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Abstract— We present an integrated algorithm for computing
vantage points of maximal visibility in an a priori unknown
fully 3D environment using point clouds and a multi-resolution
Hausdorff metric based surface reconstruction procedure. This
work aims at demonstrate the proposed algorithm’s ability to
explore and learn complicated 3D urban environments. We
present results that validate the proposed algorithm by using
a realistic LIDAR simulations in a virtual MOUT site.

I. INTRODUCTION

We propose an integrated algorithm for achieving certain
goals which are related to the visibility (the ensemble lines-
of-sight) from a group of observing locations in a complex
environment. The relevant goals here are of exploratory and
surveillance nature. In such an environment, there are many
geometrically complicated obstructions to the lines-of-sight.
Furthermore, the obstruction may be unknown a priori and
must be learned. An example of such a goal includes the
mapping of complex urban areas using point cloud data
that are collected at nontrivial locations. Point clouds are
typically gathered through devices such as LiDAR, and they
can be regarded as effectively unstructured discretizations
of the visibility from the corresponding observing locations.
Hence, in this paper we shall address the essential question
“How does one generate a sequence of observing locations
that ensures an accurate mapping/learning of the domain?”

We utilize an implicit representation of the observed
environment to efficiently and accurately handle line of sight
and related necessary extraction of volumetric information.
We advocate this approach due to the convenience it of-
fers in handling various essential boolean operations on
the occlusion from different vantage points. However, we
also recognize the utility of explicit methods, especially in
the areas of compression and encoding, where in general
relatively few parameters are needed for approximation of
the original data as compared to the full volumetric storage
used by implicit methods. Hence, we adopt a hybrid approach
whereby explicit surfaces are extracted from the collected
point cloud, and used to generate an implicit representa-
tion. In this setting we are able to take advantage of the
lightweight local polynomials, enabling such applications as
multi-vehicle coordination, as well as process the implicit
representation for onboard visibility, surveillance, and navi-
gation applications.

We work with the assumption that point clouds can be
sampled from obstacle surfaces in a domain of interest from
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Fig. 1.  System Overview. An observer is positioned and a scan of

the simulated environment is performed. An explicit representation of the
surface is generated from the point cloud. With this explicit representation
the visibility is computed from the observer’s point of view. The visibility
is integrated and evaluated to generate the next observer position.

a given set of vantage positions. For our purposes a point
cloud D is a finite set of three dimensional data points {z,}
given in an appropriately chosen reference coordinate frame.
Additionally, we assume that the observer position is known
relative to our chosen domain origin. This is typically not
a poor assumption as GPS and inertial measurement units
have become quite ubiquitous in mobile robotic platforms
and even in smart phones and tablets.

We advocate the use of the Hausdorff metric [12] in
controlling the quality of point cloud approximation as it has
been shown to perform better than standard metrics [17]. The
least squares metric, for instance, does not adequately penal-
ize surfaces that miss important thin features such as wires
and poles. Also, function norm metrics are coordinate biased
and therefore do not handle well arbitrarily oriented surfaces.
For applications such as navigation the reason for choosing
an appropriate metric becomes clear as any collision with
these thin but common objects is not acceptable.

In summary, we shall describe in this paper (1) a Haus-
dorff based, multi-resolution algorithm that reconstructs the
already explored occluding objects in the working domain
based on the point cloud data; (2) an algorithm that utilizes
the (portions of) reconstructed obstacle surfaces for explor-
ing environments with complicated and unknown obstacles.
Furthermore, this algorithm shall determine sequentially new
observing locations in order to obtain more information
about the obstacles in the environment. As a result of the
exploration, a complete map as well as a 3D volumetric and
parametric representation of the environment are obtained.

II. RELATED WORK

The visibility-based navigation problem has been ap-
proached from several view points. Tovar, et al. have con-
sidered combinatorial approaches to the problem in static
2D polygonal environments. The methods presented typically
involve vehicles with limited sensing capability, and rely on
detection and tracking of discontinuities in depth information



as the vehicle moves [10], [18], [19], [20], [21]. Tovar et
al. have also demonstrated the use of gap navigation trees
[19] on a Pioneer 2-DX platform using SICK laser range
sensors [18]. However, as these methods are focused on
environments consisting of simply connected polygons they
are not easily applied to the more general problem, including
outdoor environments.

Tsai et al. [22] proposed a PDE based method for com-
puting a continuous representation of visibility from a given
vantage points; in that work the obstacles are assumed to be
given a priori as level set functions. Landa et al. [9] proposed
an exploration algorithm for 2D planar domains using range
data. This algorithm can be categorized as an ’edge chasing”
algorithm formally introduced by LaValle et al., see e.g. [21].

The method presented in this article utilizes local piece-
wise linear fits and space partitioning data structures that
allow for points to be acquired in arbitrary order from
multiple sensors. Wolf et al. [27] introduced a method using
planar reconstructions of the point cloud data, and provided
experimental results on a mobile platform. However, the
planar fits in their method were generated using a point cloud
segmentation method based on the Hough transform, and
they do not consider the identification of thin structures. In
their application the goal is to identify relatively small planes
and merge as many as possible in order to generate simplified
polygonal models of buildings in the environment.

Another prominent class of navigation algorithms have
been developed under the simultaneous localization and
mapping (SLAM) framework [16][6][2][11]. This framework
typically utilizes extended Kalman filters or particle filters
[8] to simultaneously deduce the location of the vehicle and
the location of select landmarks in the environment. These
methods have been quite successful and offer solutions to
GPS-denied environments, but heavily dependent on reliable
and repeated landmark recognition.

The remainder of this article proceeds as follows. Sec-
tion III covers the problem of visibility using point clouds
when the map is not known a priori. This section also pro-
poses a method for computing vantage points that maximize
the volume of the shadow region that is revealed at each step.
In Section IV we show how the point clouds are adaptively
partitioned and reconstructed using piece-wise linear fits,
and how these fits are used to construct visibility volumes.
Section V describes the simulated environment utilized in
our numerical experiments. The numerical experiments and
conclusions are then covered in Section VI and Section VII.

III. VISIBILITY BASED EXPLORATION

The problem of visibility seeks to determine the regions
in space visible to a given set of observers in the presence
of occlusions. In our setting, the occlusions correspond to
obstacles such as buildings, light poles, and trees that are
common in urban environments.

By generalization of an idea first published by Valente
et al. [24] we propose a new visibility-based “non-myopic”
exploration algorithm for the fully 3D cases. Using the
point cloud data collected on-line, this algorithm generates

a sequence of observing locations, zi,x9,---,T, and a
path that goes through these locations while avoiding the
obstacles. More precisely,

o The k-th observing location, xp, will be chosen to
be where a “visibility metric’ E achieves a global
maximum in a bounded domain;

o The "visibility metric” is defined by the point cloud data
obtained from the observing locations x1,- - - Tp_1.

o The 7visibility metric” is designed to quantify the
potential gain in new visibility information by placing a
new observing location at certain designated locations,
given the previous observing locations.

Below we list the essential ingredients in defining such a

visibility metric:

o The set of observing locations O: The metric depends
on the visibility from a set of observing locations
contained in O = {x1, -+, zx}.

o The obstacles 2: They are assumed to be a closed set
containing finite number of connected components.

o Occlusion set S: The occlusion set contains points that
are not visible from (the observing locations in) O.
When the visibility from O encompasses the entirety
of the domain except the obstacles, then the occlusion
set is identical to the obstacles. In this case, we shall
say that the observing locations in O have complete
visibility of the domain.

o Shadow boundary 0S \ Q: A hyper-surface which
separates the domain locally into visible and occluded
regions from O. The shadow boundary is the attenuation
of the visible portions of the obstacles along the lines-
of-sight. Note that the visible portions of the obstacles
are not counted as part of the shadow boundary.

« Viewing angle 0: This is the angle between the line-of-

sight that reaches the shadow boundary and the normal
of the shadow boundary at the intersection.
The viewing angle penalizes the viewing of the shadow
boundary at grazing angles. It also reflects on the
uncertainties due to errors in the visibility information.
The closer this angle is to 90°, the more sensitive the
view will be to perturbation in the obstacles.

o The weighting w: Additional weighting may be placed
over the entire domain for additional application-
specific modeling needs, such as prioritization of a
subset of the domain or dealing with visibility with
limited range.

With all these ingredients, we define the visibility metric as
a boundary integral taking the following form:

E(z;0) := faS\QTw max (7, - 7, 0) dy. (1)

Here 7.(y) is (z — y)/|z — y| the viewing vector, and
7 is the normal of OS, which points into the occlusion
set S. Thus, the positive part of inner product, max(7, -
7,0) = max(cos,0), implements the consideration about
the viewing angle.

Fig. 2 demonstrates a step-by-step computer simulation
using this technique. We point out here that this proce-
dure is transparent to the dimension of the problem — the



"

30 40 50

10 20 30 40 50 10 20

Fig. 2. Generation of an “optimized” set of observing locations via the
use of E defined in (1). The blue curves shown in the top row are the
estimates of the obstacles obtained from the observing locations. The cross
corresponds to the newly added observing location. The diamonds indicate
the current and previous observing locations. The images on the second
row show the values of the visibility metric so that the whiter the color at
a point, the larger the value is.

construction of the observing locations depend solely on
the visibility metric, which does not require any dimension
specific logic. In Fig. 4 we show the performance of the
algorithm in vantage point placement for more complicated
pipeline (topological) configurations.

A. Algorithm details

Our current implementation of the visibility metric eval-
uation requires discretization of (a portion of) the domain
as a three dimensional Cartesian grid. The methods takes as
input a function ¢, defined on this grid such that ¢,, > 0
corresponds to the free space visible from the vantage point
x., and correspondingly the occlusion set S = {¢,, < 0}.
Such a function is created by our surface reconstruction al-
gorithm presented in Section III. In the simulations presented
below, we expect that the dominant obstacles have more or
less uniform sizes, so we set the depth factor to be 1, i.e.
T=1.

Given the current vantage point x.:
O + {Null},
E(ze;0) + o0, 1 « ¢, from LIDAR(x..)
for:=1...N do
8= {y|e(y) < 0}
Redistance v
for all z ¢ (OUS) and Ay(z) > M do
wo(y) = H(max.co {(y — 2) - Vi(y),0})
we(y) :=max(—(z = y) - Vi (y))
E(z;0) = fas\@ we(y) dy
~ Jas we(y) wo (y)dc(v(y))dy
end for
x. := argmax F(z)
O« OU{zx.}
¢z, <+ LIDAR(z.)
¥« max(y), ¢z, )

end for

Fig. 3. A slightly more complex 3D pipeline configuration. Notice also
the symmetry of the planned vantage point locations.
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Fig. 4. The performance of the new visibility algorithm for exploring a
slightly more complex 3D pipeline configuration. The plot shows the decay
of the metric as additional vantage points are added. Notice that the number
of vantage points needed seem to grow linearly with the number of cylinders
in the scene.

A couple of remarks about the above algorithm are in
order: Whenever a new vantage point is determined, the
visibility from that new point is extracted from the point
cloud processing, and we thus obtain the function ¢,,. As
the new vantage point would see a portion of the domain that
is previously occluded, the occlusion set S is then updated by
taking the intersection with the set {1, < 0}. This operation
is easily achieved by the level set approach that we adopted
in the last line of the algorithm description. Furthermore, in
order to maintain good resolution of the shadow boundary
on the grid level as well as maintain the accuracy of the
numerical approximation of its normal, it is necessary to
reshape ¢ into a signed distance function, keeping the set
1 unchanged. This is done in the level set literature by a
redistancing procedure. See [23] and [3] for example.

The surface integral of the visibility metric £ will be com-
puted by summing over the grid nodes on which we ()
does not vanish. wpdc (1) approximates the Dirac ¢ func-
tion supported on the shadow boundary; in the algorithm,
H denotes the indicator function of the interval [0,00).
The approximate Dirac delta function d.(¢)) is taken to
be (cos(ip/€) + 1)/2¢ for || < e and 0 otherwise. This
is a standard approach in the level set method literature
which allows approximation of surface integrals without
explicitly extracting the surface. See [7] for more detail. In
our implementation, we take € to be twice the step size of



the grid.

Finally, in order to reduce the unnecessary computational
complexity, we strategically pick new vantage points only at
locations where At is large (Ay > M) — these locations
correspond to points that are roughly equidistant to the
occlusion set. M is typically chosen to be O(1/h), where h
is the grid cell size.

IV. SURFACE RECONSTRUCTION

Given a point cloud consisting of three-dimensional points
we wish to construct a representative surface, which captures
with high fidelity the features resident in the original point
cloud. For this purpose we have chosen to utilize a modified
version of the method described by DeVore et al. [5]. There
are several reasons for this choice of reconstruction method,
the foremost being its use of the Hausdorff metric, which is
defined by

0 == max{§(A, B),§(B,A)}, (2)

for any two sets A, B € R3, where
0(A,B) :=s inf |a —b 3
(A, B) ZEEQQB‘“ B 3)

and || is the standard Euclidean distance. For vehicle nav-
igation as well as line of site problems both [5] and [17]
demonstrate that the performance of the Hausdorff metric
far exceeds that of other conventional metrics, such as least
squares.

The reconstruction method described in [5] assumes that
the point cloud is given in its entirety as input. However,
in our application we can not make this assumption as the
point cloud is generated as the observer moves through the
environment. As such we do not know the full range of
the point cloud a priori. Instead we assume the size and
location of the domain of interest relative to the observer’s
local coordinate system is known. Given this information a
transformation can be constructed consisting of a shift and
uniform dilation such that the transformed point cloud lies in
the unit cube Q = [0, 1]3. With this transformation we can
utilize the multiscale decomposition scheme defined in [5]
with minimal modification. For convenience the main points
of the surface reconstruction method are briefly outlined
below.

We define D’ = D N Q, where D is the input point
cloud which has been transformed using the above shift
and dilation. The domain Q is recursively decomposed into
dyadic subcubes in order to construct an octree 7 whose
nodes are decorated with polynomial fits to the local point
cloud data.

The construction of T is performed adaptively from the
root node Q using a processing list, which is initialized as
{Q}. Given a cube ) from the front of the processing list
and local point cloud data Dg = Q N D', a representative
planar fit is constructed using standard Principal Component
Analysis (PCA). The quality of the PCA plane is measured
with respect to the Hausdorff metric using a single global
error threshold 7. If the computed Hausdorff distance be-
tween the PCA plane and Dg is less than 7 then @ is

marked as a leaf node and added to 7. However, if the
computed distance is greater than 7 the node () is not simply
subdivided. Instead the authors make use of the fact that the
Hausdorff distance is a two-sided distance and attempt to
improve the local fit using one or two axis-aligned bounding
boxes. The bounding boxes are used to identify cases where
the point cloud is localized in one or two regions of (. In
the single bounding box case, the extents of the local point
cloud are used to construct the bounding box and the PCA
plane is clipped to this region and the Hausdorff distance
updated. If this new distance satisfies the threshold 7 then )
is marked as a leaf and added to 7. If this test fails, then the
local data is clustered into two groups and a bounding box
is computed for each cluster. Also, each cluster is given its
own PCA planar fit and the Hausdorff distances measured.
If both planes satisfy the threshold 7 then () is marked as a
leaf and added to 7. Using the above described fitting tests,
any cube () that is a leaf node of 7 may have one or two
planar fits. In the event that the bounding box tests fail to
produce representative planes for the local point cloud then
Q is added to 7 as an interior node and the dyadic children
of ) are added to the end of the processing list.

Several details of the above method are omitted, however
once the processing list becomes empty the leaf nodes of the
resulting octree 7 contain a discontinuous piece-wise linear
representation of the point cloud.

A. Dynamic Updates

The processing method defined in [5] does not provide
a mechanism for dynamic updates to the point cloud or
resulting surface as required by our application due to its
assumption that the point cloud is known a priori. However,
as the representation is based on an octree structure we can
easily filter new points into the tree from top to bottom. The
use of an octree also allows us to update only those regions
of the domain where new data was received.

As the observer moves to each new vantage point in the
domain a new point cloud D;, where ¢ is the index of the
current vantage point, is generated by the observer’s sensor
package. The update of T proceeds as follows:

Set D'; = D; N Q
Set L ={Q}
while L is not empty do
Pop @ from the front of L
if D’; NQ = () then
continue
end if
Set Dg = Do U (D/i nQ)
Compute the fit S'DQ of @ using Dg
Compute the Hausdorff error 7jg of S Do and Dg.
if o > 7 then
if ) is a leaf node then
Expand 7 by generating the children of @
end if
Find the children of @ for which (D’; N Q) # 0
L = L U {children of @ identified above}



else if () is not a leaf then
Prune the subtree rooted at ) from 7
end if
end while

Note that the above update scheme does not explicitly
show the use of bounding boxes or clustering, however
this is assumed to be part of the computation of S Do- 1t
is also worth pointing out that the above method naively
stores all of the data points that have been scanned. In
some applications this may be undesirable. This is a current
limitation of the implementation as the points are required
for a full measurement of the Hausdorff distance. However,
to reduce the memory required, we may borrow an idea from
the point-based graphics community [25], [13], [26] where
the point clouds may be quantized over a sparse uniform grid
which has resolution greater than the expected maximum
depth of 7. The use of such a uniform grid adds additional
error to the Hausdorff error commensurate with the grid
resolution, but allows the required memory to become fixed
rather than potentially infinite as more points are sampled
during exploration. While this is a potential improvement,
this idea was not utilized in our implementation as we merely
sought proof of concept.

B. Visibility from Reconstructed Geometry

The algorithm presented in Section III requires as input
a level set function ¢, over the domain which encodes
both the occlusion set and the distance to known obstacles.
The distance to the set of known obstacles is computed
simply as the maz{0,d — n}, where d is the unsigned
Euclidean distance to the piece-wise linear fits constructed
in the previous section. This value is chosen in place of
the unsigned distance as the fits generated in the previous
section do not exactly match the true surface, instead they
are within 7 of the true surface. The occlusion set can be
generated using simple ray casting, whereby all points in the
domain are classified as visible or occluded by comparing
there distance along a ray to the observer with the distance
of the first occluder on the same ray. As an improvement we
utilize the causality relation of visibility, which allows us
to reduce the number of independent distance computations
performed over the domain by recognizing that all points
along the ray beyond the first occluder are not visible.
Additional computational improvements may be obtained
utilizing the multi-resolution ray tracing method proposed
by Tsai, et al. [22]. For our implementation we encode the
visibility of each point in the domain using +1 (visible) and
—1 (occluded). Also, our implementation provides the option
to replace the above rays with cones, whose apex lies at the
observer location and central axis coincides with the original
ray. In this context the cone provides compensation for cracks
that commonly occur along boundaries between the piece-
wise linear fits generated above. The level set function ¢, is
then computed as the multiplication of the unsigned distance
field and the binary (%1) visibility. The resulting function is
positive in all visible regions, given the current observer, and
negative in the occlusion set, including the occluders.

V. SIMULATED ENVIRONMENT

In order to facilitate testing of the above methods in a va-
riety of real-world scenarios we utilized the USC Simulator
[1], [4]. This tool allows for basic sensor packages, including
cameras and LiDAR, to be placed in virtual environments
and controlled via Matlab.

The USC Simulator provides support for LiDAR-like
sensors through idealized range detection objects. Each range
detection object is modeled as a set of rays emanating from
a single point. The rays are generated according to a few
basic parameters, the horizontal and vertical field of view
and the angular step sizes. These value identify a region of
the unit sphere centered at the object’s location that will be
scanned. This model stems from the geometry of typical line
scanning devices which utilize a spinning mirror to direct an
outgoing laser beam and receiving optics with sufficient field
of view to cover the desired region of space both vertically
and horizontally.

It should be noted that the point clouds produced by
this package are effectively computed range values. Other
packages, such as DIRSIG [14], provide genuine scattering
simulations that take into account the spectral properties of
the surfaces in the virtual environment, and thus are capable
of providing much more realistic point clouds. However,
for our purposes we found this level of simulation to be
unnecessary.

VI. RESULTS

Using the above described simulation environment we
maneuvered an observer through a virtual Military Opera-
tions in Urban Terrain (MOUT) site [4]. The MOUT site
was generated using real data from the McKenna Urban
Training Site to serve as ground truth for the testing and
validation of algorithms. The observer was equipped with a
virtual LiDAR-like sensor with full visibility on the sphere.
The parameters of the virtual sensor employed in our tests
were assigned values similar to those on found on a SICK
LMS200 [15]. The virtual sensor was assigned a maximum
range reliable range of 80m, an angular resolution of 0.5°
and a field of view of 179.5°. The virtual sensor was oriented
such that each scan line ran vertically, and the sensor was
allowed to rotate about a vertical axis, performing line scans
every 0.5°.

For all explicit surface reconstructions we required a mini-
mum number of five points in any octree node for a surface fit
to be generated. Table I gives the octree and explicit surface
statistics for two sample domains. Additionally, the global
Hausdorff error is given for the reconstructions. While the
local Hausdorff error is within the requested 7, the global
error may be larger. This is due to noise, under sampling,
and other factors. In the patio scene the points responsible
for the large Hausdorff error occur inside one of the trees.
Also, the points responsible for the large error in the full
reconstruction of the church scene sit at the boundaries of
the scene where the surfaces were strongly under-sampled.



Fig. 5. Top row: The left image shows a patio area with tree cover from the
virtual MOUT site. The right image shows the integrated visibility volume
generated from 16 vantage points (shown as red circles). Bottom row: The
left image the cumulative set of scanned points, 1,769,061 from 16 scans,
colored by height. The right image shows a coarse reconstruction using
piece-wise linear fits. The domain for this test was limited to a 20m region
around the patio.

Fig. 6.  The top image shows the original scene from the simulator.
The bottom image shows a coarse reconstruction of the geometry from
the visibility. Even at this resolution the visibility algorithm is able to
discern tree trunks, columns and the tables inside the patio. Note the camera
locations used to generate these images are approximate.

The visibility function ¢,_ was defined as a 60 x 60 x 60
grid with values generated as described in Section IV-B using
cones with opening angles of 1°.

VII. CONCLUSION

In this article we have developed a visibility-based method
for autonomously exploring an unknown environment utiliz-
ing explicit and implicit representations. The method pro-
duces a visibility volume function from which vantage points
are generated at the function’s maxima. Additionally, we
demonstrated the use of an explicit surface reconstruction
tool for the generation of local visibility volumes.
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