
Inverse Problems and Imaging Web site: http://www.aimSciences.org
Volume X, No. 0X, 200X, X–XX

FOUR COLOR THEOREM AND CONVEX RELAXATION FOR

IMAGE SEGMENTATION WITH ANY NUMBER OF REGIONS

Ruiliang Zhang

Hong Kong University Of Science and Technology
rzhangaf@cse.ust.hk

Xavier Bresson

City University of Hong Kong
xbresson@cityu.edu.hk

Tony F. Chan

Hong Kong University Of Science and Technology
tonyfchan@ust.hk

Xue-Cheng Tai

University of Bergen

tai@math.uib.no

Abstract. Image segmentation is an essential problem in imaging science.
One of the most successful segmentation models is the piecewise constant

Mumford-Shah minimization model. This minimization problem is however

difficult to carry out, mainly due to the non-convexity of the energy. Recent
advances based on convex relaxation methods allow to estimate almost per-

fectly the geometry of the regions to be segmented when the mean intensity

and the number of segmented regions are known a priori. The next important
challenge is to provide a tight approximation of the optimal geometry, mean

intensity and the number of regions simultaneously while keeping the compu-

tational time and memory usage reasonable. In this work, we propose a new
algorithm that combines convex relaxation methods with the four color theo-

rem to deal with the unsupervised segmentation problem. More precisely, the

proposed algorithm can segment any a priori unknown number of regions with
only four intensity functions and four indicator (”labeling”) functions. The
number of regions in our segmentation model is decided by one parameter that
controls the regularization strength of the geometry, i.e. the total length of the
boundary of all the regions. The segmented image function can take as many

constant values as are needed.

1. Introduction

Image segmentation is one of the most fundamental and challenging problems
in image processing and computer vision. An ideal image segmentation algorithm
should be capable to partition any image into several desired objects with well-
defined boundaries. This problem can be formulated as an energy minimization
problem, which usually consists of a data term and a regularization term as com-
monly proposed in the context of inverse problems. Geman and Geman [17] in-
troduced a generic segmentation model in the discrete setting, while Mumford and
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Shah [30] proposed the continuous counterpart. These two models are among the
most influential models in imaging. Many existing segmentation models in the
literature are influenced by these methods. However, finding a solution to these
minimization problems can be numerically challenging.

The level set method [31] has been very popular for approximating solutions of
the Mumford-Shah problem, such as the Chan-Vese model [14, 39]. But the level
set method can be easily trapped in local minima, depending on the choice of the
initialization. Besides, the level set method is rather slow, compared to other re-
lated methods such as graph cut method [8]. Graph cut method is a combinatorial
method that can solve exactly two-phase segmentation problems and it is signifi-
cantly faster than the level set method. However, graph cut method is limited by
the metrication error and it can only use anisotropic operators. This produces less
accurate results than continuous methods such as the level set method and also
weaker approximations of solution for multi-phase problems. Finally, the memory
requirement and the difficulty to parallelize can become an issue for 3D applica-
tions, unlike continuous approaches. Recently, a new alternative to the level set
method and the graph cut method has been introduced to overcome the previous
limitations. This new approach is based on continuous convex relaxation methods
[13, 9, 45, 32, 25, 24, 7, 10] or continuous max-flow approaches [13, 44, 6, 43, 42].
The main advantages is to produce exact or tight approximations of solutions for
two-phase and multi-phase problems, provide arbitrary accurate results, and ben-
efit from fast convex optimization algorithms that can be parallelized on graphics
processing unit (GPU). The original paper of Strang [37] introduced the theoretical
basis of this new method. More recently, it was used in imaging problems [13, 9]
to solve exactly and quickly the two-phase active contour segmentation problem
when the mean intensity is known. It was then extended to the multi-phase seg-
mentation problem (also known as the Potts problem [33] in the discrete setting)
in [45, 32, 25, 24, 7, 10, 44, 6, 43, 42]. For multiphase segmentation problems, it is
NP-hard if we need to regularize the problem by the length of the interfaces. Thus,
it may be difficult to find exact global minimizers even if we use convex relaxation
methods. However, if one is allowed to ”relax” the regularization term, then exact
global minimization methods are available. For examples, if we use the Chan-Vese
regularization which is not the length of the interface, exact and global minimiz-
ers have been given in [2, 3]. If we use one label function as in [26] and the total
variation of this label function as the regularizer, then global minimization is also
available [5].

Although the recent multi-phase segmentation methods based on convex relax-
ation methods are almost optimal, fast and accurate, they also have three main
limitations. Firstly, they assume that the mean intensity of each segmented re-
gion is known(usually k-means algorithm is used to estimate the mean intensity).
Secondly, they suppose to know a priori the number of regions to be segmented.
Finally, they require one function per region to be segmented, which can therefore
be time and memory consuming when dealing with a large number of regions. Re-
cent papers started to tackle these limitations in the context of convex relaxation
methods. In the case of two-phase, [36] introduced a branch and bound method to
compute a global solution to the two-phase Chan-Vese model when both the geom-
etry and the mean intensity are unknown. In [11], the authors introduced a convex
relaxation method to compute tight approximations of the multi-phase Chan-Vese
model when both the geometry and the mean intensity are unknown. However,
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the number of regions must be known a priori. In [4], the authors also introduced
a convex relaxation method to compute tight approximations of the multi-phase
Chan-Vese model without knowing a priori the mean intensity and the number of
regions. However, the computational time and memory usage for these methods can
become important. For example, in the recent work [4], the number of indicator
functions K is equal to the number of discretized intensity levels s.a. K = 256.
Note also that other works s.a. [20, 21, 22, 35] have been proposed to solve the
unsupervised segmentation method but not in the context of geometric convex re-
laxation methods. These other methods may be more influenced by local minima
e.g. due to noise.

In this work, we propose a new unsupervised segmentation method based on con-
vex relaxation methods that can compute simultaneously the geometry, the mean
intensity and the number of regions. The number of regions is decided by one
parameter that controls the regularization strength of the geometry, i.e. the to-
tal length of the boundary of all the regions. The proposed energy minimization
problem is convex w.r.t. the geometry and the mean intensity separately, but not
globally convex (i.e. considering geometry and mean intensity together). The sep-
arate convex optimization problems can be solved efficiently based on augmented
Lagrangian methods. The number of regions to be segmented is not given a priori
but learned during the segmentation task, i.e. the number of regions is automat-
ically determined. Moreover, we only need four indicator or so-called ”labeling”
functions to represent these regions which could be any number. Experiments are
conducted on synthetic images to illustrate our method and real-world images.

2. The new model and its convex relaxation

2.1. The Mumford-Shah mode. The model we are going to use is closed related
to the piecewise constant Mumford-Shah model. The Mumford-Shah (MS) model
is an optimization problem:

(1) min
C,s

µ|C|+ α

2

∫
Ω

(s− s0)2 +
γ

2

∫
Ω\C
|∇s|2,

where µ, α and γ > 0, |C| is the length of C, and s0 : Ω ⊂ RN → R is the original
N -dimensional ”image” to be segmented. The solution of the MS problem is a
piecewise smooth approximation s : Ω → R of the original image s0 with a curve
C representing image edges with minimal length. After twenty years of analysis,
the well-posedness of the MS model is still an open problem. However, there is
a conjecture that there exists (at least) one minimizer (s, C) of (1) where 1) s ∈
C1(Ω\C) and 2) C is made up of a finite union of C1-regular arcs, with two special
cases; crack tip and triple junction (where three branches meet with 120o angles).
The original MS model (1) is actually not used in most real-world segmentation
problems as real applications look for objects with closed boundary s.a. anatomical
structures or moving objects. However, the original MS model is not designed to
detect closed boundary only, but also open boundary. Therefore in the context
of segmentation, a variant of the MS model is preferred. This variant/simplified
version is called the piecewise constant Mumford-Shah model and can be obtained
with γ →∞ in (1). As its name suggests, this model looks for a piecewise constant
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approximation u(x) =
∑r
i=1 ci1Γi(x) of the original image s0, Figure 1(a), as follows:

min
r

min
{Γi}r

i=1

min
{ci}r

i=1

r∑
i=1

(µ|∂Γi|+
α

2

∫
Γi

(ci − s0)2) s.t.

Ω = ∪ri=1Γi and Γi ∩ Γj = ∅ ∀i 6= j(2)

where ∂Γi is the boundary of the region Γi, |∂Γi| is the length of ∂Γi, ci is some con-
stants representing the mean intensity in region Γi and the constraints Ω = ∪ri=1Γi
and Γi ∩ Γj = ∅ ∀i 6= j guarantee no overlapping and vacuum between the regions
(i.e. all Γi are pairwise disjoint). This segmentation problem is shown to be well-
posed. Also, when the number of regions r and the mean intensities ci are fixed,
then the optimization problem (2) reduces to the Potts problem [33], which is also
known as the minimal partition problem in the continuous setting. The Potts prob-
lem was proven to be NP-hard. As discussed previously, approximate solutions for
the Potts problem exist both in the discrete setting [8] and the continuous setting
[45, 32, 25, 24, 7, 10, 44, 6, 43, 42].

2.2. Our new model. In this work, we propose a new model which looks like
the PCMS model (2), but it is essentially different in the way on how to define
the smooth image functions. This new model offers some inherent advantages in
dealing with the topology of the segmented regions. Use many other approaches,
the ”sensitivity analysis” with the topological changes is very difficult. For the new
model, we propose to solve:

min
{Ωi}n

i=1

min
{si}n

i=1

n∑
i=1

µ|∂Ωi|+
α

2

∫
Ωi

(si − s0)2 s.t.

Ω = ∪ni=1Ωi, Ωi ∩ Ωj = ∅ ∀i 6= j and |∇si(x)|2 = 0 ∀x ∈ {Ωi}i=1,...,n,(3)

where we now consider phases Ωi instead of regions Γi. Each phase Ωi can contain
many simple disconnected sub-regions Γk. The proposed variant (3) of the piecewise
constant Mumford-Shah model (2) (used together with the four color theorem) is
the essential contribution of our work. Observe that, unlike the formulation (2),
the functions si is piecewise constant due to the constraint

|∇si(x)|2 = 0 ∀x ∈ {Ωi}i=1,...,n.

However, this constraint only guarantees that si is a constant inside each connected
sub-region of Ωi. There may exist many connected sub-regions in Ωi and thus si
can take many different constant values in each phase Ωi, i = 1, 2, · · · , n. Figure
1(b) illustrates this idea where each {Ωi}4i=1 represents one phase and each phase
contains a number of disconnected sub-regions Γk. In other words, the proposed
model requires less than the original number r of functions Γi to represent the
segmented objects. What is the minimum number of phases that must be used?
The number of phases for a two-dimensional image can actually be reduced to n = 4
using the four color theorem. Indeed, the four color theorem states that any planar
graph (s.a. the image grid) can be colored with at most four colors such that no
adjacent nodes have the same color [1]. We can now represent any number r of
regions Γi s.a. r = 10, 100, 1000 with only n = 4 phases Ωi, each phase Ωi is a
union of multiple simple connected regions, each simple connected regions could
have a different mean intensity value due to constraint |∇si(x)|2 = 0. This is
illustrated on Figure 1(c). Note that segmenting r � 2 regions (e.g. 1000) with the
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(a) (b) (c)

Figure 1. (a) Standard representation of r regions Γi with the
piecewise constant Mumford-Shah model, Eq. (2). (b) Represen-
tation of r regions with n phases Ωi (that include regions Γi), Eq.
(3). (c) Four color theorem: no more than n = 4 phases Ωi are
needed to represent any number of regions, Eq. (4).

original piecewise constant Mumford-Shah model (2), i.e. with [45, 32, 25, 24, 7, 10],
would be time and memory intractable. The idea to use the four color theorem has
already been used in imaging for segmentation [39, 19] in the context of the level set
method. This work proposes to use the new model (3) which is especially suitable
for four-color painting of the segmented regions. Moreover, more efficient algorithms
based on the recent convex relaxation methods for `1 problems will give some fast
numerical schemes.

Based on the explanation given above, the main minimization problem of this
paper is:

min
{Ωi}4

i=1

min
{si}4

i=1

4∑
i=1

µ|∂Ωi|+
α

2

∫
Ωi

(si − s0)2 s.t.

Ω = ∪4
i=1Ωi,Ωi ∩ Ωj = ∅ ∀i 6= j and |∇si(x)|2 = 0 ∀x ∈ {Ωi}i=1,...,4.(4)

The constraint |∇si(x)|2 = 0 ∀x ∈ Ωi is essential to guarantee that functions si are
constant in each simple connected sub-region of phase Ωi and the constant value is
equal to the mean intensity inside this simple connected sub-region. Another point
we want to emphasis is that each functions {si}4i=1 is defined in the whole domain
Ω, and not only restricted to the phase Ωi. Therefore another term is necessary to
ensure the smoothness of the function si outside Ωi. This can be easily done by
adding a regularization term to the energy (last term):

min
{Ωi}4

i=1

min
{si}4

i=1

4∑
i=1

µ|∂Ωi|+
α

2

∫
Ωi

(si − s0)2 +
σ

2

∫
Ω

|∇si|2 s.t.

Ω = ∪4
i=1Ωi, Ωi ∩ Ωj = ∅ ∀i 6= j and |∇si(x)|2 = 0 ∀x ∈ {Ωi}i=1,...,4.(5)

This last term not only regularizes the values of si outside Ωi, but also inside.

2.3. Convex relaxation of the new model. The next step is to design an
optimization algorithm for solving (5). This is difficult as the global energy is
not convex and the sub-optimization problem w.r.t. Ωi is also not convex. We
proceed as follows. Firstly, the sub-problem w.r.t. Ωi is going to be relaxed by
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using indicator functions ui of the regions Ωi:

(6) ui(x) =

{
1, ∀x ∈ Ωi,

0, otherwise.

The problem (5) is thus equivalent to

min
{ui∈{0,1}}4

i=1

min
{si}4

i=1

4∑
i=1

∫
Ω

µ|∇ui|+
α

2

∫
Ω

ui(si − s0)2 +
σ

2

∫
Ω

|∇si|2 s.t.

4∑
i=1

ui(x) = 1 ∀x ∈ Ω and ui(x)|∇si(x)|2 = 0 ∀x ∈ Ω, i = 1, . . . , 4.(7)

The sub-problem w.r.t. ui is convex w.r.t. the energy but not convex w.r.t. con-
straints (which is the non-convex set of binary functions). The standard approach
is to relax function ui ∈ {0, 1} to the closest convex set, i.e. ui ∈ [0, 1]. Besides, the
constraint ui(x)|∇si(x)|2 = 0, ∀x ∈ Ω will be enforced with a Lagrangian multiplier
[41]. The corresponding iterative updating of the solutions is:

(uk+1
i , sk+1

i ) = arg min
{ui∈[0,1]}4

i=1,{si}4
i=1

4∑
i=1

∫
Ω

wb|∇ui|+
α

2

∫
Ω

ui(si − s0)2

+
σ

2

∫
Ω

|∇si|2 +

∫
Ω

ui
(
λki |∇si|2 +

r

2
|∇si|2

)
s.t.

4∑
i=1

ui(x) = 1 ∀x ∈ Ω

λk+1
i = λki + rui|∇si|2(8)

where wb(x) can be an edge detector s.a. wb(x) = µ
1+|∇s0(x)|2 in [12]. By doing so, we

are regularizing the problem by the weighted length from the ”edge detector” instead
of the conventional length of the interface. The minimization problem (8) is still
not convex w.r.t. (ui, si) together, but it is now convex w.r.t. ui and si separately.
Therefore, there is a guarantee to solve each sub-minimization problem exactly and
even efficiently with augmented Lagrangian methods [41]. This naturally leads to
an algorithm that solves the segmentation problem (2) by solving each minimization
problem w.r.t. ui and si separately and alternately until convergence. Although
this kind of minimization procedure does not guarantee convergence to a global
minimum (even the question of convergence to a local minimum is open), it usually
produces good approximate solutions in practice.

3. Efficient algorithms

In this section, we derive efficient algorithms to solve the two sub-minimization
problems of (8). The algorithms are based on operator splitting and augmented
Lagrangian methods, along the same line of [18, 41].

3.1. Sub-minimization w.r.t. ui (geometry). The minimization problem w.r.t.
ui is

min
ui∈[0,1]

∫
Ω

wb|∇ui|+
∫

Ω

uifi s.t.

4∑
i=1

ui(x) = 1 ∀x ∈ Ω(9)

where fi = α
2 (si − s0)2 + |∇si|2(λki + r

2 ). There exist several efficient approaches
to deal with this problem [45, 32, 25, 24, 7, 10, 44, 6, 43, 42]. We propose in
this work a simple and fast algorithm based on split-Bregman [18] and the simplex
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projection [29], such as in [25, 24]. Firstly, the original minimization problem is
split into three sub-problems, which are easier to solve by introducing new variables
vi ∈ R, di ∈ RN :

min
ui∈[0,1],vi,di

∫
Ω

wb|di|+
∫

Ω

vifi s.t.

4∑
i=1

ui = 1, di = ∇ui, vi = ui,(10)

Then, the previous multiple-constraint minimization problem is converted back to a
simplex constraint minimization problem using the augmented Lagrangian method:

(um+1
i , vm+1

i , dm+1
i ) = arg min

ui∈[0,1],vi,di

∫
Ω

wb|di|+
∫

Ω

vi.fi

+λmdi .(di −∇ui) +
rd
2
|di −∇ui|2 + λmvi .(vi − ui) +

rv
2

(vi − ui)2

s.t.

4∑
i=1

ui(x) = 1, ∀x ∈ Ω

λm+1
di

= λmdi + rd(d
m+1
i −∇um+1

i ), λm+1
vi = λmvi + rv(v

m+1
i − um+1

i )(11)

An approximate solution of the minimization problem w.r.t. ui, i.e. minui∈[0,1]∫
Ω
rv
2 (ui − (vi +

λvi

rv
))2 + rd

2 |∇ui − (di +
λdi

rd
)|2 s.t.

∑4
i=1 ui = 1, can be efficiently

computed as follows. Consider the Euler-Lagrange equations without the simplex
constraint:

(−rv4+ rd)ui = −rddiv(di +
λdi
rd

) + rv(vi +
λvi
rv

)(12)

The solution can be quickly computed by FFT or DCT depending on the boundary
condition (i.e. periodic or Neumann-type). We refer the reader to [40, 41, 16] for
more details. Once the solution of (12) has been computed, call it ûi, then the
simplex constraint is enforced according to Michelot’s method [29], which is fast
and easy to implement. We get:

{ui}4i=1 = Πs({ûi}4i=1)(13)

where Πs is the Michelot’s projector operator on the linear simplex constraint.

The minimization problem w.r.t. di, i.e. mindi
∫

Ω
wb|di|+ rd

2 |di−(∇ui−
λdi

rd
)|2 is

fast to solve as the solution is given by soft-thresholding with the shrinkage operator
[15]:

di = max(|zi| −
wb
rv
, 0)

zi
|zi|

, zi = ∇ui −
λdi
rd

(14)

The minimization problem w.r.t. vi, i.e. min
∫

Ω
rv
2 (vi−

(
∇ui−

λvi

rv

)
)2 + vi.fi is

simply given by:

vi = ui −
λvi
rv
− fi
rv

(15)

Finally, let us remind that the solution of the geometric problem (9) is not
guaranteed to produce a global minimizer of the original non-convex geometric
problem. A global minimizer is obtained if and only if the computed solution
ui is binary. Although experiments suggest good approximate solutions for this
multi-phase problem, the computed solutions are not exactly binary. Hence, as
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in [45, 32, 25, 24, 7, 10] a thresholding/conversion step is required. The simplest
thresholding technique is

û?i (x) =

{
1 if i = arg maxj∈{1,...,4} uj(x)
0 otherwise

∀x ∈ Ω(16)

where {û?i }4i=1 are binary functions satisfying
∑4
i=1 û

?
i (x) = 1, ∀x ∈ Ω.

To summarize the optimization algorithm to solve the geometric problem in (8),
the pseudo-algorithm is given in Algorithm 1.

Algorithm 1 Fast algorithm for the geometric problem (9).

Given that the ski , uk+1
i is given by the inner loop:

while inner loop not converged do
um+1
i computed with (12) and (13)

dm+1
i computed with (14)

vm+1
i computed with (15)

λm+1
di

= λmdi + rd(d
m+1
i −∇um+1

i )

λm+1
vi = λmvi + rv(v

m+1
i − um+1

i )
end while
Threshold/binarization with (16)

3.2. Sub-minimization w.r.t. si (mean intensity). The minimization problem
w.r.t. si is

min
si

∫
Ω

hi
2

(si − s0)2 +
gi
2
|∇si|2(17)

where hi = αui and gi = σ + (2λki + r)ui. There exist different methods to solve
this optimization problem. Multi-grid and other fast linear solvers can be easily
used for this subproblem. In our tests, we investigated an AOS [28] and LOD
methods to solve (17) s.a. in [34]. We also studied a splitting and augmented
Lagrangian method, which outperformed the AOS [28] and LOD approaches [34] in
terms of speed. We present this method here. The minimization problem (17) is
split into three sub-minimization problems, which are easier to solve by introducing
new variables ti ∈ R, pi ∈ RN :

min
si

∫
Ω

hi
2

(ti − s0)2 +
gi
2
|pi|2, pi = ∇si, ti = si(18)

Then, the previous multiple-constraint minimization problem is converted back to
an unconstrained minimization problem using the augmented Lagrangian method:

(sm+1
i , tm+1

i , pm+1
i ) = arg min

si,ti,pi

∫
Ω

hi
2

(ti − s0)2 +
gi
2
|pi|2

+λmpi .(pi −∇si) +
rp
2
|pi −∇si|2 + λmti .(ti − ui) +

rt
2

(ti − ui)2

λm+1
pi = λnpi + rp(p

m+1
i −∇sm+1

i ), λm+1
ti = λnti + rt(t

m+1
i − sm+1

i )(19)

As before, the minimization problem w.r.t. si can be efficiently computed by
FFT or DCT as the Euler-Lagrange equations of the problem minui

∫
Ω
rt
2 (si− (ti+

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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λti

rt
))2 +

rp
2 |∇si − (pi +

λpi

rp
)|2 is:

(−rp4+ rt)si = −rpdiv(pi +
λpi
rp

) + rt(ti +
λti
rt

).(20)

The minimization problem w.r.t. pi, i.e. minpi
∫

Ω
gi
2 |pi|

2 +
rp
2 |pi− (∇si−

λpi

rp
)|2

has an analytical solution

pi =
rp

rp + gi
(∇si −

λpi
rp

)(21)

The minimization problem w.r.t. ti, i.e. minti
∫

Ω
hi

2 (ti−s0)2 + rt
2 (ti−(si−

λti

rt
))2

has also a simple analytical solution

ti =
his0 + rtsi − λti

hi + rt
(22)

To summarize the optimization algorithm to solve the image feature/region in-
tensity problem in (17), the pseudo-algorithm is given in Algorithm 2.

Algorithm 2 Fast algorithm for the image feature problem (17).

Given that the uk+1
i , sk+1

i are given by the inner loop:
while inner loop not converged do

sm+1
i computed with (20)

pm+1
i computed with (21)

tm+1
i computed with (22)

λm+1
pi = λnpi + rp(p

m+1
i −∇sm+1

i )

λm+1
ti = λnti + rt(t

m+1
i − sm+1

i )
end while

3.3. Alternate algorithm. In summary, the proposed algorithm for solving the
unsupervised segmentation problem (5) is described in the pseudo-algorithm 3.

Algorithm 3 Algorithm for the unsupervised image segmentation model (5) using
the four color theorem (with a priori unknown number of regions).

Initialize the ui (random initialization or k-means)
while not converged do

sk+1
i computed with Algorithm 2

uk+1
i computed with Algorithm 1

λk+1
i = λki + ruk+1

i |∇sk+1
i |2

end while

Preliminary experiments showed that Algorithm 3 can produce under segmentation,
as it can be trapped in some (trivial) local minima such as Figure 2(b). To avoid
these local minima, we propose to use a two-level recursive method as follows. First,
the image is segmented into four phases {Ωi}4i=1 using Algorithm 3, Figure 2(a).
Each phase may contain multiple regions, Figure 2(b). However, it is possible that
two distinct regions are merged together s.a. the central disk and the upper right
part of the image. In order to separate the two distinct regions, Algorithm 3 is
applied again to each of the four phases {Ωi}4i=1 (simply by using an indicator func-
tion of each phase in Algorithm 3 s.t.

∫
Ω
→
∫

Ω
1Ωi). This produces sixteen regions

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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(a) (b) (c) (d)

Figure 2. (a) Original image. (b) segmentation into four phase
{Ωi}4i=1 (two distinct regions, central disk and upper right part are
merged). (c) segmentation result after segmenting each phase into
four sub-phase (this produces sixteen sub-phases {Ωi,j}4i,j=1) and
recoloring into four phases (correct result). (d) piecewise constant
approximation of (a).

{Ωi,j}4i,j=1. These sixteen regions are then recolored into four regions, Figure 2(c),
using any fast coloring algorithm s.a. Recursive Large First(RLF) algorithm[23],
which only requires O(n2) time and O(n2) space, where n here is the number of
regions. The implementation of RLF algorithm is available at codeproject1. This
two-level recursive method is iterated until the energy (4) does not decrease any-
more. Algorithm 4 presents the final proposed unsupervised segmentation method
that estimates the geometry, the mean intensity and the number of regions simul-
taneously.

Algorithm 4 Two-level recursive algorithm for the unsupervised image segmen-
tation model (2) using the four color theorem (with a priori unknown number of
regions).

Initialize the ui (random initialization or k-means), select the scale parameter α
which controls the number of regions
while not converged do

Compute four phases {Ωi}4i=1 with Algorithm (3)
Partition each phase {Ωi}4i=1 into 4 sub-phases {Ωi,j}4i,j=1 with Algorithm (3)
Recolor the 16 sub-phases into 4 phases

end while

4. Experiments

In this section, we conduct several experiments on synthetic and natural images
to demonstrate the proposed algorithm. In all experiments, the inputs of the seg-
mentation model are the image to be segmented and the value of the parameter
α in (5), which determines the final number of segmented regions as it controls
the total length of the boundary of all regions. Other parameters are fixed for
all experiments: if the original image s0 ∈ [0, 255] then the parameter values are
rv = 1e1, rb = 1e2, rp = 1e1/255, rt = 1e2/255, σ = 1e4/2552, µ = 1e2.

Let us start with a simple image composed of three regions, Figure 3(a). The
objective of this figure is to compare our algorithm with the standard recursive

1http://www.codeproject.com/Articles/88674/Graph-coloring-using-Recursive-Large-First-
RLF-alg
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(a) (b) (c) (d)

Figure 3. Comparison between the standard recursive bi-
partitioning method and our method: (a) Original image. (b)
segmentation after 1st bi-partitioning. (c) segmentation after
2nd/final bi-partitioning (over-segmentation). (d) Our algorithm
(correct segmentation).

bi-partitioning approach used in several segmentation problems. The recursive bi-
partitioning method consists in segmenting the image into two regions, then segment
each of the two regions into two sub-regions, and so on. The main limitation of this
approach is illustrated on Figure 3(b-c). If the recursive bi-partitioning fails at
some level of recursiveness (here at the first level, Figure 3(b)) then it can never
fix its mistake and carry it on to the next levels (Figure 3(c)). Our segmentation
algorithm is more flexible and can correct some segmentation mistakes previously
made during the segmentation task.

The objective of Figure 4 is to illustrate the influence of the parameter α on the
segmentation result. We do not investigate the explicit relationship between the
choice of α and the number of regions in this work. Instead, we empirically selected
several values of α to show the influence of α on the total number of final regions
(each column presents the segmentation result with a different value of α). Observe
that for large α the number of segmented regions is large, and as the value of α gets
smaller and smaller then the number of regions decreases.

Figure 5 presents the segmentation of well-known real-world images with our
algorithm.

Finally, a related segmentation method has been proposed recently in [27], where
the authors also use the four color theorem to deal with any number of regions as
in [19, 38]. We want to emphasis that the model we use here has some essential
advantages over the traditional Mumford-Shah model. This new model offers some
essential advantages in dealing with topological changes of the segmented regions
(or phases). The approach of [27] has several limitations. Firstly, the segmenta-
tion task is carried out with graph cut method, which is known to produce weaker
approximations of the solution than continuous relaxation methods, as they suffer
from metrication errors and anisotropic operators. Secondly, the method [27] re-
quires to know a priori the number of sub-regions for partitioning each of the four
preliminary phases. In addition, some of the region boundary are regularized while
other have no regularization at all. Our model is not influenced by these limitations
as it is based on continuous optimization methods and the number of sub-regions
is automatically estimated. Even more, we regularize all the region boundaries.

Acknowledgments This work is supported by Hong Kong GRF grant #110311.
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Figure 4. Influence of the regularization parameter α. First row
is the original image. Second row is the four-color segmentation
result. Third row is the piecewise constant approximation of the
image. First column α = 1.5e5/2552, second column α = 3e4/2552,
third column α = 1e4/2552, fourth column α = 1e3/2552.
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