞. The formulas
(9) are valid for (αk)k, and the corresponding formulas for α are deduced by passing to the limit.

From now on, unless specified otherwise, by numerical flutter shutter, and by α we shall mean a
continuous numerical flutter shutter.

3.1 The inverse filter of a numerical flutter shutter

Step 1: the noiseless case Let us examine first the discrete noiseless case, when obs(n) =
(

1
vα
(
.
v

)
∗ u
)

(n)
and obs(n) is obtained for n ∈ Z but being band limited, can be interpolated to obs(x), for any x ∈ R.
Then F

(
1
vα
(
.
v

)
∗ u
)

(ξ) = û(ξ)α̂(ξv). By hypothesis (see section 2) we assumed that û(ξ) = 0 for |ξ| > π.
Hence for the invertibility we must only require that |α̂(ξv)| > 0 for ξ ∈ [−π, π].

Definition We say that a flutter shutter α is invertible (for velocities |v| smaller than |v0|) if |α̂(ξ)| > 0
for ξ ∈ [−π|v0|, π|v0|].

If the flutter shutter is invertible, we can consider the inverse filter γ defined by

γ̂(ξ) =
1[−π,π](ξ)

α̂(ξv)
. (12)

Since α ∈ L1(R), ξ 7→ α̂(ξ) is bounded and continuous. If α̂(ξv) is nonzero on [−π, π], γ̂ will therefore
be bounded and supported on [−π, π]. In consequence, under this assumption, γ is C∞, bounded, and
band-limited.

We shall as logical define the recovered landscape from noisy data by the formula that would be valid
for noiseless data. Assume that we observe e(n) = E(obs(n)) for n ∈ Z and wish to compute ê(ξ) from



10the discrete observed (e(n))n∈Z. Since e(x) is band limited, we can interpolate it using the band limited
interpolation (3). The band limited interpolate of the ideal observation is

e(x) =
∑
n∈Z

e(n)sinc(x− n). (13)

Then from (13) we have

ê(ξ) =
∑
n∈Z

e(n)e−inξ1[−π,π](ξ). (14)

So the ideal deconvolved landscape d(x) obtained by combining (12) and (14) is

d̂(ξ) =

∑
n∈Z e(n)e−inξ1[−π,π](ξ)

α̂(ξv)
. (15)

Flutter shutter landscape recovery in the real noisy case We shall now adopt the same formulae
for the noisy case.

Definition Assume that a flutter shutter with code α is invertible. We call estimated landscape uest,num
of the numerical flutter shutter the function defined by

F(uest,num)(ξ) =

∑
n∈Z obs(n)e−inξ1[−π,π](ξ)

α̂(ξv)
, (16)

where the observed obs(n) samples (6) are used instead of the ideal e(n) in (15).

Theorem 3.3. The numerical flutter shutter has a spectral SNR (4) equal to

SNR(ξ) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L2

;

the expected value of the estimated landscape F(uest,num)(ξ) from the observed samples is

E(F(uest,num)(ξ))) = û(ξ)1[−π,π](ξ), (17)

and its variance is var(F(uest,num(ξ))) =
||α||2L2 ||u||L11[−π,π](ξ)

|α̂(ξv)|2
. (18)

Proof. By (9, 16),

var(F(uest,num)(ξ)) =
var

(∑
n∈Z obs(n)e−inξ1[−π,π](ξ)

)
|α̂(ξv)|2

=

∑
n∈Z var(obs(n))|e−inξ1[−π,π](ξ)|2

|α̂(ξv)|2
=

∑
n∈Z

(
1
vα

2
(
.
v

)
∗ u
)

(n)1[−π,π](ξ)

|α̂(ξv)|2

=
|| 1vα

2
(
.
v

)
∗ u||L11[−π,π](ξ)

|α̂(ξv)|2
(19)

=
1
v ||α

2
(
.
v

)
||L1 ||u||L11[−π,π](ξ)

|α̂(ξv)|2
=

1
v ||α

(
.
v

)
||2L2 ||u||L11[−π,π](ξ)

|α̂(ξv)|2

=
v
v ||α||

2
L2 ||u||L11[−π,π](ξ)

|α̂(ξv)|2
=
||α||2L2 ||u||L11[−π,π](ξ)

|α̂(ξv)|2
.

In this proof the crucial point is the use of the Poisson summation formula (xxx) in equation (19).
Following the same scheme and starting from (Thm. 9) E(F(uest,num(ξ))(ξ) can be computed by using



11(for the derivation of the third line) the second Poisson formula (xxx), and the fact that u is band
limited with û supported on [−π, π]:

E(F(uest,num(ξ))) =
E
(∑

n∈Z obs(n)e−inξ1[−π,π](ξ)
)

α̂(ξv)
=

(∑
n∈Z

(
1
vα
(
.
v

)
∗ u
)

(n)e−inξ1[−π,π](ξ)
)

α̂(ξv)

=

∑
m∈Z F

(
1
vα
(
.
v

)
∗ u
)

(ξ + 2πm)1[−π,π](ξ)

α̂(ξv)
=
F
(

1
vα
(
.
v

)
∗ u
)

(ξ)1[−π,π](ξ)

α̂(ξv)

=
v
v α̂(ξv)û(ξ)1[−π,π](ξ)

α̂(ξv)
= û(ξ)1[−π,π](ξ).

From (18) and using the definition of the spectral SNR (4), we obtain

SNRspectral(uest,num(ξ)) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L2

.

Remark From (18) we also deduce that var(F(uest,num)(ξ)) is invariant by changing α into λα for λ 6= 0
(rescaling): as could be expected, the flutter shutter code is defined up to a multiplicative constant.

Remark Going back to the case where α is a discrete numerical flutter shutter, we can see a necessary
condition on ∆t for its invertibility. Indeed, from (8) it follows that

α̂(ξ) =

L−1∑
k=0

αkF(1[k∆t,(k+1)∆t[)(ξ) = ∆tsinc(
ξ∆t

2π
)e
−iξ∆t

2

L−1∑
k=0

αke
−ikξ∆t. (20)

Notice that this is not the DFT (discrete Fourier transform) of the vector α. This means that, in the
literature on the flutter shutter, the simulations are neglecting the motion blur on the intervals with ∆t
length and that ∆t must satisfy |v|∆t < 2 to have α̂(vξ) invertible on the whole support [−π, π] of û.

3.2 Flutter shutter design: from continuous to discrete

Even if the above theory deals with continuous and discrete codes as well, in practice any continuous
flutter shutter code found by some abstract optimization must eventually be realized as a feasible device.
Thus it must be replaced by a piecewise constant one on intervals of length ∆t. Assume that we have
designed a continuous flutter shutter function β ∈ L2(R), invertible for all velocities below |v|, which

means β̂(ξv) 6= 0 for ξ ∈ [−π, π]. The values of β̂(vξ) outside [−π, π] do not matter for our scopes, the
filter and inverse filter being always applied to band-limited functions. Thus, we can always assume that
β̂(vξ) is zero outside [−π, π]. Our goal is to deduce from β a numerical flutter shutter code α which

coincides with β at velocity v on the spectrum of u. In other terms, we want α̂(vξ) = β̂(vξ) for ξ ∈
[−π, π]. Under that condition, the observed signal obs(n) =

(
1
vα
(
.
v

)
∗ u
)

(n) by α or β will be identical.

Furthermore, from (Thm. 9) we will have E
(
ôbs(ξ)

)
= α̂(vξ)û(ξ) = α̂(vξ)1[−π,π](ξ)û(ξ) = β̂(vξ)û(ξ),

meaning that the expectation of spectrum of the observed signal is unchanged (but not necessarily its
variance).

The question is to find an equivalent code function α(t) =
∑
k∈Z αk1[k∆t,(k+1)∆t[(t), as defined by

(8), but not necessarily compactly supported. Our requirement is that α̂(ξv) = β̂(ξv) on [−π, π]. By
(20), a numerical flutter shutter has the general form (where we allow for an infinite code (αk)k∈Z),

α̂(vξ) = ∆tsinc(v∆tξ
2π )e

−iv∆tξ
2

∑
k αke

−ikv∆tξ. We want α̂(vξ) = β̂(vξ) for ξ ∈ [−π, π], which is equivalent
to having for ξ ∈ [π, π],

∆t

(∑
k∈Z

αke
−ik∆tvξ

)
e−i

v∆tξ
2 sinc(

v∆tξ

2π
) = β̂(vξ),



12and therefore
β̂(vξ)ei

v∆tξ
2

∆tsinc(v∆tξ
2π )

1[−π,π] =
∑
k∈Z

αke
−ikv∆tξ

1[π,π]. (21)

The left member of this equation belongs to L2([−π, π]) provided the sinc in the denominator does not
vanish, which is true if ∆t|v| < 2. The above formula appears to be the Fourier series decomposition
of the left hand member on the Fourier basis on the interval [−T2 , T2 ] satisfying 2π

T = ∆t|v|, which gives
T = 2π

∆t|v| . Moreover we assume that |v|∆t ≤ 1. Indeed this supplementary condition is mandatory

for the temporal sampling of the left hand member of (21) and get T
2 > π. Thus, if |v|∆t ≤ 1 [−T2 , T2 ]

contains [−π, π], implying that (21) is correct, and that (αk)k∈Z ∈ l2(Z), are the Fourier series coefficients
(provided |v|∆t ≤ 1)

αk =
∆t|v|

2π

∫ π
∆tv

− π
∆tv

β̂(vξ)ei
v∆tξ

2

sinc( v∆tξ
2π )

1[−π,π]e
ikv∆tξdξ. (22)

Thus,

αk =
∆t|v|

2π

∫ π

−π

β̂(vξ)ei
v∆tξ

2

sinc( v∆tξ
2π )

eikv∆tξdξ

=
sign(v)

2π

∫ πv∆t

−πv∆t

β̂( ξ
∆t )e

i ξ2

sinc( ξ
2π )

eikξdξ (where sign(x) = 1 if x ≥ 0, 0 otherwise)

=
1

2π

∫ π|v|∆t

−π|v|∆t

β̂( ξ
∆t )e

i ξ2

sinc( ξ
2π )

eikξdξ.

This proves the following theorem.

Theorem 3.4. Let β ∈ L2(R) be a band-limited time convolution kernel satisfying β̂(vξ) 6= 0 for ξ ∈
[−π, π], in other terms invertible on all band-limited functions and for all velocities below |v|. If |v|∆t ≤ 1,
there exists an invertible flutter shutter code function

α(t) =
∑
k∈Z

αk1[k∆t,(k+1)∆t[(t) (23)

with (αk)k∈Z ∈ l2(Z), such that α̂(vξ) = β̂(vξ) on [−π, π]. The coefficients αk of the discrete numerical
flutter shutter are explicitly given by

αk =
1

2π

∫ π|v|∆t

−π|v|∆t

β̂( ξ
∆t )e

i ξ2

sinc( ξ
2π )

eikξdξ. (24)

The question arises of whether the discrete numerical flutter shutter α function yields a PSNR (peak
signal to noise ratio) as good as the original β. According to the formula giving the SNR in Theorem 3.3,

we simply have to compare ||α||L2 and ||β||L2 . More precisely, the ratio
||β||L2

||α||L2
gives the multiplication

factor of the SNR obtained with β to get the SNR of the restored image using the discrete filter α. But
by assumption, we have β̂ supported on [−π|v|, π|v|] ||β||2L2(R) = 1

2π ||β̂||
2
L2(R) =

∫ πv
−πv |β̂(ξ)|2dξ. On the

other hand by construction, α̂ = β̂ on [−πv, πv]. It follows that ||α2||L2(R) ≥ ||β2||L2(R).
Thus, we have also proved:

Corollary 3.5. Let β be a continuous numerical flutter shutter. Then its discrete equivalent numerical
flutter shutter has a smaller spectral SNR.

4 The analog flutter shutter

There are two different acquisition tools implementing a flutter shutter with a moving sensor (or land-
scape). The first one has been discussed previously and consists in a mere computational device, using



13the maximal sensor capability. In that case obs(x) is given by (6) and is not a Poisson random variable
in general. The other technical possibility is to implement the flutter shutter function on the sensor as an
optical (temporally changing) filter. This setup, which corresponds to the technology proposed by the
inventors of the flutter shutter, will be called analog flutter shutter. The Agrawal et al. flutter shutter
method consists in a (binary) temporal mask in front of the sensor. From a practical point of view the
shutter of the camera opens and closes during the acquisition process. The proposed generalization uses
temporal sunglasses allowing smoother (non-binary, non piecewise constant) gain modifications. The
gain at time t α(t) is here defined as the proportion of photons coming from the noisy landscape u
that are allowed to travel to the pixel sensor, meaning that only positive (actually in [0, 1]) kernels are
feasible. The device (roughly speaking a generalized shutter) controlling the percentage of photons from
the landscape allowed to travel to the sensor obviously takes place before the sensor. From a practical
point of view it is realizable by implementing the filters directly on the stages of a time delay integration
(TDI) device. Hence the observation is always a Poisson random variable. The analog flutter shutter
method consists in the design of an invertible flutter shutter function α(t).

Definition (Analog flutter shutter function.)
Let α(t) ∈ [0, 1] be the gain used at time t. We call analog flutter shutter function any positive function
α ∈ L1(R) ∩ L2(R).

Let α be an (analog) flutter shutter function then the acquired image at position n is (a realization

of) obs(n) ∼ P
(∫∞
−∞ α(t)u(n− vt)dt

)
∼ P

(
1
v (α( .v ) ∗ u)(n)

)
where obs(n) is known only for n ∈ Z.

Definition Let α be an analog flutter shutter function. We call analog flutter shutter samples at position
n of the landscape u at velocity v the random variable

obs(n) ∼ P
(

1

v
(α
( .
v

)
∗ u)(n)

)
. (25)

We call analog flutter shutter its band limited interpolate obs(x) ∼
∑
n∈Z obs(n)sinc(x− n).

Theorem 4.1. The observed samples of the analog flutter shutter are such that, for n ∈ Z

E(obs(x)) =
1

v
(α
( .
v

)
∗ u)(x), and var(obs(x)) =

1

v
(α
( .
v

)
∗ u)(x). (26)

Proof. Directly from the analog flutter shutter samples definition (25).

The main difference with the numerical flutter shutter is that the observed image is always a Poisson
random variable. The calculations on the analog flutter shutter are almost identical to those of the
numerical flutter shutter.

Theorem 4.2. The analog flutter shutter method has a spectral SNR equal to

SNRspectral(F(uest,ana)(ξ)) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L1

;

the expected value of the estimated landscape F(uest,ana)(ξ) from the observed samples is

E(F(uest,ana)(ξ))) = û(ξ)1[−π,π](ξ),

and the variance is var(F(uest,ana(ξ))) =
||α||L1 ||u||L1

|α̂|2(ξv)
1[−π,π](ξ). (27)



14Proof. Similarly to the numerical flutter shutter the inverse filter is the inverse filter defined by 1
α̂(vξ)

then

var (F(uest,ana)(ξ)) = var

(∑
n∈Z obs(n)e−inξ

α̂(ξv)
1[−π,π](ξ)

)
=

∑
n∈Z

1
v (α

(
.
v

)
∗ u)(n)

|α̂|2(ξv)
1[−π,π](ξ)

=
1
v ||α

(
.
v

)
∗ u)||L1

|α̂|2(ξv)
1[−π,π](ξ) (by (xxx))

=
1
v ||α

(
.
v

)
||L1 ||u||L1

|α̂|2(ξv)
1[−π,π](ξ) =

||α||L1 ||u||L1

|α̂|2(ξv)
1[−π,π](ξ).

Moreover by the same calculations as for the numerical flutter shutter,

E (F(uest,ana)(ξ)) =

(
E
∑
n∈Z obs(n)e−inξ

α̂(ξv)
1[−π,π](ξ)

)
= û(ξ).

Therefore, SNRspectral(F(uest,ana))(ξ) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L1

.

A brief summary pointing out the differences between the analog and flutter shutter is given in Table 1.
The analog flutter shutter controls the percentage of photons allowed to travel to the sensor, therefore
only positive functions are implementable. It decreases the number of sensed photons and therefore
tends to decrease the resulting SNR. On the other hand the numerical flutter shutter requires piecewise
constant flutter shutter functions. Consequently, if a flutter shutter function is positive and piecewise
constant (implementable on both cameras) the numerical flutter shutter should always be chosen as it
leads to a better SNR of the reconstructed image. The question of choice of the flutter shutter type in
the general case is answered in section 5 below.

5 Comparison of a piecewise constant analog flutter shutter
with the numerical flutter shutter and snapshot optimiza-
tion

The question arises of whether it is better to apply an analog flutter shutter, or the equivalent numerical
flutter shutter with exactly the same code 0 ≤ α ≤ 1. (From the technological viewpoint, an analog
flutter shutter could be easily implemented with a classic CCD, and a numerical one with a CMOS).
First, we observe that the variance of the analog flutter shutter observation (26) is larger or equal to the
variance of the numerical flutter shutter observation, (9), with equality when ∀ k αk = 0 or 1.
Indeed, since 0 ≤ α(t) ≤ 1 (because it is a proportion of incoming photons allowed to travel through the
sensor) we have α( tv ) ≥ α2( tv ). Hence (α

(
.
v

)
∗ u)(x) ≥ (α2

(
.
v

)
∗ u)(x) (because u ≥ 0). Using (26) and

(9) concludes the proof.
Moreover, the expected value of (26) is equal to the expected value of the numerical flutter shutter

(see Thm. 9) the inverse filter is equal to the inverse filter of the numerical flutter shutter (12). The next
result is a decider for the numerical flutter shutter (when it is possible to implement it with the same
code as an analog flutter shutter, meaning that α is piecewise constant.)
Let 0 ≤ α ≤ 1 be a piecewise constant code function for the analog flutter shutter. Then the spectral
SNR of the analog flutter shutter method is smaller or equal to the spectral SNR of the numerical flutter
shutter with the same code.

The analog flutter shutter method has a spectral SNR equal to

SNR(F(uest,ana)(ξ)) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L1

,

and the spectral SNR of the numerical flutter shutter is

SNR(F(uest,num)(ξ)) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L2

.



15Type of flutter shutter Numerical flutter shutter Analog flutter shutter

Flutter shutter α(t) =
∑L−1
k=0 αk1[k∆t,(k+1)∆t[(t) α(t) ∈ [0, 1]

function α(t) (with αk ∈ R and ∆t > 0)

E (obs(n))
(

1
vα
(
.
v

)
∗ u
)

(n) 1
v (α

(
.
v

)
∗ u)(n)

(observed)

var(obs(n))
(

1
vα

2
(
.
v

)
∗ u
)

(n) 1
v (α

(
.
v

)
∗ u)(n)

(observed)

Inverse filter γ̂(ξ)
1[−π,π](ξ)

α̂(ξv)

1[−π,π](ξ)

α̂(ξv)

E(F(uest,num)(ξ))) û(ξ)1[−π,π](ξ) û(ξ)1[−π,π](ξ)
(deconvolved)

var(F(uest,num(ξ)))
||α||2

L2 ||u||L1

|α̂(ξv)|2 1[−π,π](ξ)
||α||L1 ||u||L1

|α̂|2(ξv) 1[−π,π](ξ)

(deconvolved)

(spectral) SNR(ξ) |û(ξ)||α̂(ξv)|√
||u||L1 ||α||L2

1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L1

1[−π,π](ξ)

Table 1: This table summarizes the results on numerical and analog flutter shutters. The first column
describes the structure of the numerical flutter shutter, the second describes the analog flutter shutter.
The first line indicates which kind of flutter shutter functions α(t) are implementable with respect to
the flutter shutter type. The second (resp. the third) gives the expected value (resp. variance) of the
(observed) flutter shutter. The fourth shows the inverse filter to be applied to the flutter shutter in order
to deconvolve. The fifth (resp. the sixth) gives the expected value (resp. variance) of the deconvolved.
Given any flutter shutter function α(t) the last one gives the spectral SNR of both methods. Provided
that a flutter shutter function α(t) is implementable on both kinds of flutter shutter the spectral SNR of
the analog flutter shutter is lower than the spectral SNR of the numerical flutter shutter (see page 15).

A comparison of both formulas shows that the announced inequality amounts to prove that
√∫

α ≥√∫
α2, which boils down to

∫
α ≥

∫
α2. This last inequality follows immediately from 0 ≤ α ≤ 1.

This result also implies that the variance of the estimated landscape (27) using an analog flutter
shutter method var(F(uest,ana)) is larger or equal to var(F(uest,num)) (18) using a numerical flutter
shutter method when α is positive and piecewise constant.

The above results shall be used in the sequel to compare the flutter shutter with classic cameras and
provide a thorough definition and analysis of the classic flutterless photography. Uniform motion blurs
using a standard camera have been studied nicely, for example in [12]. A figure providing the RMSE of
snapshot varying the exposure time ∆t is given in Fig 3.

The acquired image at position x for a short snapshot is (a realization of)

Pl([0,∆t]× [x− 1

2
, x+

1

2
]) ∼ P

(
1

v
(1[0,v∆t] ∗ u)(x)

)
∼ obs(x) (28)

where (28) is known only for x ∈ Z. In short, a snapshot is nothing but a flutter shutter (analog or
numerical) with code α(t) = 1[0,∆t](t). Thus

F(
1

v
α
( .
v

)
) = 2

sin( ξv∆t
2 )

vξ
e−iξ

v∆t
2 . (29)

From (29) we see that we must have |v|∆t < 2 to guarantee the invertibility of the blur kernel on [−π, π].
Similarly to the flutter shutter formalism developed in section 3, we call “standard snapshot” the use of



16an integration time (∆t) such that |v|∆t < 2. We call snapshot samples at position n of the landscape
u at velocity v the random variables obs(n) ∼ P

(
1
v (1[0,v∆t] ∗ u)(n)dt

)
. We call band limited interpolated

snapshot its band limited interpolate (3) obs(x) ∼
∑
n∈Z obs(n)sinc(x−n). By definition of the standard

snapshot, ∆t is small enough so (29) has no zero on [−π, π] (the support of û). Thus (28, 29) lead to
the definition of the inverse filter γ satisfying û(ξ) = γ̂(ξ)F(E(obs))(ξ) implying

γ̂(ξ) =
v1[−π,π](ξ)

2
sin( ξv∆t

2 )

ξ e−iξ
v∆t

2

. (30)

We call estimated landscape uest,sna of the standard snapshot the function defined by

F(uest,sna)(ξ) = γ̂(ξ)
∑
n∈Z

obs(n)e−inξ1[−π,π](ξ). (31)

The following estimation of variance and SNR are direct applications of the same quantities for the
numerical (or analog) flutter shutter. Moreover, the spectral SNR (4) of standard snapshot using an
exposure time of ∆t is

SNR(ξ) = 1[−π,π](ξ)|û(ξ)|

√
∆t

||u||L1

∣∣∣∣∣2sin( ξv∆t
2 )

ξv∆t

∣∣∣∣∣ .
Furthermore, the expected value of the estimated landscape F(uest,sna)(ξ) from the observed samples is

E(F(uest,sna)(ξ))) = û(ξ)1[−π,π](ξ), (32)

and the variance is var(F(uest,sna(ξ))) =
||u||L11[−π,π](ξ)

∆t
∣∣∣2 sin( ξv∆t

2 )

ξv∆t

∣∣∣2 . (33)

indeed, since α(t) = 1[0,∆t](t), ‖u‖2L2 = ∆t, and α̂(ξ) = 2 sin(∆tξ)
ξ e−i

∆tξ
2 , these formulas are direct

applications of Theorem 3.3.
The only remaining, but crucial, question is the computation of the best exposure time ∆t for a

known v providing the best SNR without the use of a flutter shutter.

Theorem 5.1. (Best exposure time for landscape recovery)
Consider a landscape u(x− vt) moving at velocity v. Then for a snapshot the SNRspectral−averaged (5)

is maximized when |v|∆t∗ ≈ 1.0909” and is equal to

SNRspectral−averaged =

√
∆t∗

2π

∫ π
−π |û(ξ)|dξ√√√√||u||L1

∫ π
−π

dξ∣∣∣∣∣ sin(
ξv∆t∗

2
)

ξv∆t∗
2

∣∣∣∣∣
2

≈ 0.1359√
|v|

∫ π
−π |û(ξ)|dξ√
||u||L1

.

Proof. From (33) the energy (variance of the noise) to be minimized in order to guarantee the best
SNRspectral−averaged after deconvolution is

E(∆t) =
1

∆t

∫ π

−π

dξ∣∣∣2 sin(ξ v∆t
2 )

ξv∆t

∣∣∣2 dξ =
v2∆t

4

∫ π

−π

ξ2

sin2(ξ v∆t
2 )

dξ.

Then its derivative vanishes when b∗ = v∆t∗ ≈ 1.0909 (see Fig. 2). Then (5, 32, 33) entail SNRspectral−averaged =√
1

2π

∫ π
−π |û(ξ)|dξ√√√√√ ||u||L1

∆t∗
∫ π
−π

dξ∣∣∣∣∣∣ sin(
ξv∆t∗

2
)

ξv∆t∗
2

∣∣∣∣∣∣
2

≈ 0.1359√
v

∫ π
−π |û(ξ)|dξ√
||u||L1

.

This means that, using a standard camera, the best SNRspectral−averaged of the recovered image is
achieved by a finite blur whose support is of approximatively ≈ 1.0909 pixel. The use of a bigger exposure
time can give a better SNR before deconvolution, but this advantage is lost by the deconvolution. The
previous also applies to “time delay and integration” devices (commonly used in satellite as a SNR
booster) where the number of stages defines the time exposure.
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Figure 2: This figure shows the square root of the energy E(∆t) of Thm. 5.1. The energy E(∆t)
measures the variance of the Poisson noise after deconvolution, for any snapshot, in function of the
exposure time ∆t. Since our estimator is unbiased and using proposition 2.1 we get that minimizing
the variance is equivalent to minimizing the RMSE of the deconvolved image. Therefore, we ought to
minimize E(∆t) in order to guarantee the best SNRspectral−averaged, and the smallest RMSE taking
the deconvolution into account: x-axis blur (|v|∆t) in pixel, y-axis the standard deviation of the noise
taking the deconvolution into consideration. The minimum is reached for a blur of approximately 1.0909
pixel. Without loss of generality, by the arguments developed in the proof of Thm. 5.1, the curve has
been drawn for v = 1.
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Figure 3: This figure shows the RMSE curves for different snapshots kinds, on five test images (House,
Alley, Boat, Cameraman, Peppers). On the x−axis, the blur support (|v|∆t) in pixels, on the y−axis the
corresponding RMSE. Notice that some of these curves are so close to each other that they superimpose.
Without loss of generality, by the arguments developed in the proof of Thm. 5.1, the comparison is made
with a fixed v = 1. From the proof of Thm. 5.1 we get that the best snapshot only depends on the
blur support |v|∆t. However, from (28) it can be deduced that for a fixed landscape u the value of
this SNR is a function of the two variables ∆t and v∆t. Furthermore, since our estimator is unbiased,
by proposition 2.1 we get that minimizing the variance is equivalent to minimizing the RMSE of the
deconvolved image. Therefore, the curves confirm that, on average on multiple images, the blur support
for a standard camera should be of approximatively ∆t∗ = 1.0909 pixel. Moreover, from Thm. 5.1 we get
that for a fixed v and ∆t the value of the RMSE depends on the landscape u, explaining the differences
between curves. Theses curve also show that our SNR definition is indeed proportional to the RMSE
of the deconvolved image. A larger support would lead to a better SNR on the observed image samples,
but the deconvolution would entail a lower SNR (and a bigger RMSE) on the deconvolved image. The
best snapshot is a compromise between the number of photons caught during a time span ∆t and the
deconvolution kernel. It gives a reference to compare all flutter shutter strategies in terms of SNR.



196 Motion-invariant photography

We shall prove that the motion-invariant photography method proposed in [52, 53] is equivalent to an
analog flutter shutter method using a specific flutter shutter function. Thus, we are able to compute its
SNR and compare it with the other flutter shutter methods. This fact comes as a surprise, the gain
in a flutter shutter being controlled, while with the motion-invariant photography method the shutter
remains fully open during the whole aperture time. Thus, its gain remains constant and equal to one on
the normal time scale. Nevertheless, a time renormalization gives a variable gain. The motion-invariant
photography apparatus consists in moving the camera at a constant acceleration in the direction of v
while the landscape is moving at a constant velocity v. Thus, to use the motion-invariant photography
method the direction of v must be a priori known. Furthermore, this means that the apparent relative
velocity (between the camera and the landscape) is v(t) = −at − v. The motion-invariant photography
was discovered by searching among all camera motions one providing the same kernel for all velocities v
of the landscape. With the formalism proposed in the former sections the observed value of the motion-
invariant photography using a finite aperture time T on the centered time interval [−T2 , T2 ] is a realization
of

obs(x) ∼ P

(∫ T
2

−T
2

u(x− a

2
t2 − v.t)dt

)
(then by a non linear time scale we have) (34)

∼ P


∫ ∞
−∞


1

]a(T2 −|
v
a |)2− v2

2a ,a(T2 +| va |)2− v2

2a [
(t)

2
√
a(t+ v2

2a )︸ ︷︷ ︸
A

+
1

]− v2

2a ,a(T2 −|
v
a |)2− v2

2a [
(t)√

a(t+ v2

2a )︸ ︷︷ ︸
B︸ ︷︷ ︸

αMIP (t)


u(x− t)dt


. (35)

The denominator of B is arbitrarily close to 0. Thus, αMIP (t) can become larger than one. This means
that, in general, it could not be realized stricto sensu by an analog flutter shutter, where the relative
motion v of landscape and camera would be uniform. Fortunately, the above formula shows that the
motion-invariant photography apparatus is mathematically equivalent to a analog flutter shutter and can
be analyzed in terms of SNR like any other flutter shutter. It is not a numerical flutter shutter, since the
flutter shutter function modifies directly the intensity of the Poisson random variables. This means that
the observed samples of the motion-invariant photography are always Poisson random variables. The
claim raised in [52, 53] that the method is motion invariant comes from the fact that the kernel only
depends of | va |. Thus, if |a| is large enough, the relative variations of | va | toward v are small. Under that
assumption the kernel αMIP (t) is indeed nearly invariant with respect to the velocity v. Notice that
when T → +∞, the “A” part of αMIP (t) tends to 0, since a(T2 − |

v
a |)

2 → sign(a)∞.

Theorem 6.1. The motion-invariant photography using a finite aperture time T is equivalent to an
analog flutter shutter with a flutter function equal to

αMIP (t) =
1

]a(T2 −|
v
a |)2− v2

2a ,a(T2 +| va |)2− v2

2a [
(t)

2
√
a(t+ v2

2a )
+
1

]− v2

2a ,a(T2 −|
v
a |)2− v2

2a [
(t)√

a(t+ v2

2a )
.

Proof. This is a direct consequence of (34)-(35) and section 4.

The question arises of whether or not the kernel

αMIP (t) =
1

]a(T2 −|
v
a |)2− v2

2a ,a(T2 +| va |)2− v2

2a [
(t)

2
√
a(t+ v2

2a )
+
1

]− v2

2a ,a(T2 −|
v
a |)2− v2

2a [
(t)√

a(t+ v2

2a )

is indeed invertible for all band-limited functions whose Fourier transform lies on [−π, π]. This finite
aperture scheme is a technically feasible approximation of the ideal motion-invariant photography using



20an infinite aperture time with an accelerating camera. Let the aperture time T → +∞, then provided

a > 0, αMIP (t) →
1

]− v2
2a
,+∞[

(t)√
a(t+ v2

2a )
in L1

loc and in the tempered distribution sense. Thus, skipping the time

translation, we get the ideal motion-invariant photography “flutter” function αMIP−ideal(t) :=
1]0,+∞[(t)√

at
.

Notice that when a < 0, αMIP (t) →
1

]− v2
2a
,−∞[

(t)√
a(t+ v2

2a )
whose Fourier transform is α̂MIP−ideal(−ξ). Thus

asymptotically the choice of the direction of the acceleration has no influence on the invertibility of the
motion-invariant photography.

Lemma 6.2. (Invertibility of the motion-invariant photography method.)
Using a large enough aperture time the motion-invariant photography kernel is invertible, whatever the
sign of a.

Proof. Indeed, when T → +∞, αMIP → αMIP−ideal =
1]0,+∞[(t)√

at
where α̂MIP−ideal = 1√

|aξ|
e−i

π
4 sign(ξ),

which does not depends on the sign of a. These calculations are valid up to an irrelevant multiplicative
constant factor for the numerical flutter shutter, dropping also the time translation. Thus the convergence
of αMIP to αMIP−ideal is true in the tempered distribution sense. It follows that also α̂MIP tends to
α̂MIP−ideal in the tempered distribution sense, and the limit indeed does not vanish.

Lemma 6.3. (Efficiency of the ideal motion-invariant photography method.)
When T → +∞ the ideal motion-invariant photography method has a spectral SNR

SNRspectral(ξ) =

{ |û(0)|√
||u||L1

∞ at ξ = 0

0 elsewhere.

In consequence, the average SNR is zero: SNRspectral−averaged = 0.

Proof. We have, when T → ∞, αMIP → αMIP−ideal thus at ξ = 0 α̂MIP−ideal(0) = ||αMIP−ideal||L1

since αMIP−ideal(t) ≥ 0, which proves, by Thm. 4.2, that SNRspectral(0) = limx→∞
x√
x
|û(0)|√
||u||L1

=

|û(0)|√
||u||L1

∞. Let now ξ 6= 0. Then

var(F(uest,ana(ξ))) =
||αMIP−ideal||L1 ||u||L1

1
|aξ|

1[−π,π](ξ)

= |aξ|||αMIP−ideal||L1 ||u||L11[−π,π](ξ) =∞

(since ||αMIP−ideal||L1 = ∞, and |α̂MIP−ideal(ξ)| < ∞ ). This entails, again by Thm. 4.2, that
SNRspectral(ξ) = 0. The last result comes from the fact that the variance is infinite on a set [−π, π]\{0},
thus SNRspectral−averaged = 0.

Lemma 6.3 means that the motion-invariant photography behaves like a standard camera using an
infinite time exposure: only the null frequency is preserved. Indeed an invertible kernel does not guarantee
a good SNR after deconvolution (except on the unreal case where the acquired samples are noiseless).
A convolution against a kernel α(t) having a small but non zero |α̂(ξ)| on the support of û(ξ) (for
example a Gaussian with a large standard deviation) would lead to the same result. The motion-
invariant photography is therefore a perfect example of the flutter shutter paradox (section 7). To sense
many more photons does not necessarily imply a better SNR after deconvolution. The authors of [52]
wrote as a drawback of the flutter shutter that it was losing half the photons while the motion-invariant
photography kept them all: “(about the Agrawal et al. flutter shutter) ...the amount of recorded light
is halved. Because of the loss of light, the vertical budget is reduced from 2T to T for each ωx”.
The number of acquired photons can be arbitrarily large using a flutter shutter or a motion-invariant
photography apparatus. Nevertheless the SNR of the image obtained after deconvolution is lower than
the SNR (see Table 4) of the best snapshot acquiring little photons (comparatively) and despite the
fact that the snapshot “spends energy outside the slope wedge and thus does not make a full usage of



21the vertical k̂ωx budget” [52]. We now turn to practical aspects of the motion-invariant photography.
For obvious practical reasons it is not possible to accelerate infinitely the camera. Thus α̂MIP , using
a finite aperture time, is nonetheless an approximation of α̂MIP−ideal. It may seem surprising, at first
sight, that the finite aperture approximation has a better SNR than the ideal one. This comes from
the fact that, for a finite time aperture, αMIP belongs to L1(R). Its Fourier transform may have zeros
but, for finite and large enough T ’s they are outside [−π, π], the support of û. This fact is illustrated
below, where the value SNRspectral−averaged is given for a variety of choices for a and T . To compare,

| va | = 1 | va | = 10−1 | va | = 10−2 | va | = 10−3 | va | = 10−4

T = 1 0.6233 0.4538 0.1743 0.1451 0.0550
T = 10 0.0812 0.1080 0.0338 0.0157 0.0017
T = 100 6.8270.10−2 8.9420.10−3 3.9406.10−4 2.9002.10−4 4.7470.10−6

T = 1000 4.4610.10−3 6.0796.10−4 4.6485.10−5 6.9466.10−6 1.3826.10−6

T = 10000 1.7162.10−4 3.9338.10−6 7.3618.10−8 1.3089.10−9 2.4434.10−11

Table 2: This table provides the relative SNRspectral−averaged compared to the best snapshot. A number
greater than one means an increase of the SNR, less than one a loss. This fact illustrates the asymptotic
result on the motion-invariant photography (lemma 6.3): the bigger T is the worse the results become
(the noisier the deconvolved is).

on an equal footing, all flutter shutters and the motion-invariant photography we propose to find a
piecewise constant flutter shutter code approximating αMIP−ideal, using the framework of Thm. 3.4.
This permits to override a drawback of the method. Indeed, a flutter shutter implementation will work
without the a priori knowledge of the direction of the velocity v of the landscape. It is a bit clumsy
to directly approximate αMIP , since it already is an approximation of the ideal αMIP−ideal motion-
invariant photography function and would result inevitably in a lower SNR (an therefore an unfair
comparison). To do so, we remark that α̂MIP−ideal does not belong to L1(R) nor to L2(R) and to
avoid this pitfall we change it for α̂MIP−ideal(ξ)1[−π|v|,π|v|](ξ). Indeed frequencies outside the interval
[−π|v|, π|v|] are of no interest for our scope since u is band limited on [−π, π], the expected value of
the observation being E (obs(n)) =

(
1
vα
(
.
v

)
∗ u
)

(n) (see Thm. 3.1). This change does not ensure that
α̂MIP−ideal(ξ)1[−π|v|,π|v|](ξ) belongs to L2(R). Nevertheless we can at least compute its Fourier expansion
(as the Fourier expansion of an L1(R) function).
Now, we are in position to apply Thm. 3.4 (with α̂MIP−ideal = 1√

|aξ|
e−i

π
4 sign(ξ)

1[−π|v|,π|v|](ξ)) and to

compute the code. Being Hermitian this function provides a real code (ie coming from a real function
in the space domain). The only loss incurred in applying Thm. 3.4 with a function that does not belong
to L2(R) is the goodness of the convergence, which is reduced to a tempered distribution convergence.
Nonetheless, by the localization principle and Riemann-Lebesgue theorem, we also have at the very
least a pointwise convergence everywhere, except in 0, of the Fourier expansion. Thus, it is no surprise
that the proposed numerical approximation (which is a trigonometric polynomial, thus C∞(R)) works
well and is indeed invertible for all band limited functions such that û is supported on [−π, π]. The
obtained code (w.l.o.g for v = 1 and ∆t = 1) and its Fourier transform are shown Fig. 4, and will be
compared advantageously to the Agrawal et al. code in [97]. The proposed implementation of motion-
invariant photography using a numerical flutter shutter, is simpler from a technical point of view, since
it does not require to control the camera motion itself. This permits to compute SNR’s for any finite
code and compare the motion-invariant photography like any other flutter shutter set up. The above
formalism, paradoxes, and comparison also applies to the “Motion blur removal with orthogonal parabolic
exposures” [20], a recent extension of the motion-invariant photography using two images, namely two
orthogonal motion invariant apparatus. Indeed it is equivalent to the use of two flutter shutters and, in
that case, a fair comparison shall also involve the acquisition of two flutter shutter images. Surprisingly,
the numerical flutter shutter permits to approximate this ideal function with a finitely supported flutter
shutter function (that is, a finite code) while avoiding an unrealistic infinite acceleration. It also permits
to get rid of the exigence of an a priori knowledge of the direction of v. In consequence, like any
other flutter shutter the coded-motion-invariant photography will work for any direction of v. Finally,
it increases the efficiency of the method compared to the classic one involving an accelerating camera.
Indeed it permits to control the Fourier transform and to concentrate it easily on the support of û(ξ)
i.e. where the information is (contrarily to α̂mip−ideal which is supported on the whole R). Predictive
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Figure 4: Left: the flutter shutter gain function for the motion-invariant photography code (w.l.o.g. for
v = 1), x−axis: k, y−axis: the gain αk. On the right: the Fourier transform (modulus) of the motion-
invariant photography code (in bold) and of the ideal motion-invariant photography function α̂MIP−ideal
(dashed dots line style). As predicted the proposed approximation does not vanish on [−π, π]. Thus the
convolution of a band-limited function by the motion-invariant photography code is invertible, x− axis:
frequency ξ, y − axis: |α̂(ξ)|.

results are shown in Table 4 and simulations in [97].

7 The flutter shutter paradoxes

In this section we compute the best flutter shutter function, the best snapshot and compare them.

Theorem 7.1. (Ideal flutter shutter function)
Consider a landscape u(x − vt) moving at velocity v. Then an optimal continuous numerical flutter
shutter gain function maximizing the average spectral SNR (5) is equal to α∗(t) = sinc(tv).

Proof. Among all gain control functions α(t) one giving the best SNRspectral−averaged (5) is given by
minimizing the averaged variance of ûest (18),

F (α) = ||α||22
1

2π

∫ π

−π

dξ

|α̂(vξ)|2
(dropping the irrelevant constants, u being fixed))

≥ ||α||22
1

1
2π

∫ π
−π |α̂(vξ)|2dξ

,

where the inequality is Jensen’s inequality applied to the strictly convex function x > 0 7→ 1
x . Because of

this strict convexity, the equality occurs when |α̂(ξ)|2 ≡ 1 on [−πv, πv], up to an irrelevant multiplicative
constant for a numerical flutter shutter (see Lemma 3.1). Thus, an optimal numerical flutter shutter
function is α∗(t) = sinc(tv) (up to a normalization constant).

Notice that the proposed optimal flutter shutter function has a constant Fourier transform on the
support of û for any velocity |ṽ| ≤ |v|. This means that this flutter shutter code is “self-deconvolving”.
Being non positive this ideal gain control function is not implementable using an analog flutter shutter,
and being non piecewise-constant is not directly implementable using a numerical flutter shutter strategy.
However a piecewise constant approximation can be used in a numerical flutter shutter strategy with
Thm. 3.4 as soon as |v|∆t ≤ 1, and it is enough to let ∆t→ 0 to approximate the optimal flutter shutter.

Corollary 7.2. (Upper bound on the SNR)
Consider a landscape u(x − vt) moving at velocity v. The ideal numerical flutter shutter strategy using



23α∗(t) = sinc(tv∆t) has a spectral SNR (4) equal to SNRspectral(ξ) =
1[−π,π](ξ)√

v
|û(ξ)|√
||u||L1

. Moreover the

averaged spectral SNR (5) is equal to SNRspectral−averaged = 1
2π
√
v

∫ π
−π |û(ξ)|dξ√
||u||L1

.

Proof. By Thm. 7.1, an optimal flutter shutter strategy satisfies |α̂∗(ξ)| = 1[−πv,πv]. Using Parse-

val’s formula we deduce that ||α∗||2L2 = v. Then from Thm. 3.3 we deduce that SNRspectral(ξ) =
1[−π,π](ξ)√

v
|û(ξ)|√
||u||L1

. It follows that SNRspectral−averaged = 1
2π
√
v

∫ π
−π |û(ξ)|dξ√
||u||L1

.

Corollary 7.3. (The flutter shutter paradox)
The use of a flutter shutter strategy increasing the total time-exposure does not permit to achieve an
arbitrary SNR. Consider a landscape u(x − vt) moving at velocity v. Then the SNRspectral−average of
any flutter shutter strategy is bounded independently of the total exposure time. In other words increasing
the exposure time has a limited effect on the SNR.

Proof. This is a direct consequence of Cor. 7.2. Indeed, the exposure time is the (infinite) length of the
support of α∗, but the SNR of the restored image is nevertheless finite.

Moreover, SNR(analog flutter) ≤ SNR(numerical flutter) for any analog flutter shutter function
and SNR(numerical flutter) ≤ SNR(best numerical flutter) <∞ by Cor. 7.2. Thus,

SNR(analog flutter) ≤ SNR(numerical flutter) ≤ SNR(best numerical flutter) <∞;

implying that the SNR of any analog flutter shutter is bounded as well (and smaller or equal to the
numerical flutter shutter).

Corollary 7.4. (Efficiency of the numerical flutter shutter)
Consider a landscape u(x − vt) moving at velocity v. Then the ratio R of SNRspectral−average be-
tween the ideal flutter shutter and the best snapshot with exposure time equal to ∆t∗ is equal to R =
SNRspectral−average(flutter,ideal)
SNRspectral−average(snapshot)

≈
1

2π

0.1359 ≈ 1.171.

Proof. This is a direct consequence of Thm. 5.1 and Cor. 7.2.

This result is surprising and disappointing. The gain of the most flexible flutter shutter that could
be envisaged, a numerical flutter shutter with a continuous gain function, is insignificant with respect to
the best classic snapshot. Nevertheless, even if the aperture time is the same, a numerical flutter shutter
beats slightly the standard snapshot:

Corollary 7.5. (Deconvolution gain) For a landscape u(x−vt) moving at velocity v, consider its best
classic snapshot with exposure time equal to ∆t∗ and the flutter shutter strategy using α = α∗1[−∆t∗

2 ,∆t2 ].

Then the spectral SNR, SNRspectral−average is larger for this restricted flutter shutter than for the best
snapshot. The ratio of the SNRs is approximately 1.04.

Proof. This is a mere numerical estimation using Thms. 5.1 and 7.1.

In short, the amount of collected photons is not larger, but they are better combined. The resulting
flutter shutter kernel is slightly better than the snapshot kernel. These positive and negative results con-
stitute what we shall call the flutter shutter paradoxes. If the velocity of the observed object is known,
none of the flutter shutter strategies beats significantly the optimal standard snapshot adapted to this
velocity. Nevertheless, the flutter shutter strategy is always (slightly) better.

Table 3 summarizes the results on the various flutter shutter strategies explored, focusing on the
resulting SNR.



24flutter type flutter function α(t) (av., spectral) SNR

Accumulation 1[0,T [(t), v = 0 (spatial)
√
u(x)T

Best snapshot 1[0, 1.0909
v [(t) (av.) ≈ 0.1359√

|v|

∫ π
−π |û(ξ)|dξ√
||u||L1

Analog discrete
∑L−1
k=0 αk1[k∆t,(k+1)∆t[(t), αk ∈ [0, 1] 1[−π,π](ξ)

|α̂(ξv)|
||α||L1

|û(ξ)|√
||u||L1

Analog continuous α(t) ≥ 0 Idem

Numerical
∑L−1
k=0 αk1[k∆t,(k+1)∆t[(t), αk ∈ R 1[−π,π](ξ)

|α̂(ξv)|
||α||L2

|û(ξ)|√
||u||L1

M.I.P. (numerical) (approximating code) Idem

Best numerical sinc(tv) (av.) 1

2π
√
|v|

∫ π
−π |û(ξ)dξ|√
||u||L1

Table 3: This table summarizes the results on the different flutter shutter strategies and their SNR.
On the first column the types of flutter are indicated. The second and last row give the optimal flutter
shutter function in two categories: the best simple snapshot, and the best numerical flutter shutter. The
best numerical flutter shutter is a sinc and has a finite SNR in spite of using an infinite exposure time.
This is what we called the flutter shutter paradox. M.I.P. stands for motion-invariant photography.
The second column shows the form of the α function. Agrawal et al.’s code is analog discrete, with
αk ∈ {0, 1}. The last column gives the SNR of each method in its more adequate presentation: the
first line shows that the accumulation is the best strategy, the only one able to increase indefinitely the
SNR. The second and last lines compare the average spectral SNR’s for the best snapshot and the best
numerical flutter shutter (av. stands for average). The SNR gain with the numerical flutter shutter with
respect to the best snapshot is only approximately 1.171. The spectral SNR formulas for the analog
and numerical flutter shutter are similar but distinct. The analog involves the L1 norm of α and the
numerical the L2 norm.

Flutter shutter strategy SNRspectral−averaged

Best snapshot 1
Agrawal et al. flutter shutter (code) 0.5636

(v = 1 ∆t = 1)
Ideal motion-invariant photography 0

(infinite time exposure)
Motion-invariant photography 0.6233

(at | va | = 1 and T = 1)
Ideal flutter shutter (sinc) 1.17

(infinite time exposure)

Table 4: This table provides the relative SNRspectral−averaged of all standard flutter shutter strategies
compared to the best snapshot. A number greater than one means an increase of the SNR, less than one
a loss.

8 Conclusion

This paper has started by modeling the stochastic photon acquisition of a moving landscape by a light
sensor. The model intrinsically contains noise terms due to the Poisson photon emission. This model
permits to formalize and analyze a general flutter shutter theory which includes the standard photography,
the original Agrawal et al. flutter shutter, two suggested generalizations of the flutter shutter and the
Levin et al. motion-invariant photography. A formula providing directly the SNR of the sharp recovered
images has been given, for all these methods. It also permits to prove what we called the flutter shutter
paradoxes. A well optimized flutter shutter does always beat the traditional camera, even using the same
aperture time. And, for an infinite exposure time accumulating many more photons than a snapshot the
SNR remains finite (contrarily to the classic still photography). Two kinds of flutter shutter setups have
been considered: an analog flutter shutter and a numerical flutter shutter permitting smoother, negative
gain-control-functions and leading to the best SNR of the restored images. It also appeared that the
motion-invariant photography is a particular case of an analog flutter shutter. The motion-invariant
photography has been generalized to the case of unknown velocity direction by using a numerical flutter



25shutter. Optimized snapshots have been considered leading to the definition of best blur. It gives the
best aperture time to use in a standard camera and can be used, for example, to compute the ideal
number of stages of the time delay and integration device commonly used in push broom satellites. It is
proven that knowing the velocity the best flutter shutter code comes from the Fourier series coefficients
of a (zoomed) sinc function. The SNR raise is of 17% compared to the best snapshot leading to a poor
efficiency of such an acquisition system, even if the exposure time is infinite.

A Main notations and formulae

(i) t ∈ R+ time variable

(ii) ∆t length of a time interval

(iii) x ∈ R spatial variable

(iv) X ∼ Y means that the random variables X and Y have the same law

(v) P(A) probability of an event A

(vi) EX expected value of a random variable X

(vii) var(X) variance of a random variable X

(viii) f ∗ g convolution of two L2(R) functions (f ∗ g)(x) =
∫ +∞
−∞ f(y)g(x− y)dy

(ix) l(t, x) > 0 ∀ x ∈ R+ × R continuous landscape before passing through the optical system

(x) P(λ) Poisson random variable with intensity λ > 0

(xi) Pl bi-dimensional Poisson process on R
+ × R associated to the intensity field l(t, x), Pl([t1, t2]×

[a, b]) ∼ P
(∫ t2

t1

∫ b
a
l(t, x)dtdx

)
(xii) g point-spread-function of the optical system

(xiii) u = 1[− 1
2 ,

1
2 ] ∗ g ∗ l ideal observable landscape just before sampling. Assumption: u ∈ L1 ∩ L2,

band-limited

(xiv) obs(n), n ∈ Z observation of the landscape at pixel n

(xv) e(n) = E(obs(n)), n ∈ Z and e(x) its band limited interpolation

(xvi) Pu Poisson process associated to the intensity field u > 0: = Pu ∼ P1
[− 1

2
, 1
2

]
∗g∗l

(xvii)
∏
a =

∑
n∈Z δna Dirac comb

(xviii) v relative velocity between the landscape and the camera (unit: pixels per second)

(xix) b apparent length of the support of the blur (unit: pixels), Lv∆t = b

(xx) α(t) piecewise constant or continuous gain control function for the analog flutter shutter & numer-
ical flutter shutter methods

(xxi) w(x) ≥ 0 weight function associated with the probability distribution of the velocity v

(xxii) α∗(t) optimal gain control function

(xxiii) ||f ||L1 =
∫
|f(x)|dx, ||f ||L2 =

√∫
|f(x)|2dx

(xxiv) let f, g ∈ L1(R) or L2(R), then F(f)(ξ) := f̂(ξ) :=
∫∞
−∞ f(x)e−ixξdx and

F−1(F(f))(x) = f(x) = 1
2π

∫∞
−∞ F(f)(ξ)eixξdξ. Moreover F(f ∗ g)(ξ) = F(f)(ξ)F(g)(ξ) and

(Plancherel) ∫ ∞
−∞
|f(x)|2dx = ||f ||2L2 =

1

2π

∫ ∞
−∞
|F(f)|2(ξ)dξ =

1

2π
||F(f)||2L2

(xxv) SNR(X) := |EX|√
var(X)

, signal to noise ratio of a random variable X



26(xxvi) Let uest(x) be an estimation of the landscape u based on a stochastic observation of u then

SNR(uest(x)) := |Euest(x)|√
var(uest(x))

(xxvii) Let ûest be an estimation of û. Then SNRspectral(uest(ξ)) := |Eûest(ξ)|√
(var(ûest(ξ))

, for ξ ∈ [−π, π]

(xxviii) Let ûest be an estimation of û. Then

SNRspectral−averaged(ûest) :=
1

2π

∫
|Eûest(ξ)|1[−π,π](ξ)dξ√

1
2π

∫
var(ûest(ξ))1[−π,π](ξ)dξ

(xxix) sinc(x) = sin(πx)
πx = 1

2πF(1[−π,π])(x) = F−1(1[−π,π])(x)

(xxx) (Poisson summation formula) Let f ∈ L1(R) be band-limited. Then
∑
n f(n) =

∑
m f̂(2πm),

hence if f̂(ξ) = 0 ∀|ξ| > π then
∑
n f(n) = f̂(0). Moreover if f is positive then

∑
n∈Z f(n) =

f̂(0) = ||f ||L1 . An easy variant of the first Poisson formula gives the second Poisson formula we

use,
∑
n f(n)e−inξ =

∑
m f̂(2πm + ξ). It is easily obtained by applying the first Poisson formula

to g(x) := f(x)e−ixξ.
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