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Abstract

In this paper, we borrow an idea from already well-known in some geometric problems (e.g.,
[1], [10]) to find a global minimizer related to the two-phase Mumford-Shah functional via
strictly convex formulations. We will briefly review how it applies to find the true minimizers
of the original non-convex problem. More importantly, we will clearly address the possibility
of a solution’s non-uniqueness for non-strict convex problems mentioned but unresolved in [13],
which is any non-strict convex problem’s issue, using our formulations. The same answer applies
to [14], [3] as well. Hence, one should consider this strictly convex formulation where the well-
known convex formulations [14], [3] come into play.

1 Introduction

Image segmentation has been an important research topic in computer vision that aims at
segmenting a given image into meaningful smaller pieces. The two of the most successful models
are a variational model called the Mumford-Shah model and a PDE model called the Perona-
Malik equation. There is an extensive collection of works in the literature investigating their
analytical aspects as well as the numerical aspect. Moreover, there are many variants of those
models fitted into specific problems. In this paper, we will take a variational approach related
to the Mumford-Shah model. The model is to minimize the following functional

MS(u,K) =

∫
Ω\K

|∇u(x)|2dx+ α

∫
Ω

|f(x)− u(x)|2dx+ βH1(K) (1)

over a piecewise smooth function u and a rectifiable curve K, which is apparently nonlinear and
non-convex. Despite its nonlinearity and non-convexity, there were many successful attempts in
analyzing the problem both analytically and numerically using various mathematical techniques
such as the Γ-convergence, etc. Among the possible applications of the model, we pay attention
to the two-phase, piecewise constant Mumford-Shah functional given a function f on Ω. The
functional (1) becomes

MS(Σ, c1, c2) = P(Σ;Ω) + λ

∫
Σ

(c1 − f(x))2dx+ λ

∫
Ω\Σ

(c2 − f(x))2dx

= P(Σ;Ω) + λ

∫
Σ

[
(c1 − f(x))2 − (c2 − f(x))2

]
dx+ λ

∫
Ω

(c2 − f(x))2dx,
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where u and K from (1) are identified with c11Σ+c21Ω\Σ and ∂Σ, respectively. All the notations
being used will be explained in the next section. Fixing Σ, the functional MS(Σ, c1, c2) as a
function of (c1, c2) is strictly convex and is easy to deal with. Indeed, the pair(

c1 =
1

|Σ|

∫
Σ

f(x)dx, c2 =
1

|Ω \ Σ|

∫
Ω\Σ

f(x)dx
)

minimizes the functional given Σ. Hence, one idea of solving the nonlinear and non-convex
problem

min
c1,c2∈R
Σ⊂Ω

MS(Σ, c1, c2) (2)

is to alternate between
min
Σ⊂Ω

MS(Σ, c1, c2) (3)

and
min

c1,c2∈R
MS(Σ, c1, c2), (4)

which, by the way, does not guarantee the convergence of the alternating minimization to (2).
Even if it does, we need to solve the non-convex problem (3). A good source of such an approach
for our presentation is “active contours without edges” [15] by T. Chan and L. Vese, where the
authors proposed to solve (3) by a level set method that made it possible to evolve a curve that
is a boundary of a region without curve parametrization unlike its predecessors [5], [9], [22], [23].
However, the formulation in [15] is still non-convex, which suffers from local minima. Then, a
work by Chan et al., [14], provided a different way to solve this non-convex problem (3) via a
convex problem that resulted in finding a global minimum. The observation made in [14] was
that once c1, c2 are fixed, a solution of

min
0≤ϕ≤1

{
F (ϕ) = J (ϕ) + λ

∫
Ω

[
(c1 − f(x))2 − (c2 − f(x))2

]
ϕ(x)dx

}
, (5)

can provide a solution of (3), which is summarized in the following theorem.

Theorem 1. (Theorem 2, [14]) For any given fixed c1, c2 ∈ R, a global minimizer for MS(·, c1, c2)
can be found by carrying out the convex minimization (5) and then setting

Σ = {x ∈ Ω : ϕ∗(x) ≥ µ}

for a.e. µ ∈ [0, 1] with a minimizer ϕ∗ of (5).

And the algorithm in [14] to solve this constrained problem (5) was derived from the following
proposition.

Proposition 1. (Claim 1, [14]) Let f ∈ L∞(Ω). Then, (5) is equivalent to the following
unconstrained convex minimization problem:

min
ϕ

{
J (ϕ) +

∫
Ω

[
αν(ϕ(x)) + λs(x)ϕ(x)

]
dx

}
where

ν(ξ) = max{0, 2|ξ − 0.5| − 1} and s(x) = (c1 − f(x))2 − (c2 − f(x))2

provided that α > λ
2 ∥s∥L∞(Ω).
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The gradient descent method with a regularized version νϵ2 of ν was used in [14] and a fast
alternating minimization algorithm was reported in [3]. In fact, [3] proposed a more general
framework than [14] by considering a more general regularizer Jg than J , where the function
g called an edge indicator is a positive continuous function. Nevertheless, it is still not known
if there is a unique minimizer of (5) simply because it is not strictly convex, which makes it
difficult to characterize the minimizers that algorithms to solve (5) can provide.

Our strictly-convex problems in various forms will turn out to be an application to image
segmentation of the ROF model [25] that was originally proposed for the image denoising task:
given a noisy image f ∈ L2(Ω), recover a clean image u∗ that is a solution of

min
u

{
J (u) + λ

∫
Ω

(f(x)− u(x))2dx
}
. (6)

The existence and the uniqueness of a solution can be easily obtained and more interesting
theoretical and computational results have been found. For instance, the characterization of the
solution using the subdifferential of a convex functional was provided in [28] and the regularity
of the solution was reported in [7], [8]. In the numerical point of view, there are many efficient
algorithms to solve (6) such as a relatively old one in [11] by Chambolle and a relatively new one
in [12]. Thanks to the vast amount of research works related to the ROF model, our proposed
strictly-convex problems will benefit from the same properties as the ROF model.

The outline of the paper is as follows. In Section 2, we will provide all the the notations and
the mathematical background necessary to understand the idea. In Section 3, we will present
a review on the idea that we borrowed from some geometric problems and apply the strictly
convex formulation to solve (3) and to provide an example where the uniqueness of a solution
of (3) fails. In Section 4, we will present our main discussion on resolving an issue of the non-
uniqueness of a solution to non-strict convex problems appeared in [13] and also in [14], [3]. It
will prove that our strict convex formulations indeed are suited better for image segmentation.
Finally, in Section 5, we will show some numerical experiments that prove fast computation and
provide visual confirmation with a meaningful stopping criterion proposed for the sake of image
segmentation task.

2 Mathematical background

Throughout the paper, we will consider a bounded open subset Ω of RN , N ≥ 1. In addition, we
will follow the convention that two functions are the same if they differ only on a set of Lebesgue
measure 0 and two sets are the same if their set difference is a set of Lebesgue measure 0.

Definition 1. A function f ∈ L1(Ω) is of bounded variation if

sup
{∫

Ω

f(x) div(φ(x))dx : φ ∈ C1
c (Ω;RN ) and ∥φ∥∞ ≤ 1

}
< ∞

and we denote the set of functions of bounded variation by BV(Ω).

One of the most important properties of a function f ∈ BV(Ω) is that it gives rise to a finite
Radon measure Df , the distributional derivative of f , on Ω and its total variation is

|Df |(Ω) = sup
{∫

Ω

f(x) div(φ(x))dx : φ ∈ C1
c (Ω;RN ) and ∥φ∥∞ ≤ 1

}
. (7)

We have an equivalent definition in the case N = 1, which will be used later.
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Definition 2. Let a, b ∈ R be such that a < b. A function f ∈ L1(a, b) is of bounded variation
if

sup
{ m∑

i=1

: |f(ti+1)− f(ti)| : a < t1 < · · · < tm+1 < b, ti ∈ I
}
< ∞,

where I ⊂ (a, b) is the set of points of approximate continuity of f and we denote this supremum
by essV b

a f .

When N = 1, we will use any of the three notations essV b
a f , |f ′|(a, b), |Df |(a, b) for the

total variation of f . For every f ∈ BV(Ω), we can define a bounded linear map Jf : C(Ω) → R
defined by

Jf (g) = ⟨g, |Df |⟩ =
∫
Ω

h(x)d|Df |(x),

which gives rise to a convex functional Jg : BV(Ω) → R, given a positive function g in C(Ω), by

Jg(f) = Jf (g).

When g ≡ 1, we will just use
J (f) := J1(f) = |Df |(Ω).

Note that BV(Ω) is a Banach space with norm

∥f∥BV(Ω) = ∥f∥L1(Ω) + J (f)

and that we will deal with the functional Jg for a positive function g ∈ C(Ω) as well as J on
BV(Ω). To sum up, Jg possesses the same properties as J , which will enable us to propose
one-step methods for two non-convex minimization problems involving J and Jg, respectively.

We will now discuss some of the properties of J transferable to the functional Jg that we
need for our presentation. We refer the reader to [18] and [20] for more detailed description of
f ∈ BV(Ω).

Lemma 1. Let g ∈ C(Ω) be positive. Given f ∈ BV(Ω),

Jg(f) = sup
{∫

Ω

f(x) div(φ(x))dx : φ ∈ C1
c (Ω;RN ) and |φ| ≤ g

}
. (8)

Proof. If g ∈ C1(Ω) is positive, then this follows from Lemma 1, [4]. Now let g ∈ C(Ω) be
positive. Then, whenever a sequence {gn} in C(Ω) converges uniformly to g, we get

Jg(f) = Jf (g) = lim
n→∞

Jf (gn) = lim
n→∞

Jgn(f).

Consider two sequences {ln} and {un} in C1(Ω) such that

ln ≤ g for all n, and {ln} converges uniformly to g,

and
un ≥ g for all n, and {un} converges uniformly to g.

It is obvious that for every n,

Jln(f) ≤ sup
{∫

Ω

f(x) div(φ(x))dx : φ ∈ C1
c (Ω;RN ) and |φ| ≤ g

}
≤ Jun(f).

Therefore, we obtain (8).

4



Indeed, for a positive function g in C(Ω),

∥f∥BV(Ω),g = ∥f∥L1(Ω) + Jg(f)

is an equivalent norm to ∥f∥BV(Ω).

Theorem 2. Let g ∈ C(Ω) be positive and 1 ≤ p < ∞. Given a sequence {fi} in BV(Ω)
converging weakly to f ∈ BV(Ω) in Lp(Ω), we obtain

Jg(f) ≤ lim inf
i→∞

Jg(fi).

Proof. For φ ∈ C1
c (Ω;RN ) with |φ| ≤ g, we obtain div(φ) ∈ Lq(Ω), 1 ≤ q ≤ ∞, and∫

Ω

f(x) div(φ(x))dx = lim
i→∞

∫
Ω

fi(x) div(φ(x))dx ≤ lim inf
i→∞

Jg(fi).

Then, Lemma 1 finishes the proof.

Theorem 2 implies that for 1 ≤ p < ∞, the extension of Jg to Lp(Ω) by

Jg(f) =

{
Jg(f), if f ∈ Lp(Ω) ∩ BV(Ω),

+∞, otherwise.

is lower semi-continuous. Especially, we will use the extension of Jg to L2(Ω).

Theorem 3. Let g ∈ C(Ω) be positive. Given f ∈ BV(Ω), there exists a sequence {fi} in
C∞(Ω) such that

lim
i→∞

∥fi − f∥L1(Ω) = 0, and Jg(f) = lim
i→∞

Jg(fi).

Proof. We are going to construct such a sequence {fi} in C∞(Ω) in the same way as it was in
[18] and [20]. So the proof will essentially the same and we will emphasize only the difference
at the end of the proof. The Given ϵ > 0, there exists a positive integer m ∈ N such that

|Df |(Ω \ Ω0) < ϵ,

where Ω0 =
{
x ∈ Ω : dist(x, ∂Ω) > 1

m

}
. For each i = 1, 2, . . . , we let

Ωi =
{
x ∈ Ω : dist(x, ∂Ω) >

1

m+ i

}
.

Then we define A1 = Ω2 and

Ai = Ωi+1 \ Ωi−1, i = 2, 3, . . . .

Since {Ai} is an open cover of Ω, we can choose a partition of unity {ϕi} subordinate to the
cover {Ai}. Let η be a positive smooth function supported in B1 = {x ∈ RN : |x| < 1} satisfying

η(x) = η(|x|) and

∫
RN

η(x)dx = 1.

For each i = 1, 2, . . . , we may choose ϵi > 0 such that

supp(ηϵi ∗ (fϕi)) ⊂ Ωi+2 \ Ωi−2

and ∥ηϵi ∗ (fϕi)− fϕi∥L1(Ω) < ϵ2−i

and ∥ηϵi ∗ (f∇ϕi)− f∇ϕi∥L1(Ω) < ϵ2−i.
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Then we set

fϵ =
∞∑
i=1

ηϵi ∗ (fϕi).

Since fϵ converges to f in L1(Ω), we obtain from Theorem 2

Jg(f) ≤ lim inf
ϵ→0

Jg(fϵ).

On the other hand, for any smooth and bounded function ϕ on RN , we have∫
Ω

f(x) div(ϕ1(x)(ηϵ1 ∗ ϕ)(x))dx ≤ J|ηϵ1∗ϕ|(f).

We can eventually obtain ∫
Ω

fϵ(x) div(ϕ(x))dx ≤ J|ηϵ1∗ϕ|(f) + 4ϵ.

If |ϕ| ≤ g, then |ηϵ1 ∗ ϕ| ≤ ηϵ1 ∗ g and J|ηϵ1∗ϕ|(f) ≤ Jηϵ1∗g(f), which implies, together with
Lemma 1,

Jg(fϵ) =

∫
Ω

h(x)|∇fϵ(x)|dx ≤ Jηϵ1
∗g(f) + 4ϵ.

Note that ϵ1 → 0 and ∥ηϵ1 ∗ g − g∥∞ → 0 as ϵ → 0, which implies

lim
ϵ→0

Jηϵ1∗g(f) = lim
ϵ→0

Jf (ηϵ1 ∗ g) = Jf (g) = Jg(f).

That is,
lim sup

ϵ→0
Jg(fϵ) ≤ Jg(f).

This finishes the proof.

We will now define the perimeter of a set E in Ω.

Definition 3. For a set E ⊂ Ω,

P(E; Ω) = J (1E) and Pg(E; Ω) = Jg(1E).

Then, just as it is given in [20] that

P(E ∪ F ; Ω) + P(E ∩ F ; Ω) ≤ P(E; Ω) + P(F ; Ω)

we can prove the same inequality for Pg.

Lemma 2. Let g ∈ C(Ω) be positive. Then,

Pg(E ∪ F ; Ω) + Pg(E ∩ F ; Ω) ≤ Pg(E; Ω) + Pg(F ; Ω)

Proof. The same proof from [20] can be applied with the use of Theorem 2 and Theorem 3.

Since a function f ∈ BV(Ω) satisfies the co-area formula:

J (f) = |Df |(Ω) =
∫ ∞

−∞
J (1Ωf

t
)dt =

∫ ∞

−∞
P(Ωf

t ; Ω)dt,

where Ωf
t = {x ∈ Ω : f(x) > t}, the same co-area formula holds for Jg due to Strang [26]:
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Lemma 3. Let g ∈ C(Ω) be positive. Given f ∈ BV(Ω),

Jg(f) =

∫ ∞

−∞
Jg(1Ωf

t
)dt =

∫ ∞

−∞
Pg(Ω

f
t ; Ω)dt,

where Ωf
t = {x ∈ Ω : f(x) > t}.

Just as we can characterize various properties of the functional J using convex analysis, we
can do the same for Jg. Among those, we want to mention one lemma whose proof can be easily
derived from [17] and [28].

Lemma 4. Let g ∈ C(Ω) be positive. Then for any u, p ∈ L2(Ω),

J ∗∗
g (u) = Jg(u) and Jg(u) + J ∗

g (p) ≥
∫
Ω

p(x)u(x)dx.

Moreover, we obtain

J ∗
g (p) = sup

u∈L2(Ω)

{∫
Ω

p(x)u(x)dx− Jg(u)
}
=

{
0, p ∈ Kg,

+∞, p /∈ Kg.

and

∂Jg(u) =
{
p ∈ Kg :

∫
Ω

p(x)u(x) = Jg(u)
}
,

where Kg is the closure in L2(Ω) of{
div(φ) : φ ∈ C1

c (Ω), |φ| ≤ g
}
.

3 Proposed method

3.1 The original problem using J
We now propose a strictly convex minimization problem for (3):

Theorem 4. Let h ∈ L2(Ω) be such that {x ∈ Ω : h(x) < 0} has positive measure. We consider
the following problem:

min
ω

{
J (ω) +

∫
Ω

(
ω(x) +

λ

2
h(x)

)2

dx
}
. (9)

Then, there exists a unique minimizer ω∗ of (9). Moreover, Σ∗ = {ω∗ > 0} is a minimizer of

min
Σ⊂Ω

{
P(Σ;Ω) + λ

∫
Σ

h(x)dx
}
. (10)

In addition, (10) has a unique minimizer if and only if {ω∗ = 0} has measure 0. Otherwise,
{ω∗ > 0} and {ω∗ ≥ 0} are the minimal and the maximal solutions of (10).

Remark 1. Note first that h ≥ 0 a.e. makes the problem (10) obvious. And the problem (9)
unlike the ones in [14], [3] is a strictly convex problem that has been intensively studied in the
image processing community, which resulted in very efficient algorithms for finding the unique
solution and does not require the given data h to be in L∞(Ω) that was a crucial condition in
proposing an unconstrained convex problem in [14]. In addition, (9) has the same complexity
as one of the subproblems in [3], which leads to faster computation of (10). We will discuss this
in the next section.
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Remark 2. If h is set to be (c1−f)2−(c2−f)2, then (10) is the same problem as (3). Therefore,
Theorem 4 provides a way to solve (3) directly via a strictly convex problem.

Before proving Theorem 4, we will modify the form of the functional in (9) to emphasize
where it originated from. Fix β > 0 and define

ϕ(x) =
1

2
+

1

β
ω(x) and H(x) =

1

2
− λ

2β
h(x). (11)

Then, H ∈ L2(Ω) and

J (ϕ) =
1

β
J (ω) and ϕ(x)−H(x) =

1

β

(
ω(x) +

λ

2
h(x)

)
.

Hence, ω∗ is the unique minimizer of (9) if and only if ϕ∗ = 1
2 +

1
βω

∗ is the unique minimizer of

min
ϕ

{
J (ϕ) + β

∫
Ω

(
ϕ(x)−H(x)

)2

dx
}
. (12)

And {ϕ∗ > 1
2 + t

β } = {ω∗ > t} and {ϕ∗ ≥ 1
2 + t

β } = {ω∗ ≥ t} for all t ∈ R. Note also that

(12) has the same minimizer as

min
ϕ

{
J (ϕ) + λ

∫
Ω

ϕ(x)h(x)dx+ β

∫
Ω

(
ϕ(x)− 1

2

)2

dx
}
. (13)

Moreover, if we consider ϕ = 1Σ, then (13) becomes the same problem as (10) since the last
term in (13) becomes a constant β|Ω|.

Proof. Since there exist a great number of works in the literature about theoretical and com-
putational aspects of the problem (9) including existence and uniqueness of the solution, we
will not discuss those further in detail here. Instead, we would like to focus on the relationship
between (9) and (10).

By Proposition 2 below, Ωϕ∗

1
2

= {ϕ∗ > 1
2} is a minimizer of

min
Σ⊂Ω

{
P(Σ;Ω) + 2β

∫
Σ

(1
2
−H(x)

)
dx

}
= min

Σ⊂Ω

{
P(Σ;Ω) + λ

∫
Σ

h(x)dx
}
.

Especially, we obtain from (11) that {ω∗ > 0} is the unique minimizer of (10) if and only if
{ω∗ = 0} has measure 0, where

ω∗ = β
(
ϕ∗ − 1

2

)
.

Otherwise, {ω∗ > 0} and {ω∗ ≥ 0} are the minimal and the maximal solutions of (10).

Proposition 2. (Proposition 3.1, [7]) For any t ∈ R, consider the minimal surface problem

min
Σ⊂Ω

{
P(Σ;Ω) + 2β

∫
Σ

(t−H(x))dx
}

(14)

(whose solution is defined in the class of finite-perimeter sets and hence up to a Lebesgue-
negligible set). Then, for the minimizer ϕ∗ of (12), {ϕ∗ > t} (resp., {ϕ∗ ≥ t}) is the minimal
(resp., maximal) solution of (14). In particular, for all t but a countable set, the solution of this
problem is unique.
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We would like to mention that our strictly convex formulation is not new because Proposi-
tion 2 has already been known in some geometric problems (e.g. [1], [10]) and we just realized
its connection to the two-phase Mumford-Shah minimization model. [1] presents a characteri-
zation of convex calibrable sets in RN via the mean curvature motion and [10] also discussed
an algorithm for mean curvature motion, both of which are related to the ROF model with an
input f = 1C . Later, [6] characterized covex calibrable sets in RN with respect to anisotropic
norms generalizing the result of [1].

Despite this nice characterization and existence results related to (9) based on the works
mentioned above, the source of difficulty of the two-phase image segmentation problem lies in
the fact that a solution of the underlying problem (10) may not be unique, which can be observed
by the following example.

Proposition 3. Let Ω = (0, 1)× (0, 3) ⊂ R2 and λ > 0. We choose a function h on Ω to be

h(x) =


− 2

λ , for x ∈ (0, 1)× (0, 1),

0, for x ∈ (0, 1)× (0, 2),
2
λ , for x ∈ (0, 1)× (2, 3).

Then, all the solutions of (10) are of the form Σγ = (0, 1) × (0, γ) for γ ∈ [1, 2]. That is, Σ1

and Σ2 are the minimal and the maximal solutions of (10) and the solution ω∗ of (9) satisfies
{ω∗ = 0} = (0, 1)× (1, 2).

Proof. Let Σ ⊂ Ω be a solution. Then,

P(Σ;Ω) + λ

∫
Σ

h(x)dx ≤ −1 = P((0, 1)× (0, 1); Ω) + λ

∫
(0,1)×(0,1)

h(x)dx. (15)

Note that P(Σ;Ω) > 0. We will prove now that P(Σ;Ω) = 1. Suppose that P(Σ;Ω) < 1. If we
choose a ball B of radius r centered at ( 12 ,

1
2 ) with

r =
P(Σ;Ω)

2π
<

1

2π
,

then B ⊂ (0, 1)× (0, 1) and

P(B; Ω) + λ

∫
B

h(x)dx = P(Σ;Ω)− 2|B| ≤ P(Σ;Ω)− 2|Σ| ≤ P(Σ;Ω) + λ

∫
Σ

h(x)dx.

However, P(B; Ω) + λ
∫
B
h(x)dx = 2πr − 2πr2 = πr(1− r) > 0 implying

P(Σ;Ω) + λ

∫
Σ

h(x)dx > 0,

which contradicts (15). Therefore, P(Σ;Ω) ≥ 1 and this implies

P(Σ;Ω) + λ

∫
Σ

h(x)dx ≥ P((0, 1)× (0, 1); Ω) + λ

∫
(0,1)×(0,1)

h(x)dx. (16)

Indeed, by (15) and (16), we know that

P(Σ;Ω) + λ

∫
Σ

h(x)dx = P((0, 1)× (0, 1); Ω) + λ

∫
(0,1)×(0,1)

h(x)dx = −1

and P(Σ;Ω) = 1. Since∫
Σ

h(x)dx =

∫
(0,1)×(0,1)

h(x)dx =

∫
(0,1)×(0,2)

h(x)dx = −2,
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we also know that Σ satisfies

(0, 1)× (0, 1) ⊂ Σ ⊂ (0, 1)× (0, 2) a.e.

If we set γ1, γ2 such that

γ1 = sup{γ ∈ [1, 2] : |Σγ \ Σ| = 0},
γ2 = inf{γ ∈ [1, 2] : |Σ \ Σγ | = 0},

then γ1 = γ2. Otherwise, P(Σ;Ω) > 1 that can be easily seen by [2] and [19]. Therefore,

Σ = Σγ ,

where γ = inf{γ ∈ [1, 2] : |Σ \ Σγ | = 0}. Therefore, all the solutions of (10) are of the form

Σγ = (0, 1)× (0, γ) for γ ∈ [1, 2].

Since Σ1 and Σ2 are the minimal and the maximal solutions of (10), given the solution ω∗ of
(9) we know that

{ω∗ > 0} = Σ1 and {ω∗ ≥ 0} = Σ2,

implying that {ω∗ = 0} = (0, 1)× (1, 2).

The above example is probable when one tries to segment an image taking 3 values into two
regions in the following setting. Let f be defined on Ω = (0, 1)× (0, 3) by

f(x) =


0, for x ∈ (0, 1)× (0, 1),

1, for x ∈ (0, 1)× (0, 2),

2, for x ∈ (0, 1)× (2, 3)

and we choose c1 = 1− 1
2λ and c2 = 1+ 1

2λ . If we solve (3) with these data c1, c2, f , then we end
up solving (10) with h = (c1−f)2− (c2−f)2, which is the same problem given in Proposition 3.
Hence, we can view this as a problem that finds an image taking only two values c1 and c2 which
best approximates the imgae f in the sense of (3) and this explains a limitation of (3).

Despite this uncertainty, Theorem 4 guarantees that the strictly convex problem (9) always
provides the minimal and the maximal solutions of (3), which explains whether there is a unique
solution to (3).

3.2 A variant problem using Jg

For the purpose of comprehensiveness, we will now consider a slight modification of the problem
investigated in the previous sections: given a positive continuous and bounded function g,

min
Σ⊂Ω

{
Pg(Σ;Ω) + λ

∫
Σ

h(x)dx
}
. (17)

This problem was discussed in [3] by considering the following convex minimization problem:

min
0≤ϕ≤1

{
Jg(ϕ) + λ

∫
Ω

ϕ(x)h(x)dx
}
. (18)

Its unconstrained version was obtained in the same way as in [14] and then an alternating
minimization algorithm was proposed to take care of the non-strictly convex term that ensures
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that a minimizer is bounded between 0 and 1. To be more precise, the alternating minimization
algorithm in [3] to solve (18) is to solve the following two problems iteratively:

min
u

{
Jg(u) +

1

2θ

∫
Ω

(u(x)− v(x))2dx
}

(19)

and

min
v

{ 1

2θ

∫
Ω

(u(x)− v(x))2dx+

∫
Ω

(λv(x)h(x) + αν(v(x)))dx
}
. (20)

It turns out that both of the two subproblems, (19) and (20), are easy to solve and this method
provides more accurate results than (5), where J is used, due to the edge indicator function
g in Jg. However, there are convergence issues in alternating minimization problems. For
instance, we need to make sure that alternating between the two subproblems converges and it
can eventually find a true minimizer of (18). There is also an issue of how many times we should
alternate between the two subproblems for numerical computations. Alternating between them
10 times was considered in [3].

We now propose the following strictly-convex problem to solve (17), which can resolve those
issues mentioned above. Note that our proposed problem has the same computational complex-
ity as (19) guaranteeing that our method is faster in nature than the alternating minimization
algorithm. We can simply transfer the analysis related to J in the previous sections to this
variant related to Jg, which is what we will do now.

Theorem 5. Let g ∈ C(Ω) be positive. Given h ∈ L2(Ω), consider the following problem:

min
ω

{
Jg(ω) +

∫
Ω

(
ω +

λ

2
h(x)

)2

dx
}
. (21)

Then, there exists a unique minimizer ω∗ of (21). Moreover, Σ∗ = {ω∗ > 0} is a minimizer
of (17). In addition, (17) has a unique minimizer if and only if {ω∗ = 0} has measure 0.
Otherwise, {ω∗ > 0} and {ω∗ ≥ 0} are the minimal and the maximal solutions of (17).

Note that by defining ϕ and H in the same way as (11) with fixed β > 0, (21) becomes
equivalent to

min
ϕ

{
Jg(ϕ) + β

∫
Ω

(
ϕ(x)−H(x)

)2

dx
}
. (22)

Hence, ϕ∗ is the unique minimizer of (22) if and only if ω∗ is the unique minimizer of (21). And
{ϕ∗ > 1

2 + t
β } = {ω∗ > t} and {ϕ∗ ≥ 1

2 + t
β } = {ω∗ ≥ t} for all t ∈ R.

Before proving this theorem, we need to establish the same tools for Jg as those for J .

Lemma 5. Let f1, f2 ∈ L1(Ω) and E and F , respectively, minimizers of

min
Σ

{
Pg(Σ,Ω)−

∫
Σ

f1(x)dx
}

and min
Σ

{
Pg(Σ,Ω)−

∫
Σ

f2(x)dx
}
.

Then if f1 < f2 a.e., then |E \ F | = 0.

Proof. We only need the following inequality

Pg(A ∩B,Ω) + Pg(A ∪B,Ω) ≤ Pg(A,Ω) + Pg(B,Ω)

from Lemma 2. The rest of the proof is the same as that of Lemma 4 in [1].
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Proposition 4. For any t ∈ R, consider the minimal surface problem

min
Σ⊂Ω

{
Jg(1Σ) + 2β

∫
Σ

(t−H(x))dx
}

(23)

(whose solution is defined in the class of finite-perimeter sets and hence up to a Lebesgue-
negligible set). Then, for the minimizer ϕ∗ of (22), {ϕ∗ > t} (resp., {ϕ∗ ≥ t}) is the minimal
(resp., maximal) solution of (23). In particular, for all t but a countable set, the solution of this
problem is unique.

Proof. The proof is fundamentally the same as that of Proposition 2.2 in [10]. There are just
minor modifications. Hence, we will omit the details.

Proof. (Proof of Theorem 5) The same method to prove Theorem 4 using Proposition 2 applies
with the help of Proposition 4.

4 Main discussion on an ambiguity for an L1 problem

We would like to describe how we can solve a non-strict convex minimization L1 problem by
solving a strictly convex L2 problem to answer an open question arisen in [13], which is related
to how certain one can be that a solution from the non-strict convex problem is meaningful. Let
us first recall the following theorem:

Theorem 6. If the observed image f(x) is the characteristic function of a bounded domain
Ω1 ⊂ Ω, then for any λ ≥ 0, there exists a minimizer of E1(·, λ) that is also the characteristic
function of a (possibly different) domain. In other words, when the observed image is binary,
then for each λ ≥ 0, there is at least one u(x) ∈ M(λ) which is also binary.

In fact, if uλ(x) ∈ M(λ) is any minimizer of E1(·, λ), then for almost every γ ∈ [0, 1] we
have that the binary function

1{x∈Ω:uλ>γ}(x)

is also a minimizer of E1(·, λ).

This theorem for the case of Ω = RN was provided in [13], where the functional E1(·, λ) was
defined by

E1(u, λ) =

∫
Ω

|∇u|+ λ

∫
Ω

|f − u|dx = J (u) + λ

∫
Ω

|f − u|dx

and M(λ) is the set of minimizers of the functional E1(·, λ). The same proof works for an open
set Ω ⊂ RN in a more general framework, [3]. The main contribution of [13] was to solve the
non-convex L2 problem

min
Σ⊂Ω,

u(x)=1Σ(x)

J (u) + λ

∫
Ω

(f(x)− u(x))2dx (24)

by the convex L1 problem

min
u∈BV(Ω)

J (u) + λ

∫
Ω

|f(x)− u(x)|dx, (25)

when f(x) = 1Ω1(x). Note that Theorem 6 guarantees that

1{x∈Ω:uλ>γ}

12



is a minimizer of (24) for a.e. γ ∈ [0, 1] whenever uλ is a minimizer of (25). However, the
convex problem (25) is not completely satisfactory because of the following reasons. Firstly,
Theorem 6 guarantees a minimizer of (10) only when the observed image f is binary. Secondly,
it is not clear for which γ ∈ [0, 1] values the solution 1{x∈Ω:uλ>γ} of (10) is meaningful when uλ

is a minimizer of (25). Thirdly, the L1 part in (25) is neither differentiable nor strictly convex.
In this sense, the form of (24) is preferred as long as an exact solution can be found with at
most the same complexity as (25). With the same process as what was observed in the previous
section, we can modify (24) to have a form of (9) that can find a minimizer of (10) even if the
observed image f is not binary. Note that the L2 part of (9) is not only differentiable, but also
strictly convex.

For f = 1Ω1 , (24) is equivalent to

min
Σ⊂Ω,

u(x)=1Σ(x)

{
J (u) + λ

∫
Ω

(f(x)− u(x))2dx− λ

∫
Ω

(
u(x)− 1

2

)2

dx
}
,

which becomes the following convex problem:

min
Σ⊂Ω,

u(x)=1Σ(x)

{
J (u) + 2λ

∫
Ω

(1
2
− f(x)

)
u(x)dx

}
. (26)

Theorem 7 below states the connection between (25) and (24) in the reverse order in the
sense that (25) can be solved using (26) efficiently.

Theorem 7. If the observed image f(x) is the characteristic function of a bounded domain
Ω1 ⊂ Ω, then for any λ ≥ 0, the unique minimizer ω∗ of

min
ω

{
J (ω) +

∫
Ω

(
ω(x) + λh(x)

)2

dx
}
, (27)

where

h(x) =
1

2
− f(x) =

1

2
1Ω\Ω1

(x)− 1

2
1Ω1(x),

provides 1{ω∗>0} and 1{ω∗≥0} as the minimizers of the convex L1 minimization problem (25).
Moreover, (25) has a unique minimizer if and only if {ω∗ = 0} has measure 0.

Proof. This is a corollary of Theorem 4.

We will now discuss an open question arisen in [13], i.e., if it is possible to find a solution of
(25) that has more than two values when the given input data f is a characteristic function. This
is equivalent to if there exists a unique solution of (24) since it can be easily seen from Theorem 6
that there exists a solution of (25) taking more than two values if and only if there exist two
distinct sets Σ1,Σ2 ⊂ Ω such that Σ1 ⊂ Σ2 ̸= Ω and 1Σ1 and 1Σ2 are two distinct solutions of
(24). The difficulty of this question in the non-strict convex setting lies in characterizing the
set of minimizers with an arbitrary binary input and one can ask the same question in [14],
[3]. The answer to the open question is that it is indeed possible to find such a solution, which
can be seen as a corollary of the following proposition. Below, Proposition 5 solves a particular
case of the strictly convex formulation (27) that plays a very important role of confirming that
a chosen function is indeed a minimizer of (25) in Corollary 1 and Corollary 2 and eventually
constructing solutions with more than two values.

Proposition 5. Let Ω = (0, 3). Let Σ = (0, 1) ∪ ( 32 , 2) and f = 1Σ. Then, for λ = 2 and

h =
1

2
1Ω\Σ − 1

2
1Σ in Ω,
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the solution s of (27) is

s =
1

2
1(0,1) −

1

2
1(2,3).

Proof. Let s be the solution of (27) with λ = 2 and h = 1
21Ω\Σ − 1

21Σ. Note that s is unique
and −1 ≤ s ≤ 1 in Ω.

On (1, 3
2 ), we define

s1(r) = sup
q is affine,
q≤s a.e.

q(r).

Then, s1 is convex and s ≥ s1 a.e. in (1, 3
2 ). We set γ = minr∈(1, 32 )

s1(r) and

β1 = lim
r→1+

s1(r), β2 = lim
r→ 3

2
−
s1(r).

Let
s∗ = s1Ω\(1, 32 )

+ s11(1, 32 ).

Note that

|s′|
(
1,

3

2

)
= essV

3
2
1 s ≥ (β1 − γ) + (β2 − γ) = |s′1|

(
1,

3

2

)
.

and∫ 3
2

1

(s(r) + 2h(r))2dr =

∫ 3
2

1

(s(r) + 1)2dr ≥
∫ 3

2

1

(s1(r) + 1)2dr =

∫ 3
2

1

(s1(r) + 2h(r))2dr.

Let I ⊂ Ω be the set of points of approximate continuity of s and

l0 ∈ I ∩ (0, 1] and l00 ∈ I ∩
[3
2
, 3
)
.

For any ϵ > 0, we may choose l1 < l2 < l3 < l4 in I ∩ (1, 3
2 ) such that

s(l2) < β1 < s(l1) + ϵ, |s(l2)− γ| < ϵ, |s(l3)− γ| < ϵ, s(l3) < β2 < s(l4) + ϵ.

Then,
|β1 − s(l1)|+ |s(l1)− s(l2)| ≥ β1 − s(l2) > β1 − γ − ϵ,

and
|β2 − s(l4)|+ |s(l4)− s(l3)| ≥ β2 − s(l3) > β2 − γ − ϵ,

which implies that

|s(l0)− β1|+ (β1 − γ) + (β2 − γ) + |s(l00)− β2|
≤ |s(l0)− (s(l1) + ϵ)|+ |(s(l1) + ϵ)− β1|+ (β1 − γ)

+ (β2 − γ) + |(s(l4) + ϵ)− β2|+ |s(l00)− (s(l4) + ϵ)| (28)

≤ |s(l0)− s(l1)|+ s(l1)− γ + s(l4)− γ + |s(l4)− s(l00)|+ 4ϵ

≤ |s(l0)− s(l1)|+
3∑

i=1

|s(li+1)− s(li)|+ |s(l4)− s(l00)|+ 6ϵ.

We can also choose 0 < t1 < · · · < tm+1 < 3, ti ∈ I such that

|(s∗)′|(Ω) = essV 3
0 s

∗ ≤
m∑
i=1

|s∗(ti+1)− s∗(ti)|+ ϵ

=

k1−1∑
i=1

|s∗(ti+1)− s∗(ti)|+
k2∑

i=k1

|s∗(ti+1)− s∗(ti)|+
m∑

i=k2+1

|s∗(ti+1)− s∗(ti)|+ ϵ,
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where tk1 ≤ 1 < tk1+1 ≤ tk2 < 3
2 ≤ tk2+1. For 1 < p1 < tk1+1 ≤ tk2 < p2 < 3

2 and p1, p2 ∈ I
such that

|s1(p1)− β1| < ϵ and |s1(p2)− β2| < ϵ,

we have

|(s∗)′|(Ω) ≤
k1−1∑
i=1

|s(ti+1)− s(ti)|+ |s(tk1)− s1(p1)|+ (β1 − γ) + (β2 − γ)

+ |s1(p2)− s(tk2+1)|+
m∑

i=k2+1

|s(ti+1)− s(ti)|+ ϵ

≤
k1−1∑
i=1

|s(ti+1)− s(ti)|+ |s(tk1)− β1|+ (β1 − γ) + (β2 − γ)

+ |s(tk2+1)− β2|+
m∑

i=k2+1

|s(ti+1)− s(ti)|+ 3ϵ.

By (28), we obtain
|(s∗)′|(Ω) ≤ |s′|(Ω) + 9ϵ.

Since ϵ > 0 is arbitrary, |(s∗)′|(Ω) ≤ |s′|(Ω) and∫
Ω

(s∗(r) + 2h(r))2dr ≤
∫
Ω

(s(r) + 2h(r))2dr,

that is, s∗ = s. Hence, s is convex in (1, 3
2 ). Likewise, s can be proved to be convex in (2, 3).

If we change min to max and inf to sup, then it can be easily seen that s is concave in (0, 1)
and in ( 32 , 2). Therefore, s can have jump discontinuities only at r = 1, 3

2 , 2. We will now prove
that s is constant on each of the intervals, (0, 1), (1, 3

2 ), (
3
2 , 2), (2, 3). We will only show that s

is constant on (1, 3
2 ) since the same proof applies to the other intervals. First of all, let

γ = min
r∈(1, 32 )

s(r) and β1 = lim
r→1+

s(r), β2 = lim
r→ 3

2
−
s(r).

If we define s2(r) = γ for r ∈ (1, 3
2 ), then

|s′|
(
1,

3

2

)
=

∫ 3
2

1

|s′(r)|dr = β1 + β2 − 2γ = β1 + β2 − 2γ + |(s2)′|
(
1,

3

2

)
and ∫ 3

2

1

(s(r) + 2h(r))2dr =

∫ 3
2

1

(s(r) + 1)2dr ≥
∫ 3

2

1

(γ + 1)2dr =

∫ 3
2

1

(s2(r) + 2h(r))2dr.

Now if we set s∗ = s1Ω\(1, 32 )
+ s21(1, 32 ), then

|s′|(Ω) =
∫ 1

0

|s′(r)|dr +
∫ 3

2

1

|s′(r)|dr +
∫ 2

3
2

|s′(r)|dr +
∫ 3

2

|s′(r)|dr +A1 +A 3
2
+A2

=

∫ 1

0

|s′(r)|dr +
∫ 3

2

1

|(s2)′(r)|dr +
∫ 2

3
2

|s′(r)|dr +
∫ 3

2

|s′(r)|dr

+A1 + (β1 − γ) +A 3
2
+ (β2 − γ) +A2

≥|(s∗)′|(Ω),
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where At is the size of the jump of s at t, i.e.,

At =
∣∣∣ lim
r→t−

s(r)− lim
r→t+

s(r)
∣∣∣,

since

A1 + (β1 − γ) =
∣∣∣ lim
r→1−

s(r)− lim
r→1+

s(r)
∣∣∣+ ∣∣∣ lim

r→1+
s(r)− lim

r→1+
s2(r)

∣∣∣ ≥ ∣∣∣ lim
r→1−

s∗(r)− lim
r→1+

s∗(r)
∣∣∣

and, likewise,

A 3
2
+ (β2 − γ) ≥

∣∣∣ lim
r→ 3

2
−
s∗(r)− lim

r→ 3
2
+
s∗(r)

∣∣∣.
Hence, we obtain

|(s∗)′|(Ω) ≤ |s′|(Ω) and
∫
Ω

(s∗(r) + 2h(r))2dr ≤
∫
Ω

(s(r) + 2h(r))2dr,

that is, s∗ = s implying that s is constant on (1, 3
2 ). We can now represent the solution s as

c11(0,1) + c21(1, 32 ) + c31( 3
2 ,2)

+ c41(2,3)

for some constants −1 ≤ c1, c2, c3, c4 ≤ 1 and

|s′|(Ω) +
∫
Ω

(s(r) + 2h(r))2dr =|c1 − c2|+ |c2 − c3|+ |c3 − c4|

+ (c1 − 1)2 +
1

2
(c2 + 1)2 +

1

2
(c3 − 1)2 + (c4 + 1)2

≤ min
−1≤a1,a2,a3,a4≤1

{
|a1 − a2|+ |a2 − a3|+ |a3 − a4|

+ (a1 − 1)2 +
1

2
(a2 + 1)2 +

1

2
(a3 − 1)2 + (a4 + 1)2

}
.

Let us define

H(a1, a2, a3, a4) = |a1−a2|+ |a2−a3|+ |a3−a4|+(a1−1)2+
1

2
(a2+1)2+

1

2
(a3−1)2+(a4+1)2

and set
M = H(c1, c2, c3, c4) = min

−1≤a1,a2,a3,a4≤1
H(a1, a2, a3, a4).

If a1 < a2 ≤ 1, then

H(a1, a2, a3, a4) =
(
a1 −

3

2

)2

− 5

4
+

1

2
(a22 + 4a2 + 1) + |a2 − a3|+ |a3 − a4|+

1

2
(a3 − 1)2 + (a4 + 1)2

> H(a2, a2, a3, a4)

since
(
a1 − 3

2

)2

>
(
a2 − 3

2

)2

. This implies c1 ≥ c2. In the same way, c3 ≥ c4 can be easily

observed. We will now show that c3 ≥ c2. Suppose that c3 < c2. Together with c1 ≥ c2 and
c3 ≥ c4, we have

c1 ≥ c2 > c3 ≥ c4.

Note that

H(c1, c2, c3, c4) = c1 − c4 + (c1 − 1)2 +
1

2
(c2 + 1)2 +

1

2
(c3 − 1)2 + (c4 + 1)2

> c1 − c4 + (c1 − 1)2 +
1

2
(c2 + 1)2 +

1

2
(c2 − 1)2 + (c4 + 1)2

= H(c1, c2, c2, c4).
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This is a contradiction since

H(c1, c2, c3, c4) = M = min
−1≤a1,a2,a3,a4≤1

H(a1, a2, a3, a4).

Therefore, we have obtained c1 ≥ c2 and c3 ≥ c2 and c3 ≥ c4 and

M =
(
c1 −

1

2

)2

+
1

2
(c2 − 1)2 +

1

2
(c3 + 1)2 +

(
c4 +

1

2

)2

+
3

2

=
(
c1 −

1

2

)2

+
1

2
(c22 + c23) + (c3 − c2) +

(
c4 +

1

2

)2

+
5

2
≥ 5

2
.

It is easy to see that c1 = 1
2 , c2 = c3 = 0, c4 = −1

2 and M = 5
2 and the solution s of (27) with

λ = 2 and g = 1
21Ω\Σ − 1

21Σ is

s =
1

2
1(0,1) −

1

2
1(2,3).

We can now explain the possibility of non-uniqueness of a solution of (25).

Corollary 1. For N ≥ 1, given Ω = (0, 3)N and f = 1Σ in Ω, where

Σ =
(
(0, 1) ∪

(3
2
, 2
))

× (0, 3)N−1,

the solution ω∗ of (27) with λ = 2 and g = 1
21Ω\Σ − 1

21Σ is

ω∗ =
1

2
1(0,1)×(0,3)N−1 − 1

2
1(2,3)×(0,3)N−1 .

Moreover, {ω∗ = 0} = (1, 2)× (0, 3)N−1 implies that for t ∈ (0, 1),

t1Σ1 + (1− t)1Σ2

is a solution of (25) taking more than two values, where

Σ1 = (0, 1)× (0, 3)N−1, Σ2 = (0, 2)× (0, 3)N−1.

Proof. The case N = 1 was proved in Proposition 5. Let ω∗ be the solution of (27) with the
given data with N ≥ 2. We can choose a sequence of C∞ functions ϕn such that

lim
n→∞

{
J (ϕn) +

∫
Ω

(ϕn(x) + 2h(x))2dx
}
= J (ω∗) +

∫
Ω

(ω∗(x) + 2h(x))2dx.

By Proposition 5, we note that for all n,

J (ϕn) +

∫
Ω

(ϕn(x) + 2h(x))2dx =

∫
Ω

[
|∇ϕn(x)|+ (ϕn(x) + 2h(x))2

]
dx

=

∫
(0,3)N−1

{∫ 3

0

[
|∇ϕn(x1, XN−1)|+ (ϕn(x1, XN−1) + 2h̃(x1))

2
]
dx1

}
dXN−1

≥
∫
(0,3)N−1

{∫ 3

0

[
|∂x1ϕn(x1, XN−1)|+ (ϕn(x1, XN−1) + 2h̃(x1))

2
]
dx1

}
dXN−1

≥
∫
(0,3)N−1

{
|s′|(0, 3) +

∫ 3

0

(s(x1) + 2h̃(x1))
2dx1

}
dXN−1,
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where s is the solution in Proposition 5 with

h̃(x1) =
1

2
1(1, 32 )∪(2,3)(x1)−

1

2
1(0,1)∪( 3

2 ,2)
(x1) in (0, 3)

and XN−1 = (x2, . . . , xN ). Therefore, we obtain that

ω∗(x1, XN−1) = s(x1), i.e., ω∗ =
1

2
1(0,1)×(0,3)N−1 − 1

2
1(2,3)×(0,3)N−1 .

Since {ω∗ = 0} = (1, 2) × (0, 3)N−1 has positive measure, Theorem 7 implies that (25) with
λ = 2 and f = 1Σ has two distinct solutions 1Σ1 and 1Σ2 , where

Σ1 = (0, 1)× (0, 3)N−1, Σ2 = (0, 2)× (0, 3)N−1.

Since (25) is a convex problem,
t1Σ1 + (1− t)1Σ2

is a solution of (25) taking more than two values for any t ∈ (0, 1).

Corollary 2. Let Ω = R and Σ = (0, 1) ∪ ( 32 , 2) and f = 1Σ. Then, (25) with λ = 2 has a
solution t1(0,1) + (1− t)1(0,2) taking more than two values for t ∈ (0, 1).

Proof. In this proof, for an open set A = (a, b), we will use the notation J (·;A) for

J (u;A) = essV b
a u

to emphasize the domain A. Let Ω̃ = (− 1
2 ,

5
2 ) and h = 1

21Ω̃\Σ − 1
21Σ and λ = 2. Then, the

unique solution s of (27) with Ω = Ω̃ and h = 1
21Ω̃\Σ − 1

21Σ is constant on each of the intervals,

(−1
2 , 0), (0, 1), (1,

3
2 ), (

3
2 , 2), (2,

5
2 ), as was seen in Proposition 5. Now, we consider

H(a1, a2, a3, a4, a5) =|a1 − a2|+ |a2 − a3|+ |a3 − a4|+ |a4 − a5|

+
1

2
(a1 + 1)2 + (a2 − 1)2 +

1

2
(a3 + 1)2 +

1

2
(a4 − 1)2 +

1

2
(a5 + 1)2.

For some −1 ≤ c1, c2, c3, c4, c5 ≤ 1, the solution s is

c11(− 1
2 ,0)

+ c21(0,1) + c31(1, 32 ) + c41( 3
2 ,2)

+ c51(2, 52 )

where H(c1, c2, c3, c4, c5) = min−1≤a1,a2,a3,a4,a5≤1 H(a1, a2, a3, a4, a5). Note that if 1 ≥ a1 > a2,
then

H(a1, a2, a3, a4, a5) > H(a2, a2, a3, a4, a5).

Likewise, if a4 < a5 ≤ 1, then

H(a1, a2, a3, a4, a5) > H(a1, a2, a3, a4, a4).

Hence, we know that c1 ≤ c2 and c4 ≥ c5. It is also easy to see that c3 ≤ min(c2, c4). Then,

H(c1, c2, c3, c4, c5) =2c2 − c1 − c3 + 2c4 − c3 − c5

+
1

2
(c1 + 1)2 + (c2 − 1)2 +

1

2
(c3 + 1)2 +

1

2
(c4 − 1)2 +

1

2
(c5 + 1)2

=
1

2
c21 + c22 +

1

2
(c3 − 1)2 +

1

2
(c4 + 1)2 +

1

2
c25 + 2

=
1

2
c21 + c22 +

1

2
(c23 + c24) + (c4 − c3) +

1

2
c25 + 3 ≥ 3
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implies
c1 = c2 = c3 = c4 = c5 = 0 and H(c1, c2, c3, c4, c5) = 3.

Then, s = 0 is the solution of (27) with Ω = Ω̃ and h = 1
21Ω̃\Σ − 1

21Σ. In other words, s = 0

and s = 1Ω̃ are solutions of (25) with Ω = Ω̃ with f = 1Σ by Theorem 7. Note that

J (0; Ω̃) + λ

∫
Ω̃

|1Σ(x)− 0|dx = 2|Ω̃ ∩ Σ| = 3,

and

J (1Ω̃; Ω̃) + λ

∫
Ω̃

|1Σ(x)− 1Ω̃(x)|dx = 2|Ω̃ \ Σ| = 3.

If s̃ is a minimizer of

min
u

{
J (u;R) + λ

∫
R
|1Σ(x)− u(x)|dx

}
,

then

3 = J (0; Ω̃) + λ

∫
Ω̃

|1Σ(x)− 0|dx ≤ J (s̃; Ω̃) + λ

∫
Ω̃

|1Σ(x)− s̃(x)|dx

≤ J (s̃;R) + λ

∫
R
|1Σ(x)− s̃(x)|dx ≤ J (0;R) + λ

∫
R
|1Σ(x)− 0|dx = 3,

which implies that s = 0 is also a minimizer of (25) with Ω = R and

J (0;R) + λ

∫
R
|1Σ(x)− 0|dx = 3.

Since

J (1(0,1);R) + λ

∫
R
|1Σ(x)− 1(0,1)(x)|dx = 2 + 2|Σ \ (0, 1)| = 3

and

J (1(0,2);R) + λ

∫
R
|1Σ(x)− 1(0,2)(x)|dx = 2 + 2|(0, 2) \ Σ| = 3,

we know that 1(0,1) and 1(0,2) are two distinct solutions of (25) with Ω = R, λ = 2 and that

t1(0,1) + (1− t)1(0,2)

is also a solution of (25) with Ω = R, λ = 2 taking more than two values for any t ∈ (0, 1).

5 Numerical experiments

We will present some numerical computations in this section solving (9) via the algorithm by
Chambolle [11]. We will not pursue an exhaustive numerical investigation on various algorithms
because there have already been many important works in the literature dedicated to the nu-
merical aspects and their applications. Our experiments are simply to confirm visually that we
can solve image segmentation problems fast by using the proposed strictly-convex minimiza-
tion problems. Nevertheless, we would like to draw attention to [12], one of the most recent
algorithms, that guarantees the optimal convergence O(1/N2) for the ROF model. We noticed
that our proposed stopping criterion (30) below produces satisfying results with the algorithm
by Chambolle [11] as fast as with the one in [12] despite the fact that the convergence of the
algorithm in [11] is slower than that of [12], which might indicate that any decent convergent
algorithms should work. This comparison will follow after the presentation with the algorithm
by Chambolle [11]. All the experiments in this section were obtained by repeating the following
steps 3 times with λ = 5 fixed:
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1. Set the two constants c1 and c2 by

c1 =
1

|Σ|

∫
Σ

f(x)dx and c2 =
1

|Ω \ Σ|

∫
Ω\Σ

f(x)dx.

2. Having c1, c2 defined as above, we compute the solution ω∗ of (9) with h replaced by

(c1 − f(x))2 − (c2 − f(x))2,

and set Σ = {ω∗ > 0}.
When setting c1 and c2 for the first time, we simply chose Σ ⊂ Ω to be a circular disk in the

center of the domain Ω whose area is about half of the area of Ω. And we run the algorithm by
Chambolle [11] to solve (9), which is described by

pn+1
i,j =

pni,j + τ(∇(div(pn) + λh))i,j

1 + +τ |(∇(div(pn) + λh))i,j |

with τ = 0.1. The usual stopping criterion for this algorithm is

max
i,j

|pn+1
i,j − pni,j | < ϵ (29)

for a chosen ϵ > 0. Then,

ω∗
i,j = −λ

2
hi,j −

1

2
(div(pn+1))i,j

is considered to be the unique solution of (9) and Σ = {(i, j) : ω∗
i,j > 0} is a solution of (10).

Note, however, that what we really need to find is the region where ω∗ is positive. This leads
to another stopping criterion,

|Σn+1∆Σn| < ϵ, (30)

where

Σn =
{
(i, j) : ωn

i,j = −λ

2
hi,j −

1

2
(div(pn))i,j > 0

}
and

Σn+1∆Σn = (Σn+1 \ Σn) ∪ (Σn \ Σn+1).

In this discrete setting, we choose ϵ = 1 which we would like to consider as exact segmentation
since |Σn+1∆Σn| is an integer for each n and |Σn+1∆Σn| < 1 means Σn+1 = Σn. The results
are shown in Figure 1. We want to point out that there should be a discussion about how often
we want to check (30) and we found that checking (30) at every 10th iteration helped compute
the results almost the fastest for all the experiments.

If we compare our algorithm with the alternating minimization algorithm in [3], then it is
clear that our algorithm computes results faster because for each pair (c1, c2), our algorithm
solves a problem of the form (6) once, however, the one in [3] solves the same kind of a prob-
lem many times as an internal step of the alternating minimization algorithm. Moreover, our
stopping criterion (30) helps us find numerical solutions even faster.

For all the experiments, we used either noisy images or non-binary images simply because it
takes about a few milliseconds to obtain the exact segmentation result (ϵ = 1 for (30)) with a
binary image, which is not of much interest. We normalized the input data f to have values in
[0, 1]. So the solution ω∗ of (9) is obtained from this normalized input data. For the visualization
purpose, we presented the normalized view of the solution ω∗.

Other than that we can compute the solution faster and more efficiently, another advantage
of using (9) for segmentation is that since it is guaranteed to find a true minimizer of (10) by
solving (9) once, it can recognize an object disguised in heavy noise, which we show in Figure 2.
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Figure 1: Left column : Input images with the segmentation results indicated in red, Middle
column : Computed solutions ω∗, Right column : The set {ω∗ > 0} shown in white. The elapsed
time for each experiment from top to bottom : 1.54 sec, 0.31 sec, 0.06 sec, 1.02 sec. The stoping
criterion was |Σn+1∆Σn| = 0. Images of size 256× 256 were used. When visualizing the images in
the middle column, we normalized them for better recognition.

In this figure, we also presented two results by considering the alternating minimization method
to solve (19) and (20) iteratively. We note that Theorem 6 and its generalization with Jg in [3]
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are valid only for binary input data, resulting in uncertainty in the final results to some extent
such as how to set the segmentation result from the final solution u. The level curve u = 0.5
is usually used to denote the segmentation. However, this is not supported by the theory. On
the other hand, our solution {ω∗ > 0} always serves as a correct segmentation result that is a
solution of either (10) or (17). For both results, we tried to compute the results as fast as we can
while trying to obtain the results of the best quality by considering various factors. The most
important issues were the choice of ϵ in (29) and the number of internal alternation between
(19) and (20) for each pair (c1, c2) and the level of u for the final segmentation, which do not
exist in our models (9) and (21). We used three colors to indicate three different level curves
of the solution u. The yellow, blue, green contours represent the level curves u = 0.4, 0.5, 0.6,
respectively. On the left, u = 0.6 seems to be a reasonable segmentation, whereas u = 0.5 seems
to be a reasonable one.

Figure 2: Top Row : Extremely noisy input image and the original noiseless image. Middle Row
: Input image with the segmentation result in red, Normalized view of the computed solution ω∗

using the stopping criterion ϵ = 1 for (30), the set {ω∗ > 0}. The elapsed time was 4.01 seconds.
Bottom Row : The best results that we obtained by (19) and (20) with θ = 1, λ = 1, τ = 0.1 and
ϵ = 0.001 for (29). The internal alternation between (19) and (20) was repeated 3 times. Yellow
contour u = 0.4, Blue contour u = 0.5, Green contour u = 0.6. The elapsed time for the left and
the right : 4.38 seconds, 7.85 seconds.

In Figure 3, we compared two stopping criteria: a) our stopping criterion (30), b) the
combination of (29) and (30). We chose ϵ = 1 for a). As for b), we chose ϵ = 0.00001 for (29)
and ϵ = 1 for (30). The purpose of this comparison is not to show which one is better, but to
confirm that our proposed stopping criterion (30) alone works very well and can be used for
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exact segmentation when ϵ = 1.

Figure 3: Top Row : Result obtained by the stopping criterion a), Bottom Row : Result
obtained by the stopping criterion b). In the middle column, we show the computed solutions ω∗

corresponding to the two different criteria: a) and b), where the bottom image looks brighter than
the image above it, which is because we normalized each image for better recognition. Indeed, the
actual function values of the bottom image are less than those of the top image.

In Figure 4, we present an experiment showing that ϵ = 1 for (30) is necessary when the
input image is noisy. In the absence of noise, it has been observed that we can choose ϵ > 1 for
(30), which results in a faster computation. Even in the absence of noise, if the input image to
be segmented is complicated, then it is expected that we use ϵ = 1.

Finally, it was observed that the algorithm by Chambolle [11] and the one in [12], despite
the fact that the latter provides a better convergence rate than the former meaning that the
latter possibly gets us a better result during the same amount of time, presented comparable
results in terms of quality and cost. At this point, we would like to stress again that we do not
pursue the unique solution of (9) when solving it, but are interested in the region where the
unique solution is positive and the stopping criterion (30) does the work. The exact algorithm
in [12] to solve (9) is as follows: we set τ0 = 1/8 = σ0, γ = 1.4 and x̄0 = 0 = y0 = x0 and for
each n = 1, 2, . . . we compute

yn+1
i,j =

yni,j + σn(∇x̄n)i,j

max{1, |yni,j + σn(∇x̄n)i,j |}
,

xn+1
i,j =

xn
i,j + τn(div(y

n+1))i,j − τnλhi,j

1 + 2τn
,

x̄n+1 = xn+1 + θn(x
n+1 − xn),

where

θn =
1

1 + 2γτn
, τn+1 + θnτn, σn+1 =

σn

θn
.

We show comparison results in Figure 5 between the algorithm by Chambolle [11] and the
algorithm in [12], where we can notice that they perform almost equally well in terms of quality
and cost. However, the algorithm in [12] did not work for the heavy noisy case shown in Figure 2
in the exactly same setting.
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Figure 4: Each column from the left to the right corresponds to the stopping criterion (30) with
ϵ = 10, 5, 2, 1. The comparison is to see how the value of ϵ in (30) affects the final segmentation
with or without noise. We used the same noisy input image from Figure 2 and one of the clean
input images from Figure 1. Top Row from left to right : ϵ = 10 and TE (Time elapsed) = 1.55
seconds, ϵ = 5 and TE = 2.11 seconds, ϵ = 2 and TE = 2.80 seconds, ϵ = 1 (exact segmentation)
and TE = 4.01 seconds. Bottom Row from left to right : ϵ = 10 and TE (Time elapsed) = 0.12
seconds, ϵ = 5 and TE = 0.16 seconds, ϵ = 2 and TE = 0.28 seconds, ϵ = 1 (exact segmentation)
and TE = 0.31 seconds. The segmentation result with ϵ = 5 is already satisfactory in the absence
of noise.

6 Conclusion

We presented strictly-convex minimization formulations for image segmentation and showed
that this idea, well-known in some geometric problems, turned out to be useful indeed for
segmentation as well. Strict convexity helped us find meaningful solutions, i.e., minimal and
maximal solutions, and provided us with an easier and faster way to find global minimizers
related to the two-phase image segmentation. Moreover, we realized that the strictly convex
formulations could do more than this as was discussed in Section 4. In other words, non-
uniqueness of solutions to non-strict convex problems usually hinders us from characterizing
the set of minimizers, which was also discussed in [13] and the strictly convex formulations
confirmed this ambiguity in such a rare case as the one in [13] by writing an equivalent strictly
convex problem to the non-strict convex problem. The same issue can be addressed in [14]
and [3] and the same answer of ours applies to them as well. These concrete examples confirm
the fundamental belief that strict convexity is always preferred. As numerically dealing with
the strictly convex formulations, we found that any decent algorithms as well as the ones with
optimal convergent rate could do the work with our proposed stopping criterion. This provides
another advantage because we do not need to compute the exact solution of a strictly convex
problem, resulting in faster computation than the strictly convex problem itself and, not to
mention, than the related non-strict convex problems. More importantly, whenever 2-level or
multi-level image segmentation algorithms solving (10) or (17) are considered, the strictly convex
method can be implemented easily for more general classes of image segmentation problems.
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Figure 5: Top Row : The four results shown in Figure 1 with the algorithm by Chambolle [11].
The elapsed time from left to right : 1.54 sec, 0.31 sec, 0.06 sec, 1.02 sec. Bottom Row : The
corresponding results with the algorithm in [12] to the ones above them. The elapsed time from
left to right : 2.10 sec, 0.41 sec, 0.06 sec, 0.80 sec.
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