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Enhanced Compressed Sensing Recovery with

Level Set Normals
Virginia Estellers⋆, Jean-Philippe Thiran⋆, Xavier Bresson◦

Abstract—We propose a compressive sensing algorithm that
exploits geometric properties of images to recover images of
high quality from few measurements. The image reconstruction
is done by iterating the two following steps: 1) estimation of
normal vectors of the image level curves and 2) reconstruction
of an image fitting the normal vectors, the compressed sensing
measurements and the sparsity constraint. The proposed tech-
nique can naturally extend to non local operators and graphs to
exploit the repetitive nature of textured images in order to recover
fine detail structures. In both cases, the problem is reduced to
a series of convex minimization problems that can be efficiently
solved with a combination of variable splitting and augmented
Lagrangian methods, leading to fast and easy-to-code algorithms.
Extended experiments show a clear improvement over related
state-of-the-art algorithms in the quality of the reconstructed
images and the robustness of the proposed method to noise,
different kind of images and reduced measurements.

I. FORMULATION OF THE PROBLEM

C
OMPRESSED sensing (CS) is founded on the principle

that, through optimization, the sparsity of a signal can

be exploited to recover it from a reduced number of mea-

surements. This simple and yet powerful idea is intriguing

because it brings Shannon’s sampling theorem into question.

Compressed sensing is in fact the equivalent of Shannon’s

theorem from the point of view of sparsity: while Shannon

states that to recover a band limited signal the sampling rate

must be at least twice the maximum frequency present in the

signal; CS relates the sparsity of a signal in certain basis with

the number of measurements in another basis necessary to

recover it from a minimization problem. A few definitions are

necessary to understand the formulation of the CS problem.

We say that a signal u ∈ R
n is s-sparse in the basis or

dictionary Ψ if it can be expressed by s non-zero coefficients

in that basis, i.e. ‖Ψu‖0 = s; while u is compressible if most

of the energy in Ψu is contained in its largest s coefficients.

Given Φ and Ψ two orthobasis or dictionaries of R
n, the

CS problem is formulated as the reconstruction of a signal

u ∈ R
n, sparse in basis Ψ, from m < n linear measurements

f in the sensing basis Φ. Ideally we should measure the n
projections of u in basis Φ, that is Φu, but we only observe

a small subset f = Au of size m < n. The sampling matrix

A = RΦ results from the combination of the sensing basis Φ
and the matrix R that extracts the corresponding measurements
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in f . Consequently, the system f = Au is undetermined and

the sparsity of the signal u must be exploited to “invert”

the problem and obtain a correct reconstruction. The obvious

strategy would be to recover the sparsest u agreeing with

the measurements, that is, to solve the following non-convex

problem

min
u
‖Ψu‖0 s.t Au = f. (1)

Problem (1) is NP-hard due to the ℓ0 norm and only approx-

imate solutions can be used in real applications. Relaxing the

ℓ0 norm to ℓ1, problem (1) becomes the convex problem

min
u
‖Ψu‖1 s.t Au = f. (2)

Recent results in CS [1], [2] prove that (2) exactly recovers

s-sparse signals with an overwhelming probability when the

number of measurements is O(s logn). In addition, if the

sampling matrix A verifies certain restricted isometry condi-

tion, then (2) actually recovers the signal associated to the s
largest coefficients of u in basis Ψ, i.e. exact recovery for s-

sparse signals and recovery of the s-sparse ℓ2 approximation

for compressible signals.

When the measurements are contaminated with noise, the

constraint Au = f on the measurements is relaxed. In

particular, under Gaussian noise the recovery is given by

min
u
‖Ψu‖1 s.t ‖Au− f‖2 ≤ σ, (3)

where σ is related to the noise level. From optimization theory

[3], we know that (3) is equivalent to

min
u
‖Ψu‖1 +

α

2
‖Au− f‖22 (4)

in the sense that solving any of the two determines the

parameter (σ,α) in the other and both have the same minimizer.

Designing the sparsifying basis depends on the signal at

hand. For images a common choice are orthogonal wavelets

or the discretized total variation (TV) semi-norm. TV assumes

that the edges of an image are sparse and it is extensively

used in inverse imaging problems as a regularizer. In its

continuous formulation TV is a convex functional and its usual

discretizations preserve that property. In CS ‖Ψu‖1 is then

substituted by the regularizing term J(u) = ‖u‖BV in an

abuse of notation.

Without loss of generality in this paper we adopt the

Lagrangian formulation (4), use random Fourier samples as

measurements 1 and choose total variation as sparsity crite-

rion; but the proposed algorithm could be equally applied to

1The proposed matrix A satisfy the restricted isometry condition with high
probability and is therefore a common choice in MRI imaging [4].
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other basis or dictionaries as investigated in [5]–[7]. The CS

recovery problem that we consider is then

min
u

J(u) +
α

2
‖Au− f‖22. (5)

With this formulation of CS recovery in imaging, we intro-

duce an additional term in (5) inspired by image denoising

techniques [8]. The resulting model exploits the geometry of

the image to improve image recovery by aligning the normals

associated to the levels sets of the image with the reconstructed

signal. Our first contribution is therefore the introduction of a

term for CS recovery based on geometric properties intrinsic to

images. Our method can be beautifully extended to non local

operators in order to recover textured images. In this case we

exploit the geometry of the graph defined by the non local

operators to recover finer details and structures of the images.

This observation is a key contribution of our work because it

can be easily adapted to improve existing non local denoising

and deblurring methods, not only CS recovery. Finally, it

is also important to mention that the proposed CS recovery

model is based in the solution of two convex optimization

problems and therefore can be efficiently solved with fast and

easy-to-code algorithms.

The rest of the paper is organized as follows. After for-

mulation the problem in this section, we present our method

in Section II and explain its relation to similar techniques in

Section III. Our method is then extended to non local operators

in Section IV. Section V presents the associated minimization

problems. Finally, experiments are presented in Section VI and

conclusions drawn in Section VII.

II. CS WITH RECOVERED NORMALS

The main idea behind our method is that the recovered

normals of an image can significantly improve the CS recovery

results. This observation raises two main questions: how to re-

cover normals robustly and accurately from CS measurements

and how to introduce the estimated normals in the CS recovery.

The answer that we propose is a two-step iterative method.

In the first step of each iteration, we estimate the normal

vectors n associated to the level set curves of the image by

solving a vectorial ROF [9] model that regularizes a first point-

wise approximation of the level set normals n̂. In particular we

adopt the extension of the weighted TV semi-norm for vector

fields Jw(n), where w = g(|∇uk−1|) is an edge detector

designed to verify w ≈ 0 near the edges and w ≈ 1 on flat

regions of uk−1 . Once the normals are estimated, we find an

image that fits the measurements, the estimated normals and

the sparsity criterion. The process is then iterated and can be

summarized as
{

nk = argmin|n|≤1 Jw(n) +
µ
2 ‖n− n̂‖22

uk = argminu J(u) + γ < divnk, u > +α
2 ‖Au− f‖22

(6)

On the following subsections we will detail each of these two

steps, which both reduce to convex optimizations that can be

efficiently solved. Combining the two stages into one would

lead to a non convex model of higher order and the resulting

minimization would be slower and suffer from local minima.

A two step method is computationally more efficient in the

same way than splitting variables in Section V helps solving

the minimization problems and leads to closed form solutions.

The drawback of this two step procedure is the lack of rigorous

theory and proof of convergence of the resulting algorithm.

However, experimental results show that a single iteration of

our method already improves the standard recovery (5), while

the optimal performance (measured in terms of peak SNR) is

attained after a few iterations. A similar limitation is present

in the iterative edge-guided CS algorithm proposed in [10].

A. Estimation of level set normals

Each iteration, the normals of the image are estimated in

two steps. We first obtain a noisy point-wise estimate n̂ from

the previous solution uk−1 and we then regularize it to obtain

nk.

Given an estimate of the underlying image uk−1, the normal

vectors associated to its level set curves are defined as

n̂ =

{

∇uk−1

|∇uk−1|
if |∇u| > 0

0 if |∇u| = 0.
(7)

Denoising of that first estimate of the normals n̂ is done

with a combination of the vectorial ROF model [11] with the

constraint |n| ≤ 1. In particular we define the vector field

nk = (nx, ny)k as the solution of the following variational

problem.

min
|n|≤1

Jw(nx, ny) +
µ

2
‖nx − n̂x‖

2
2 +

µ

2
‖ny − n̂y‖

2
2 (8)

where Jw(nx, ny) is the extension of the weighted TV semi-

norm to vector fields and w = g(|∇uk−1|) is an edge detector

designed to verify w ≈ 0 near the edges and w ≈ 1 on flat

regions of uk−1.

By weighting the TV semi-norm with an edge detector

w = g (|∇uk−1|), we encourage the edges of the regularized

solution to coincide with the main edges of the noisy signal

uk−1. To be robust against false edges, we use the robust

edge detector proposed by Black, Sapiro and Marimont in [12],

where a statistical interpretation of the edge-stopping functions

of anisotropic diffusion [13] is given. In this statistical interpre-

tation, edges are considered outliers in the normal distribution

of |∇u| associated to noisy piece-wise constant regions and

the edge-stopping functions g (|∇u|) are derived from error

norms robust to outliers. The edge detectors therefore have a

parameter σ that acts as a soft-threshold in the detection of

outliers and can be estimated a priori from the values of |∇u|
in the image. Based on the results of [12], we define

g(x) =

{

1
2

(

1− x
σ
2
)2
|x| ≤ σ

0 |x| > σ
(9)

with σ = 1.4826median(|∇u−median(|∇u|)|).We refer the

reader to the original publication [12] for the details of this

edge detector and point out that other robust edge detection

functions can be used in our formulation with similar results

in the final CS reconstruction method.

The constraint |n| ≤ 1 in (8) corresponds to a relaxation of

the condition |n| = 1 inherent to the definition of normals. It
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is numerically necessary in flat regions, where ∇u = 0 and

we cannot numerically normalize the gradient vector.

In the context of image denoising and inpainting [14], a

combination of vectorial TV and ℓ1 fidelity term has proven

a better choice in the estimation of normal fields of images

contaminated with salt-and-pepper noise. In our method, how-

ever, the first estimate of the normals n̂ is obtained from a

CS recovery algorithm and we cannot assume any particular

noise model but certain kinds of artifacts.Experimentally, we

have observed that both the introduction of a weight in the

vectorial TV semi-norm and the relaxation |n| ≤ 1 lead to

more robust estimates of the normal field for their use in

the second step of our reconstruction method. The use of a

robust edge detector as a weighting function gives more weight

to the data term in the estimation of the normals near the

edges, where ∇u is large and n̂ is clearly defined. In regions

with no clear orientation or where n̂ is affected by noise,

the regularization tends to average neighbouring vectors and

produce normal fields nk close to zero, while the relaxation

|n| ≤ 1 experimentally leads to small norm values |nk| in

these areas. Consequently, the value of |nk| in non-flat areas

can be considered an experimental measure of quality in the

estimation of the normal field.

B. Matching normals and CS measurements

Once the normal field nk is computed, we find an image that

matches this field by including the term − < nk,∇u > in the

standard CS recovery model (5). This term tries to maximize

the alignment of the estimated normals of the signal nk with

the normals of the reconstruction ∇u
|∇u| . The resulting recovery

model is

uk+1 = argmin
u

J (u)− γ < nk,∇u > +
α

2
‖Au− f‖22 .

(10)

Taking into account that the divergence div is the adjoint

operator of the gradient ∇, the previous minimization can be

rewritten as

uk+1 = argmin
u

J (u) + γ < divnk, u > +
α

2
‖Au− f‖22.

(11)

Our method then exploits the geometry of the image in the

recovery process and obtains better regularization properties

than standard TV. In particular the proposed model preserves

edges like TV, by encouraging the gradients to be sparse with

J(u); but is also able to recover smooth regions by aligning

the gradients of the reconstruction with the smoothed normals

with the term < nk,∇u >. We make use of the adjoint

properties of the divergence and gradient operators in order to

overcome the following limitation of a direct implementation

of our model in smoothly varying regions. In these regions,

the minimization term associated to the direct alignment of

normals −
∫

Ω
< nk,∇u > is negligible because the recon-

structed gradient∇u is small and the data and regularity terms

dominate the minimization. In our implementation, however,

this term is rewritten as
∫

Ω
divnku, where the smoothness and

orientation of the region are summarized by the divergence

of the normal field estimated in the previous step divnk.

The divergence function accumulates the orientation of the

normals of the different neighbours around each pixel. It has

constant non-zero values in smoothly varying regions, large

magnitude close to the edges of the image and it is close to

zero in flat areas contaminated with noise, where the estimated

normal field has no clear orientation. The magnitude of the

divergence, and the weight given to the alignment term in the

minimization, is then proportional to the coherence in local

orientation of the estimated normal field around each pixel.

In principle we could also use a smooth estimate of the

gradients v = ∇uk−1 instead of n = ∇uk−1

|∇uk−1|
to align the

gradients of the reconstructed signal. However, discontinuities

of the image would have a contribution to v proportional to

their jump and the resulting term < v,∇u > would give

different weights to discontinuities of different sizes. From a

geometric perspective, if we want to recover the shapes of the

image independently of their contrast we need to consider the

normal vectors derived from its level sets. By the use of level

sets, we treat all shapes equally and the term γ < nk+1,∇u >
only accounts for geometric quantities. Indeed, if we make use

of the co-area formula, we can rewrite the alignment term as∫
Ω

nk · ∇u dx =

∫
Ω

nk ·
∇u

|∇u|
|∇u| dx =

∫ ∞

−∞

∫
u−1(c)

|nk| cos θ(s) ds dc,

(12)

where θ(s) is the angle between the normal vector to the level

curve u−1(c) of the reconstructed image and the regularized

normal vector nk. The alignment term it thus is purely

sensitive to angles and its contribution is weighted by |nk|.
In flat regions, where |nk| = 0, the alignment term vanishes

and our reconstruction method simplifies to TV. As we have

previously explained, in smoothly varying regions and close

to the edges the value of |nk| is an experimental measure of

quality in the estimation of the normal field nk. This results

in an alignment term of Equation (12) weighted proportionally

to the confidence we have on the estimated normal field nk,

which reduces the sensitivity of our method to the correct

estimation of angles in noisy regions.

III. RELATED APPROACHES IN CS

The method that we propose is inspired by image denoising

and inpainting methods [8], [15] that align an estimate of the

normals with the reconstructed image. In the context of image

denoising, Lysaker, Osher and Tai in [8] first regularize the unit

gradient of the noisy image and then improve reconstruction

by fitting this gradient into the regularized vector. The resulting

method outperforms the ROF model [9] and similar higher

order PDE methods [16]. Dong et al. in [17] improve this

model by regularizing the angles instead of the vectors and

introducing an edge indicator as an extra weight. In image

inpainting, an equivalent two-step method is proposed by

Ballester et al. in [15], later improved with the divergence

free constraint by Tai in [18], [19] and adapted to image de-

composition and denoising in [14], [20]. In general, processing

the normals to improve reconstruction has also been used in

shape from shading [21] and mesh optimization [22]. In the

context of edge integration, a similar term fitting the angle

between the normal vector to the level curves of the image

and the normal vector of the evolving curve was proposed in
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[23]. However, this information has not been exploited before

for CS image recovery.

In the CS field, several methods have been proposed to

improve the quality of the ℓ1 recovery. For general signals,

greedy algorithms [24]–[26] and ℓp 0 < p < 1 minimizations

[27], [28] approximate the solution of the ℓ0 problem (1)

and improve its sparsity; but the resulting minimizations are

not convex, the algorithms are slow and suffer from local

minima. To improve the sparsity of ℓ1 recovery (5) without

increasing its complexity, Candès, Wakin and Boyd [29]

proposed an iterative process solving a weighted ℓ1 problem at

each iteration. The weights are defined inversely proportional

to the value of the recovered signal in the previous iterate,

approximating the behaviour of the ℓ0 norm and promoting

sparser signal recovery. The resulting method efficiently solves

a convex problem at each iteration, experimentally improves

signal recovery and has been adopted for image processing

with TV regularization in the edge-guided CS of Guo and

Yin [10]. Edge-guided CS incorporates information about the

magnitude of the gradient in the recovery process and it is

therefore related to our method. However, we propose an

additive method more robust to noise and exploit both the

magnitude and directional information of the gradients.

CS recovery of images has also been improved modify-

ing the data term ‖Au − f‖22 inspired by image denoising

techniques. In particular, the Bregman iterations proposed by

Osher et al. in [30] for image denoising and deblurring have

been applied to CS in [31]. He et al. in [31] use Bregman

iterations to improve CS image recovery for phantom MRI

data, but fail in the recovery of real images due to the

additional difficulties of reconstructing a signal from partial

measurements compared to the original denoising problem.

For the particular case of TV regularisation, the first Bregman

iteration has a geometric interpretation similar to the second

step of our recovery method. However, Bregman iterations do

not include a regularization step for the normals and therefore

fail for noisy and real MRI signals.

In the following, we summarize each of these to methods

and clarify their relationship with our technique.

A. Edge-guided CS

Edge-guided CS [10] improves recovery of MRI images

by exploiting edge information with an iterative process that

weights TV with an edge detector associated to the image

recovered in the previous iteration. The key idea is that edges

correspond to locations where |∇u| is large, TV corresponds

to the ℓ1 norm of the norm of the gradient and therefore

an inverse edge detector can be used to re-weight TV and

approximate the ℓ0 norm in a similar fashion to the re-

weighted ℓ1 of Candès, Wakin and Boyd [29] for general

signals. The method starts with the standard CS solution (5)

to obtain a first estimate of the image u1 and its edges. It then

defines the weights w1 = g(|∇u1|) inversely proportional to

|∇u1|) in order to recover an image with sparser edges at the

second iteration by solving the re-weighted TV problem. The

process is iterated, leading to the following two step algorithm:
{

uk+1 = argminu Jwk
(u) + α

2 ‖Au− f‖22
wk+1 = g(|∇uk+1|)

(13)

There is no stopping criterion or guarantee of convergence

for this iterative process and usually, after a few iterations

the reconstruction does not improve or even degrades. In fact,

the multiplicative model of edge-guided CS is very sensitive

to false edge detection. In particular, if an edge is detected

in a wrong location, the weight associated to it on the next

iteration will encourage an edge on this location and CS

recovery will degrade with any new iterations. The iterative

re-weighting process is designed to improve sparsity of the

signal and recovery of piecewise constant functions, but it

fails in the recovery of smooth regions in images. Compared

to our method, edge-guided CS incorporates only information

about the magnitude of ∇u, while we also use its directional

information; it does not include a regularization step for the

detected edges and it is specially designed for piecewise

constant images.

B. Bregman methods

We also share similarities with Bregman methods, whose

original idea was to restore normals and image intensity

simultaneously. However, Bregman methods cannot recover

normals as accurately and robustly as our method because they

do not regularize the estimated normals. Our improvement is

at the price of loosing global convexity.

Bregman iterations substitute the minimization problem (5)

for a sequence of convex optimizations substituting J(u) for

its Bregman distance to the previous iterate. In particular, the

first Bregman iteration has a geometric interpretation closely

related to our method. Starting with u = 0, v = 0, the Bregman

iterative process can be summarized as
{

uk+1 = argminu J(u) +
α
2 ‖f + vk −Au‖22

vk+1 = vk + f −Auk+1
(14)

While their first iteration corresponds to the standard CS model

(5), their second iteration implicitly exploits the normals of

the image recovered at iteration one to improve the recovery.

For simplicity, here we show the connection to our method

with the continuous formulation, where A(·) is the continuous

functional operator of CS and A∗ its adjoint. For the first

iteration u = 0, v = 0 and the method solves

u1 = arg min
u∈Rn

∫

Ω

|∇u|+
α

2
‖f −A(u)‖22, (15)

The optimality condition associated to (15) derived from its

the Euler-Lagrange equation is

div
∇u1

|∇u1|
= −αA∗(u1) (f −A(u1)) (16)

where n1 = ∇u1

|∇u1|
correspond to the normals of u1. At the

next iteration we can introduce a term < n1,∇u > aligning

the normals of the reconstructed signal with the estimate of

the normals from the previous iteration, that is

u2 = argmin
u

∫

Ω

|∇u|− < n1,∇u > +
α

2
‖f −A(u)‖22

(17)
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Integrating by parts and substituting divn1 in (16) we have

− < n1,∇u >=< divn1, u >= − < αA∗ (f −A(u1)) , u >=

−α < f −A(u1), A(u) >= −α < v1, A(u) >
(18)

with v1 = f −A(u1) as defined in (14). If we substitute (18)

in the minimization (17) and group together the terms with

A(u), we end up with the Bregman update rule

u2 =

∫

Ω

|∇u|+
α

2
‖f + v1 −A(u)‖22. (19)

For the rest of iterations the geometric interpretation of the

update is lost. Compared to Bregman iterations, our method

explicitly uses the normals in the recovery model for all

iterations, not only the second one, and it is not restricted

to TV regularization. Indeed, this geometric interpretation is

only possible for the TV term J(u), while our method can be

used with any sparsifying basis. We are also more robust to

noise thanks to the regularization step and, unlike the Bregman

iteration, experimentally improve the reconstruction model (5)

for both phantom and real MRI data. In addition, our method

extends to non local operators to exploit graph geometry and

recover fine details in textured images.

IV. EXTENSION TO NON LOCAL METHODS

Total variation regularization is designed to recover images

with sharp edges but, as other methods based on local gradi-

ents, it is not suited for textured images with fine structures.

In this section we extend our method to textured images using

both a non local TV regularization and a term aligning the

estimated non local normals with the non local gradients of

the reconstructed image.

A. Non local operators

Non local TV is a variational extension of the non local

means filter proposed by Buades, Coll and Morel for image

denoising [32]. Non local means exploits the repetition of pat-

terns in natural and textured images to reconstruct sharp edges

as well as fine meaningful structures. That principle is the

basis of non local regularization methods in imaging, which

outperform the classical methods by incorporating global

information in the regularization process. In [33] Gilboa and

Osher use graph theory to extended the classical TV to a non

local functional. In the discrete setting, Zhou and Schölkopf

[34] and Elmoataz et al. [35] use graph Laplacians to define

similar non local regularization operators. The resulting non

local methods have been applied to image denoising [33],

segmentation [36], [37], inpainting [38], deconvolution and

compressive sensing [39].

We adopt the discrete formulation of the continuous model

presented in [33]. In this non local framework we consider

the image domain as a graph G = (Ω, E); where Ω is the

set of nodes of the graph, one for each pixel in the image,

and E is the set of edges connecting the nodes. The edge

connecting nodes i and j is weighted with a positive symmetric

weighting function w(i, j) that represents the distance between

the two nodes in graph terms. Consequently, two pixels i and

j spatially far away in the image can be considered neighbours

in the graph and interact if w(i, j) > 0 (we write then i ∼ j).

For that reason, the resulting approach is considered non local.

Given an image u defined on the graph, the non local

gradient ∇Gu at node i is defined as the vector of all

directional derivatives associated to the neighbours of i, that

is

∇Gu (i, j) = (u(j)− u(i))
√

w(i, j) ∀j ∈ Ω. (20)

In the graph, vectors d = d(i, j) are therefore functions

defined in the domain Ω× Ω.

In this setting we define the standard L2 inner product between

functions as

< u, v >G=
∑

i∈Ω

u(i)v(i). (21)

For vectors, we define a dot product pixel-wise

(d · e)G(i) =
∑

j∼i

d(i, j)e(i, j) (22)

and an inner product on the graph

< d, e >G=
∑

i

(d · e)G(i) =
∑

i

∑

j∼i

d(i, j)e(i, j). (23)

In order to have an equivalent to the TV semi-norm, we

define a norm function on the graph | · |G. With the previous

definitions, the magnitude of a vector at node i is given by

|d|G(i) =
√

(d · d)G(i) =

√

∑

j∼i

d(i, j)2 (24)

The standard TV is then naturally extended to a non local

version as the ℓ1 norm of the graph norm | · |G associated to

the non local gradient, that is,

TVG (u) = JG (u) =
∑

i

|∇Gu|G(i) = ‖ |∇Gu|G ‖1. (25)

With the above inner products, the non local divergence of a

vector d is defined as the adjoint of the non local gradient,

that is

divG d (i) =
∑

j∼i

(d(i, j)− d(j, i))
√

w(i, j). (26)

With these definitions, if we consider only the immediate

pixels as neighbours and fix their weights to w(i, j) = 1,

then the non local TV reduces to the standard TV definition.

If we consider more general neighbours by defining a correct

weighting function like in [32], the non local operators in-

corporate global information and the standard regularization

process is improved. The weight function therefore has an

important impact in the performance of the non local regular-

izers. Inspired by [32], [33], given a reference image u0 we

compute weighting function w0(i, j) measuring the difference

of patches around each node as follows

w0(i, j) = exp−
‖P0(i)−P0(j)‖2

2h2 , (27)

where h is a scaling factor and P0(i) is a patch of u0 centred at

pixel i. This weighting function is designed to reduce Gaussian
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noise while preserving the textures of the image. The reference

image should be as close as possible to the true image in order

to incorporate valid information related to image structures

in the non local operators. For that reason, we initialize the

weighting function in the non local methods with the standard

CS solution (5) (on the following u0) and iteratively solve the

non local model and update the weights with the non local

solution. The basic non local CS recovery is then

{

∇Gk
←− estimate non local operators from uk−1

uk = argminu JGk
(u) + α

2 ‖Au− f‖22.
(28)

B. Proposed non local method

Symmetrizing our local technique, we propose a two step

iterative method for CS recovery. In the first step of each

iteration, we estimate the non local normals nG associated

to the level set curves of the image in the graph. Once the

non local normals are estimated, we find an image that fits

the non local normals and the CS measurements and iterate

the process.

In the local setting, the normal vectors associated to the level

set curves of an image u are defined as n = ∇u
|∇u| . We extend

that definition to our non local framework and exploit the

geometry of the image in the graph to improve CS recovery.

In particular, we derive the equivalent non local normals from

the non local gradient ∇Gu by normalizing its components

node-wise, i.e. all the components associated to node i are

normalized by |∇Gu|G(i).

Given an estimate of the non local normals nG, we can

include a term in the CS reconstruction (28) maximizing the

alignment of the reconstructed signal with the normals. The

resulting minimization is

u = argmin
u

JG(u)− γ < nG,∇Gu >G +
α

2
‖Au− f‖22

(29)

Exploiting the adjoint relation of the non local divergence and

gradient < nG,∇Gu >G= − < divGnG, u >G, we have

u = argmin
u

JG(u) + γ < divG n, u >G +
α

2
‖Au− f‖22.

(30)

As before, the process can be iterated and we obtain the

following analogue to the previous two step procedure:







∇Gk
←− estimate non local operators from uk−1

divGknGk
= argminv JGk

(v) + µ
2 ‖v − v̂‖2

uk = argminu JGk
(u) + γ < divGknGk

, u >G +α
2 ‖Au− f‖22

with v̂ = (1− g(|∇Guk−1|G)) divG
∇Guk−1

|∇Guk−1|
.

The third step of our non local method is naturally derived

from our local version and the geometric interpretation of the

non local operators. However, the regularization step of the

non local normals requires careful consideration, as we explain

next.

C. Estimation of non local normals

The non local gradient operator, and consequently the non

local normals, do not correspond to the discretization of

standard vector fields in a grid. Indeed, ∇Gu has a different

number of components for each pixel and the associated

direction to ∇Gu(i, j) depend on the relative position of the

node i and its neighbour j. Therefore, we cannot use standard

techniques to regularize these vector fields and we prefer to

regularize the term divG n posteriorly used in the recovery

algorithm. Compared to the regularization of the non local

normals, we loose directional information, but the resulting

method is simpler and faster.

Assume that we are given an estimate of the reconstructed

signal uk−1. We first compute a noisy estimate of the non

local normals and their divergence pixel-wise and we then

denoise it with standard denoising methods. In particular, we

estimate the non local normals as

n̂G =
∇Guk−1

|∇Guk−1|
(31)

and compute a rough estimate of the non local divergence as

v̂ = (1− g(|∇Guk−1|G)) divG n̂G, (32)

where g(x) is a function designed to verify g ≈ 0 when x
is large and g ≈ 1 when x is small. In fact, g(|∇Guk−1|G)
acts as the equivalent edge detector presented in Section II-A

and is defined with the same expression (9). As in the local

case, we adopt the statistical interpretation of the edge detector

g (|∇Gu|G) presented in [12], where the edges are considered

as outliers in the normal distribution of |∇Gu|G associated

to homogeneous regions. Since the edge detector g is derived

from error norms robust to outliers, weighting our estimate

of the normals with the function 1 − g(|∇Guk−1|G) in (32)

is equivalent to soft-thresholding the non local normals when

we suspect that the variations in uk−1 are due to noise inside

homogeneous regions.

Finally, we regularize v̂ to obtain a smoother estimate of the

non local divergence, which will be used in the second step

of our iterative method. There are two natural approaches for

this regularization: we can ignore the non local nature of the

divergence and gradient operators and use any local model to

regularize v̂, for instance the standard ROF [9] of equation

(33); or use the non local neighbours to denoise v̂ with (34),

that is, use the natural distance and neighbouring relations

inherent to de definition of v̂ to denoise it.

divGknGk
= argmin

v
J (v) +

µ

2
‖v − v̂‖2 (33)

divGknGk
= argmin

v
JG (v) +

µ

2
‖v − v̂‖2 (34)

In our experiments we obtained slightly better results with the

first approach.

V. MINIMIZATION PROBLEMS

In order to solve the minimization problems involved in

each step of our method, we make use of recent advances in

convex minimization [40], [41] and apply variable splitting

and augmented Lagragians [42] to obtain efficient and easy-

to-code algorithms. To simplify notation on this section we
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remove the sub-indexes in uk and nk indicating the iterations

of our two step procedure.

The minimizations associated to each of the local steps in-

volve both a TV and a quadratic term similar to the ROF model

[9]. Consequently, the resulting algorithms apply a similar

strategy to overcome the non-linearity and non-differentiability

of TV than the multitude of algorithms proposed for ROF.

In the original ROF paper [9], the authors derive the Euler-

Lagrange PDE of the model and propose a time marching

method to solve it. The resulting method is slow due to the

constraint on the time step associated to its stability conditions.

In the last years more efficient methods have been proposed

for the ROF model due to its extensive use in imaging. A

popular class of methods is based on the dual formulations of

the ROF model, e.g. Chambolle’s projection method [43] or

primal-dual approaches [44]–[46]. Other options are based on

variable-splitting and equality constrained optimization; which

is solved by quadratic-penalties [40], Bregman iterations [41],

[47] or the equivalent augmented Lagrangian method [48]. In

the case of CS, dual solvers are not usually adopted because

they suffer from matrices A that are large-scale and dense.

In particular for matrices corresponding to transforms with

fast implementations (like the Fourier transform of this paper),

splitting methods are a good choice because they can easily

exploit fast transforms to compute Au and ATu [40], [41].

The algorithms that we propose fall in this last category.

We rewrite the different problems as constraint minimizations

and use augmented Lagrangians to solve them. The resulting

Lagrangians are minimized with respect to each variable

independently and the multipliers are then updated in a cyclic

way. Since all the minimizations can be analytically solved, the

resulting algorithms are extremely fast and easy to implement.

Similarly, the minimization algorithms that we propose for

the non local method is closely related to the minimization of

the non local ROF model proposed in [33], which was origi-

nally solved with a time consuming time marching algorithm.

The non local CS problem has been solved with a combination

of forward-backward splitting and Bregman iteration in [39],

but for uniformity of the paper we use the same combination

of splitting and augmented Lagrangians than in the local case

to solve the non local problem (31).

A. Minimizations of local normal-guided CS

We discretize the image domain Ω ⊂ R
2 with a regular

grid of size n = nx × ny . In Ω we consider images as scalar

functions with u(i) ∈ R and their gradients as vector-valued

functions with ∇u(i) ∈ R
2. We use forward differences to

compute the discrete gradients and backward differences for

the divergence in order to preserve the adjoint relationship

div = −∇∗ in the discrete setting.

The discrete TV semi-norm is then given by

J(u) =
∑

i

|∇u(i)| =
∑

i

√

∇xu(i)2 +∇yu(i)2 (35)

where we denote the pixel-wise norm of vectors as |d|(i) =
√

d2x(i) + d2y(i). Our discretized TV is then the ℓ1 norm of

the function computing the pixel-wise norm of the gradient,

i.e J (u) = ‖ |∇u| ‖1. For vector fields d = (dx, dy), we

discretize the TV seminorm as follows

J(dx, dy) =
∑

i

√

|∇dx(i)|
2
+ |∇dy(i)|

2
. (36)

In that case we observe that it corresponds to the ℓ1 norm

of the function computing the pixel-wise norm of the vector

of combined gradients, i.e J (dx, dy) = ‖ | (∇dx,∇dy) | ‖1.

With that observation it is easy then to extend it to a weighted

TV norm as Jw(dx, dy) = ‖ |W (∇dx,∇dy) | ‖1, where W
is the diagonal matrix of weights.

In the vector notation used in CS, we can efficiently com-

pute the spatial derivatives multiplying the discrete functions

arranged as a column vector with the sparse finite difference

matrices ∇xu = Dxu, ∇yu = Dyu. Similarly, the discretiza-

tion of the L2 inner product in Ω corresponds to the usual dot

product of vectors, i.e. < v, u >= vTu.

1) Estimate u from CS measurements and normals: To

reconstruct the image we need to solve the following convex

minimization problem:

min
u
‖ |∇u| ‖1+γvTu+

α

2
‖Au−f‖22 with v = div n. (37)

We propose an iterative algorithm to solve (37) based on

splitting and constraint minimization techniques. The main

idea is to split the original problem into sub-optimization prob-

lems which are well-known and easy to solve, and combine

them together using an augmented Lagrangian. The proposed

algorithm is guaranteed to converge thanks to the convexity

of (37).

Let us consider the following constrained minimization

problem, which is equivalent to (11):

min
u,d

= ‖ |d| ‖1 + vTu+
α

2
‖Au− f‖22 s.t. d = ∇u (38)

The proposed splitting approach makes the original problem

(11) easier to solve because (38) decouples the ℓ1 norm and

the gradient operator ∇.

Next, we reformulate this constrained minimization problem

as an unconstrained optimization task. This can be done with

an augmented Lagrangian approach, which translates the con-

straints into pairs of Lagrangian multiplier and penalty terms.

Let us define the augmented Lagrangian energy associated to

(38):

L1 (u,d,λ) = ‖ |d| ‖1 + vTu+
α

2
‖Au− f‖22 + λT

x (dx −Dxu)

+ λT
y (dy −Dyu) +

r

2
‖dx −Dxu‖

2
2 +

r

2
‖dy −Dyu‖

2
2 (39)

where λ = (λx, λy) are the Lagrange multipliers and r
is a positive constant. The constraint minimization problem

(38) reduces to finding the saddle-point of the augmented

Lagrangian energy L1. The solution to the saddle point prob-

lem (39) can be approximated iteratively by the following

algorithm: initialize the variables and Lagrange multipliers

to zero; at each iteration find an approximate minimizer of

L1 (u, d, λk−1) with respect to the variables u,d and

update the Lagrange multipliers with the residuals associated

to the constraints; stop the process when u remains fix. As

the Lagrangian L1 is convex with respect to u,d, we can find
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a minimizer by iteratively alternating the minimization with

respect to each variable. The resulting method is equivalent to

the alternating direction method of multipliers. The iterative

method is summarized in Algorithm 1

Algorithm 1 Augmented Lagrangian method to solve (38),

estimating u from CS measurements and normal matching

1: Initialize u,d,λ
2: For each iteration l = 1, 2 . . ., find an approximate

minimizer of L1 with respect to variables (u,d) with fixed

Lagrange multipliers λl:

u
l =argmin

u
L1(u,d

l−1
,λ

l) solved in Fourier domain (40)

d
l =argmin

d

L1(u
l
,d,λ

l) solved by shrinkage (41)

3: Update Lagrange multipliers

λ
l+1
x =λ

l
x + r(dlx −Dxu

l)

λ
l+1
y =λ

l
y + r(dly −Dyu

l)

4: Stop the iterative process when
‖ul−ul−1‖

‖ul‖
< ǫ.

The next step is to determine the solutions of the two

sub-minimization problems (40),(41), which can be computed

efficiently.

The sub-minimization problem (40) can be written as fol-

lows:

min
u

vTu+
α

2
‖Au− f‖22 +

r

2
‖dx +

1

r
λx −Dxu‖

2
2+

r

2
‖dy +

1

r
λy −Dyu− ‖

2
2. (42)

We see that it reduces to a quadratic minimization, with

positive semi-definite Hessian H = αFTRTRF +r(DT
xDx+

DT
y Dy). The optimality conditions read

Hu = b with b = αFTRf+DT
x (rdx + λx)+DT

y (rdy + λy) .

Actually as R is a row selector, RTR is a sparse diagonal

matrix with non-zero entries on the selected Fourier coeffi-

cients and we cannot assure the invertibility of H . We find

an approximate solution defining the positive definite matrix

Hǫ = H + ǫIn with small ǫ > 0 and solving the approximate

system

Hǫu = b+ ǫû, (43)

where we use the value of u from the previous augmented

Lagrangian iteration to estimate û = ul−1. In the result-

ing system, Hǫ is block circulant and we can use the

Fourier transform to decompose it as Hǫ = FTCF , with

C = αRTR + rF
(

DT
xDx + DT

y Dy

)

FT + ǫIn a

diagonal matrix. Consequently, the system (43) can easily be

solved in the Fourier domain inverting the diagonal matrix

C. In practice we use the FFT transform instead of doing

the matrix multiplications with F and FT , which gives us a

solution of complexity O(n log n).
The minimization problem w.r.t. d corresponds to an ℓ1 -

ℓ2 norm and can be solved by shrinkage. If we define z =
1
r
λ−∇u, Equation (41) is equivalent to

min
dx,dy

∑

i

|d(i)|+
r

2

∑

i

|d(i)− z(i)|2. (44)

The minimization of (44) can be done pixel-wise and the

solution is given by the shrinkage operator S (z, 1/r).

d(i) = max
{

|z(i)| −
1

r
, 0
} z(i)

|z(i)|
i = 1, . . . , n (45)

2) Regularization of normals: To regularize the normals at

each iteration we have to solve

min
|n|≤1

‖ |W (∇nx,∇ny) | ‖1 +
µ

2
‖nx − n̂x‖

2
2 +

µ

2
‖ny − n̂y‖

2
2,

where W is a diagonal matrix with weights associated to

weighted TV seminorm. We use the same combination of

splitting and augmented Lagrangian techniques than in Section

V-A1. To avoid repetition, on the following we will simply

write the form of the constraint minimization problem, the

augmented Lagrangian and each of the subminimizations for

a self-contained paper.

Equivalent constraint minimization is

min
n=m,|m|≤1

d=∇nx,e=∇ny

‖ |W (d, e) | ‖1 +
µ

2
‖nx − n̂x‖

2
2 +

µ

2
‖ny − n̂y‖

2
2,

with associated augmented Lagrangian

L2 (n,m,d, e,λ,ν, ξ) = ‖ |W (d, e) | ‖1 +
µ

2
‖n− n̂‖22+

λT
x (dx −Dxnx) + λT

y (dy −Dynx) +
rd
2
‖dx −Dxnx‖

2
2+

rd
2
‖dy −Dyny‖

2
2 + νTx (ex −Dxny) + νTy (ey −Dyny)

+
re
2
‖ex −Dxny‖

2
2 +

re
2
‖ey −Dyny‖

2
2 + ξTx (nx −mx)

+
rm
2
‖nx −mx‖

2
2 + ξTy (ny −my) +

rm
2
‖ny −my‖

2
2.

The resulting minimization method is presented in Algo-

rithm 2.

Algorithm 2 Augmented Lagrangian method to regularize

normal vectors

1: Initialize n,m,d, e,λ,ν, ξ
2: For each iteration l = 1, 2 . . ., find an approximate min-

imizer of L2 with respect to variables (nx, ny,m,d, e)
with fixed Lagrange multipliers λl,νl, ξl:

n
l = argmin

n

L2(n,m
l−1

,d
l−1

, e
l−1

,λ
l−1

,ν
l−1

, ξ
l−1)

m
l = argmin

m

L(nl
,m,d

l−1
, e

l−1
,λ

l−1
,ν

l−1
, ξ

l−1)

d
l = argmin

d

L(nl
,m

l
,d, e

l−1
,λ

l−1
,ν

l−1
, ξ

l−1)

e
l = argmin

e

L(nl
,m

l
,d

l
,e,λ

l−1
,ν

l−1
, ξ

l−1)

3: Update Lagrange multipliers

λ
l
x =λ

l−1
x + rd(d

l
x −Dxn

l
x)

λ
l
y =λ

l−1
y + rr(d

l
y −Dyn

l
x)

ν
l
x =ν

l−1
x + re(e

l
x −Dxn

l
y)

ν
l
y =ν

l−1
y + re(e

l
y −Dyn

l
y)

ξ
l =ξ

l−1 + rm(n −m)

4: Stop the iterative process when
‖nl−n

l−1‖

‖nl‖
< ǫ.
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The sub-minimization problem with respect to nx can be

written as follows:

min
nx

µ

2
‖nx − n̂x‖

2
2 + ξTx (nx −mx) +

rm
2
‖nx −mx‖

2
2

+
r

2
‖dx +

1

rd
λx −Dxnx‖

2
2 +

rd
2
‖dy +

1

rd
λy −Dynx − ‖

2
2

We see that it reduces to a quadratic minimization, with posi-

tive definite Hessian H = (µ+ rm)In+ rdD
T
xDx+ rdD

T
y Dy.

The optimality conditions read

Hnx = µn̂x+rmmx+DT
x (rddx + λx)+DT

y (rddy + λy)−ξx.

As before, the resulting H is block circulant and we can use

the Fourier transform to decompose it as H = FTCF ,

with C = (µ + rm)In + rdF
(

DT
xDx + DT

y Dy

)

FT

a diagonal matrix. We solve the linear system in the Fourier

domain efficiently with the FFT transform. Observe that the

minimization problem with respect to ny has the same form

and can be solved with the same technique.

The minimization problem w.r.t. d corresponds to the ℓ1 -

ℓ2 problem

min
dx,dy

∑

i

|w(i)d(i)|+
rd
2

∑

i

|d(i)− z(i)|2, (46)

where z = 1
rd
λ − ∇nx. As w(i) > 0, this minimization is

equivalent to

min
dx,dy

∑

i

|d(i)|+
rd

2w(i)

∑

i

|d(i)− z(i)|2. (47)

A similar problem has already been solved in Section V-A1

with the shrinkage operator, which is now adapted to include

the weights w. The solution is then

d(i) = max
{

|z(i)| −
w(i)

r
, 0
} z(i)

|z(i)|
i = 1, . . . , n (48)

Due to the symmetry of the problems, the same minimization

technique is used for e.

Finally, the minimization problem w.r.t. m reads

min
|m(i)|=1

rm
2

∑

i

|m(i)− z(i)|2, with z = n+
1

rm
ξ (49)

and can be solved pixel-wise. For each pixel we have the

following 2-D problem: given a point in space with coordinates

z(i) ∈ R
2 we want to find the point in the unit ball minimizing

its distance to z(i). It is clear that the solution corresponds

to the projection of the unconstrained minimizer z(i) into the

unit ball, i.e

m(i) =

{

z(i) |z(i)| ≤ 1
z(i)
|z(i)| otherwise

. (50)

B. Minimizations of non local normal-guided CS

In the discrete setting, the NL gradient is a linear operator.

Arranging the image as a column vectors, it can be computed

as a sparse matrix multiplication ∇Gu = Du. The matrix

D ∈ R
N×n (N = |E| indicates the number of nodes in the

graph) is derived from the weights associated to the edges

and is usually sparse. Consequently d = Du ∈ R
N is also a

vector column, with as many components associated to node

i as neighbours this node has. With the vector notation, the

inner product of two vectors fields d, e defined in G is then

computed as < d, e >G= dTe. As in the continuous setting,

the NL divergence divG is derived from its adjoint relation

with the NL gradient ∇∗
G = − divG and, consequently, in

matrix notation it corresponds to divG d = −DTd.

Since the minimization associated to (33) has already been

explained for the vectorial case, in the next paragraphs we

focus on the minimizations associated to non local operators

(31) and (34).

1) Minimization associated to CS reconstruction matching

non local normals: With the previous notation, the minimiza-

tion problem (31) reads

u = argmin
u
‖ |Du|G ‖1 + γvTu+

α

2
‖Au− f‖22 (51)

with v = divG nG. This minimization is also reformulated as a

constraint minimization and solved efficiently with augmented

Lagrangians. Compared to the local minimizations, in the

splitting step we require an additional variable s to have effi-

cient and analytic solutions for the posterior subminimization

problems. The resulting constraint minimization formulation

of (51) is

min
u,s,d

‖ |d|G ‖1+vTu+
α

2
‖As−f‖22 s.t.

{

d = Du
s = u

(52)

The Lagrangian in that case reads

L3 (u, s,d,λd, λu) = ‖ |d|G ‖1 + vTu+
α

2
‖As− f‖2

+λd
T (d−Du) +

rd
2
‖d−Du‖2 + λT

u (u− s) +
ru
2
‖u− s‖2.

The resulting minimization method is presented in Algo-

rithm 3, where we have also hinted the solution to each of the

subminimization problems.

Algorithm 3 Augmented Lagrangian method for CS recon-

struction matching normals by (52)

1: Initialize u, s,d,λd, λu

2: For each iteration l = 1, 2 . . ., find an approximate
minimizer of L3 with respect to variables (u, s,d) with

fixed Lagrange multipliers λd
l, λl

u:

u =argmin
u

L3(u, s
l−1

,d
l−1

,λd
l−1

, λ
l−1
u ) conjugate gradients

s =argmin
s

L3(u
l
, s,d

l−1
,λd

l−1
, λ

l−1
u ) solved in Fourier domain

d =argmin
d

L3(u
l
, s

l
,d,λd

l−1
, λ

l−1
u ) solved by non local shrinkage

3: Update Lagrange multipliers

λd

l =λd

l−1 + rd(d
l −Du

l)

λ
l
u =λ

l−1
u + ru(u

l − s
l)

4: Stop the iterative process when
‖ul−ul−1‖

‖ul‖
< ǫ.

The minimization w.r.t u corresponds to the following

quadratic positive definite problem

min
u

vTu+λd
T (d−Du)+

rd
2
‖d−Du‖2+λT

u (u− s)+
ru
2
‖u−s‖2.
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We find its minimizer solving its optimality conditions, which

provide the following system of linear equations

Kuu = −γv − λu + rus+DT (λd + rdd) . (53)

Matrix Ku = ruI+rdD
TD is sparse, symmetric and positive

definite and we have efficient algorithms to invert it. We

choose an iterative method to invert the matrix, initializing it

from the previous solution to the minimization problem ul−1.

In particular we use the conjugate gradient method to exploit

the symmetry and positive definition of K , with precondition-

ing matrix given by its incomplete Cholesky factorization. The

resulting method is very fast, converging to enough precision

with 2− 3 iterations of the conjugate gradient method.

The minimization w.r.t s is also a quadratic problem which

can be efficiently solved, in that case in the Fourier domain.

The problem reads

min
s

α

2
‖As− f‖2 + λT

u (u− s) +
ru
2
‖u− s‖2. (54)

The optimality conditions in that case are

(

αATA+ ruIn
)

s = αAT f + λu + ruu. (55)

As before, the matrix Ks = αATA + ruIn = FTCF is

block-circulant and the resulting system is diagonal in the

Fourier domain with C = RTR + ruIn. Therefore (55) can

be efficiently solved with the FFT.

The introduction of the additional splitting variable s = u
allows us to split the inversion of the full matrix αATA +
rdD

TD, resulting of the use of a single variable for s
and u, into the inversion of two matrices Ku and Ks. The

sparse matrix Ku can be efficiently solved with a sparse

incomplete Cholesky factorization, while the full matrix Ks

is easily inverted in the Fourier domain. The original matrix

αATA + rdD
TD, on the other hand, does not present an

evident sparsity pattern or a direct decomposition involving

fast transforms.

The minimization with respect to d is equivalent to

min
d

= ‖ |d|G ‖1+
rd
2
‖d−z‖2 with z = Du−

λd

rd
(56)

As in the local case, this minimization is decoupled for each

pixel i as follows

min
d(i,j) j∼i

=

√

∑

j∼i

d2(i, j)+
∑

j∼i

rd
2
(d(i, j)− z(i, j))

2
(57)

and can be solved by a straight-forward extension of the

shrinkage operator to the graph. That is, for each node

neighbour to i the solution is given by

d
⋆(i, j) = max

{

|z|G(i)−
1

rd
, 0
} z(i, j)

|z|G(i)
. (58)

2) Minimization associated to the regularization of nor-

mals: With the previous notation, the minimization problem

(34) reads

v = argmin
v
‖ |Dv|G ‖1 +

µ

2
‖v − v̂‖22 (59)

As in the local case, we decouple the ℓ1 and ℓ2 problems

defining an additional variable d = Du and rewrite (59) as

the following constraint minimization problem

min
v,d

= ‖ |d|G ‖1 +
µ

2
‖v − v̂‖22 s.t. d = Du (60)

with associated augmented Lagrangian

L4 (u,d,λd) = ‖ |d|G ‖1 +
µ

2
‖v − v̂‖22

+λd
T (d −Dv) +

rd
2
‖d−Dv‖22. (61)

To minimize the Lagrangian L3 with respect to u,d, we

alternate the direction of minimization with respect to each

variable and proceed as indicated by Algorithm 3, where we

have also hinted the solution to each of the subminimization

problems.

Algorithm 4 Augmented Lagrangian method to regularize non

local divergence of normals from (60)

1: Initialize u,d,λd

2: For each iteration l = 1, 2 . . ., find an approximate
minimizer of L4 with respect to variables (u,d) with fixed

Lagrange multipliers λd
l:

v = argmin
v

L4(v,d
l−1

,λd

l−1) solved with conjugate gradient

d = argmin
d

L4(v
l
,d,λd

l−1) solved by non local shrinkage

3: Update Lagrange multipliers

λd

l =λd

l−1 + rd(d
l −Du

l)

4: Stop the iterative process when
‖vl−vl−1‖

‖vl‖
< ǫ.

The minimization w.r.t v corresponds to the following

quadratic positive definite problem

min
v

µ

2
‖v − v̂‖22 + λd

T (d−Dv) +
rd
2
‖d−Dv‖22. (62)

We find its minimizer by solving its optimality conditions,

which provide the following system of linear equations

(

µI + rdD
TD

)

v = µv̂ +DT (λd + rdd) . (63)

We find the same form of matrix K = µI + rdD
TD than in

(53) and, therefore, we solve with linear system (53) with the

same conjugate gradient method.

The minimization with respect to d is equivalent to (56)

changing u for v, in particular we have

min
d

= ‖ |d|G ‖1+
rd
2
‖d−z‖2 with z = Du−

λd

rd
(64)

and is solved with the same adaptation of the shrinkage

operator to the graph. For each node neighbour to i, the

solution is given by

d⋆(i, j) = max
{

|z|G(i)−
1

rd
, 0
} z(i, j)

|z|G(i)
. (65)
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VI. NUMERICAL RESULTS

In this section we present some of the numerical results

obtained with our method and compare it to other techniques.

We compare the local version of our method to standard CS

recovery algorithm (5) and to the edge-guided CS proposed in

[10]. The non local version of our model is compared to the

non local CS recovery (28), which does not take into account

the geometric information of the non local gradients into the

recovery process. For the non local case, in our model we have

regularized the divergence of the normal with the standard

ROF model. A technical report with higher resolution images

and code are available online in the authors webpage.

We use partial Fourier measurements for our reconstruction

and perform radial sampling on R with different number of

measurements in relation to the size of the signal (we specify

it with the ratio m
n

). For a fair comparison, we have used the

same robust edge detector (9) for the edge-guided CS and our

method and we have implemented the minimizations with the

same splitting and augmented Lagrangian techniques for all

the methods. The parameter α, which is related to the noise

present in the CS measurements, has been manually tuned

to obtain best reconstruction with the standard CS recovery

models (5) and (28) and used with the other methods. The

other parameters of our model γ, µ have also been chosen

manually to obtain good CS recovery in terms of SNR. We

have observed that γ (which controls the weight given to

the alignment of the normals) takes similar values for the

same kind of images (textured or brain IRM images) and

remains stable for different sparsity and noise levels. On the

other hand, the parameter µ controlling the smoothness of

the estimated normals decreases when the number of mea-

surements decreases or the noise level increases because the

partial reconstructions and the estimated normals are noisier

and require more regularization.

In a first set of experiments we test our method with MRI

images, first with the Shepp-Logan phantom and then with a

real MRI brain image.

Table I show the quantitative results of the different CS

reconstruction methods for MRI images. Our method always

outperforms the standard TV reconstruction and the edge-

guided CS technique. In the experiments, both the edge-

guided CS and our proposed method are initialized with the

TV solution and, therefore, always improve its reconstruction.

Comparing the gains of these two methods with respect to

the TV reconstruction, we observe that our method more

than doubles the gain of edge-guided CS. The Figures 1(e)-3

show qualitatively the improvement of our method over TV

reconstruction. In the case of the phantom we are able to better

reconstruct the phantom with fewer measurements both in the

local and non local case, while with a real MRI image our

reconstruction is able to capture better non-dominant edges

of the white-grey matter interface. In Figure 3 we explicitly

compare the normals associated to the TV solution and the

regularized normals of our local reconstruction for the real

brain MRI image. We observe that our method is able to better

reconstruct the normals, and therefore the shapes, of the image.

Performance improves with non local regularization, with our

method outperforming the non local CS reconstruction for

all the experiments. As expected, the gain of our method

compared to TV is lower than in the local approach because

we loose part of the directional information of the normals

by denoising their divergence instead of the vector fields.

For each image we also added different levels of Gaussian

Image m
n

local CS non-local CS

TV edge CS normal CS TV normal CS

Phantom 8% 7.33 dB 7.37 dB 12.78 dB 28.28 dB 33.13 dB
Phantom 12% 38.60 dB 45.33 dB 56.14 dB 61.84 dB 74.57 dB

Brain 12% 17.14 dB 17.38 dB 17.71 dB 18.96 dB 20.39 dB

Brain 20% 22.16 dB 22.35 dB 23.82 dB 23.13 dB 24.12 dB

TABLE I: Comparison of CS reconstruction for MRI images.

The first three columns show the results with the standard

TV as regularization: TV stands for model of Equation (5),

edge CS for (13) and normal CS for our method. The last

two columns correspond to the definition of NL TV: NL-TV

corresponds to standard non local CS recovery (28) and NL

normal CS for the proposed non local method.

noise (σn) to the signal to investigate the robustness of our

method to noise. Results are shown in table II. We observe

that we are more robust to noise than edge-guided CS (which

in fact does not improve the TV reconstruction for noise levels

σn = 15%, σn = 10%) thanks to regularization step on the

estimation of the normals. As before, non local regularization

improves CS reconstruction, we observe that our non local

method outperforms again the non local TV and is also robust

to noise.

Image noise local CS non-local CS
m
n

= 12% σn TV edge CS normal CS TV normal CS

5% 11.90 dB 11.91 dB 12.90 dB 17.92 dB 18.36 dB

Phantom 10% 8.37 dB 8.38 dB 9.44 dB 12.15 dB 13.03 dB

15% 6.59 dB 6.59 dB 7.28 dB 10.09 dB 10.27 dB

5% 13.37 dB 13.36 dB 13.78 dB 14.86 dB 15.00 dB

Brain 10% 10.88 dB 10.88 dB 11.57 dB 12.31 dB 12.50 dB
15% 9.89 dB 9.89 dB 10.48 dB 10.94 dB 11.19 dB

TABLE II: Comparison of CS reconstruction for noisy MRI

images with 12% of samples and different levels σn of

Gaussian noise. The first three columns show the results with

standard TV as regularization: TV stands for the model of

Equation (5), edge CS for (13) and normal CS for our method.

The last two columns correspond to the definition of NL TV:

NL-TV corresponds the standard non local CS recovery (28)

and NL normal CS for the proposed non local method.

Our next experiment is performed with two synthetic images

in order to understand the properties of the local and non-

local versions of our algorithm. The first step in our iter-

ative method is designed to preserve the discontinuities in

the level set normals of the reconstructed image, while the

second step introduces this geometrical information in the CS

reconstruction algorithm. This property is specially interesting

for the recovery of images with geometrical structures like

ridges or valleys, as shown in Figure 4. We observe that the

proposed local method is able to recover ridges and valleys

to certain extent and outperforms TV reconstruction in this

kind of structures; but it is not able to capture the repetitive
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(a) Original image (b) Proposed local technique

Fig. 3: Zoom on reconstructed brain MRI image from 12%

of measurements in Fourier domain. We superpose the recon-

structed signals with the normals associated to their level sets

for the standard TV solution (left) and for the local version of

our method (right). Our method is able to better reconstruct

the normals and shapes of the image.

nature of the image like the proposed non-local version of our

method.

In a third set of experiments, we tested our method with

natural images containing textures, where edge detection by

itself is a difficult task and the images can not be considered

piecewise constant. With these images, the local regularization

looses all texture information, while the non-local approaches

can recover repetitive patterns and better exploit the geomet-

rical information of the image. Results with our method are

presented in table III, with some of the reconstructed images

shown in Figures 1-5 to qualitatively analyse the performance

of our method.

A quantitative comparison of the different methods with tex-

tured images is presented in table III. We observe that the

inclusion of an edge detector in edge-guided CS does not

improve the TV reconstruction because the partially recon-

structed images are not accurate enough to detect edges and

the weighted TV term of edge-guided CS encourages edges

in wrong positions. That effect is not observed in our method

because it is additive and not multiplicative and it exploits

the directional information of the regularized normals, which

can partially capture texture information better than an edge

detector. As a consequence, our local method always outper-

forms the TV reconstruction and edge-guided CS methods.

For the non local regularizations our method outperforms non

local TV, but the gain in some cases is negligible (fingerprint

and baboon images for a ratio of measurements m
n
= 12% or

20%). In fact, the non local methods require a good estimate

of the reconstruction to initialize the non local gradient and

divergence operators. Since our method requires both gradient

and divergence to estimate the non local normals and align

them with the reconstruction, we can only improve the non

local TV reconstruction when the initialization (in our case

we use the standard TV solution) has a minimum level of

accuracy. The fact that more measurements are required for

the fingerprint of baboon images is coherent with CS theory,

as these images have finer details and are less sparse than Lena

or Barbara in terms of total variation. In the reconstruction of

Lena in Figures 2(a),2(b), 2(d),2(e),2(f) we can qualitatively

observe the advantages of our method in comparison to local

and non-local TV reconstruction for textured images. In the

local case we avoid the staircase effect, which is clearly visible

in the TV reconstruction of Lena’s cheek. In the non local case,

we also capture better slowly varying textures changes, see for

instance the different shadows in Lena’s skin or hat. In both

cases this improvement is due to the regularization of the level

set normals of the image, which we exploit for CS recovery

with our two step procedure.

local CS non-local CS
m
n

image TV edge CS normal CS TV normal CS

Lena 14.53 dB 14.47 dB 14.86 dB 15.82 dB 16.79 dB

12% Barbara 13.35 dB 13.31 dB 13.59 dB 15.00 dB 15.52 dB
fingerprint 4.13 dB 4.11 dB 4.13 dB 5.97 dB 5.98 dB

baboon 7.40 dB 7.25 dB 7.40 dB 7.65 dB 7.65 dB

Lena 18.44 dB 18.36 dB 19.27 dB 19.95 dB 21.09 dB

20% Barbara 16.71 dB 16.62 dB 17.13 dB 18.37 dB 18.93 dB

fingerprint 5.70 dB 5.62 dB 5.70 dB 9.03 dB 9.07 dB
baboon 9.13 dB 8.91 dB 9.14 dB 9.63 dB 9.74 dB

Lena 25.39 dB 25.30 dB 26.71 dB 26.39 dB 27.51 dB

39% Barbara 20.83 dB 20.68 dB 21.36 dB 24.68 dB 25.33 dB

fingerprint 12.02 dB 11.84 dB 12.03 dB 14.52 dB 14.56 dB

baboon 13.30 dB 13.14 dB 13.41 dB 13.44 dB 13.82 dB

TABLE III: Comparison of CS reconstruction for textured im-

ages. The first three columns show the results with the standard

TV regularization: TV stands for the model of Equation (5),

edge CS for (13) and normal CS for our method. The last

two columns correspond to the definition of NL TV: NL-TV

corresponds to the standard non local CS recovery (28) and

NL normal CS for the proposed non local method.

VII. CONCLUSIONS

We propose a normal guided compressed sensing recovery

method to recover images of higher qualities from fewer

measurements. The normal vectors of image level curves have

been exploited in denoising and inpainting algorithms, but

in compressed sensing this information is embedded in the

measurements and state-of-the-art recovery algorithms have

just neglected it. To extract this geometric information we

alternatively estimate the normals of the image level set

curves and then improve the compressed sensing reconstruc-

tion matching the estimated normals, the compressed sensing

measurements and the sparsity constraints. Although a we

cannot provide a rigorous proof of convergence for this two-

step procedure, experiments show a clear improvement over

standard compressive sensing algorithms due to the introduc-

tion of the geometric information of level contours into the

image recovery process. The proposed method is also extended

to non local operators to recover textured images and could

also be applied to improve existing non local denoising and

deblurring methods. Our numerical experiments show that the

proposed method improves image recovery in several ways:

it is able to recover sharp edges as well as smoothly varying

image regions, avoiding the staircase effect in the case of total

variation regularization; it is robust to noise and the sparsity

of the signal and relies on efficient minimization techniques

to obtain a fast and easy-to-code algorithm.
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(a) Shepp-Logan phantom (b) TV reconstruction, 7.33 dB (c) edgeCS, 7.37 dB

(d) non local TV reconstruction, 28.28 dB (e) proposed local method, 12.78 dB (f) proposed non local method, 31.26 dB

(g) Brain MRI (h) TV reconstruction, 17.14 dB (i) edgeCS reconstruction, 17.38 dB

(j) non local TV reconstruction, 18.96 dB (k) proposed local method, 18.56 dB (l) proposed non local method, 20.39 dB

Fig. 1: Columns 1-2: reconstruction of Shepp-Logan phantom from 8% of measurements in Fourier domain. Columns 3-4:

reconstruction of MRI brain image from 12% of measurements in Fourier domain.
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(a) Lena (b) TV reconstruction, 18.44 dB (c) edgeCS, 18.36 dB

(d) non local TV reconstruction, 19.45 dB (e) proposed local method, 19.27 dB (f) proposed non local method, 21.09 dB

Fig. 2: Reconstruction of Lena from 20% of measurements in Fourier domain.

(a) Original image (b) Our local method, 16.73 dB (c) Our non-local method, 30.47 dB

(d) Original image, from [14] (e) Our local method, 5.90 dB (f) Our non-local method, 14.11 dB

Fig. 4: Reconstruction of two synthetic images characterized by ridges from 10% and 14% of measurements in Fourier domain.

Local and non-local TV results in SNR of 16.30 and 30.15 dB for the top image, and 5.86 and 12.99 dB for the bottom one.
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(a) Lena (b) proposed local method, 14.86 dB (c) proposed non local method, 16.79 dB

(d) Barbara (e) proposed local method, 13.59 dB (f) proposed non local method, 15.52 dB

(g) Barbara (h) proposed local method, 17.13 dB (i) proposed non local method, 18.92 dB

(j) Baboon (k) proposed local method, 9.14 dB (l) proposed non local method, 9.74 dB

(m) Fingerprint (n) proposed local method, 5.70 dB (o) proposed non local method, 9.07 dB

Fig. 5: First row: reconstruction of Lena phantom from 12% of measurements in Fourier domain. Second row: reconstruction

of Barbara from 12% of measurements in Fourier domain. Third row: reconstruction of Barbara from 20% of measurements in

Fourier domain. Fourth row: reconstruction of baboon from 20% of measurements in Fourier domain. Fifth row: reconstruction

of fingerprint from 20% of measurements in Fourier domain.


