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Abstract—In the late nineties, Huang introduced the Hilbert-
Huang transform, also known as Empirical Mode Decomposition.
The goal is to recursively decompose a signal into different modes
of separate spectral bands, which are unknown beforehand. The
HHT/EMD algorithm is widely used today, although there is no
exact mathematical model corresponding to this algorithm, and,
consequently, the exact properties and limits are widely unknown.
A few limitations are quite apparent, though: the algorithm is
sensitive to noise and sampling. Therefore, EMD for example has
difficulties separating tones of similar frequencies. Several more
mathematical attempts to this decomposition problem have been
made, like synchrosqueezing, empirical wavelets or recursive
variational decomposition into smooth signals and residuals.

Here, we propose an entirely non-recursive variational mode
decomposition model, where the modes are extracted concur-
rently. The model looks for a number of modes and their
respective center frequencies, such that the modes reproduce
the input signal, while being smooth after demodulation into
baseband. In Fourier domain, this corresponds to a narrow-band
prior. We show important relations to Wiener filter denoising.
Indeed, the proposed method is a generalization of the classic
Wiener filter into adaptive, multiple bands. Our model provides
a solution to the decomposition problem that is theoretically well
founded and still easy to understand. The variational model is
efficiently optimized using an alternating direction method of
multipliers approach. Preliminary results show excellent perfor-
mance with respect to existing mode decomposition models. In
particular, single harmonics can be reconstructed independently
of their frequency and with precision controlled by a simple
convergence tolerance criterion. Further, in contrast to EMD,
the proposed VMD model is able to precisely separate any pair
of harmonics, largely irrespective of their relative amplitudes
and how close their frequencies are. Finally, we show promising
practical decomposition results on a series of artificial and real
data.

Index Terms—Mode decomposition, variational problem,
Wiener filter, AM-FM, spectral decomposition, Hilbert trans-
form, Fourier transform, augmented Lagrangian.

I. INTRODUCTION

Empirical Mode Decompositon (EMD) proposed by Huang
et al. [1] is an algorithmic method to detect and decompose a
signal into principal “modes” - a signal with mostly compact
supported Fourier spectrum. This algorithm recursively detects
local minima/maxima in a signal, estimates lower/upper en-
velopes by spline-interpolation of these extrema, removes the
average of the envelopes as “low-pass” centerline, thus isolat-
ing the high-frequency oscillations as “mode” of a signal, and
continues recursively on the extracted “low-pass” centerline.
In some cases, this sifting algorithm does indeed decompose a
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signal into principal modes, however the resulting decomposi-
tion is highly dependent on methods of extremal point finding,
interpolation of extremal points into carrier envelopes, and the
stopping criteria imposed. The lack of mathematical theory and
the aformentioned degrees of freedom reducing the algorithm’s
robustness all leave room for theoretical development and
improvement on the robustness of the decomposition [2], [3].
In some experiments it has been shown that EMD shares
important similarities with wavelets and (adaptive) filter banks
[4].

Despite the limited mathematical understanding and some
obvious shortcomings, the EMD method, also known as the
Hilbert-Huang transform (HHT), has had significant impact
and is widely used in a broad variety of time-frequency anal-
ysis applications. Applications involve signal decomposition in
audio engineering [5], climate analysis [6], and various flux,
respiratory, and neuromuscular signals found in medicine and
biology [7], [8], [9], [10], to name just a few examples.

With EMD, and in all of the previous signals, the core
assumption on the individual modes is that they have compact
Fourier support. In the original description, in such a mode
the number of local extrema and zero-crossings differ at most
by one [1]. In most related works, the definition is slightly
changed into so-called Intrinsic Mode Functions (IMF).

Definition Intrinsic Mode Functions are amplitude-
modulated-frequency-modulated (AM-FM) signals, written
as:

uk(t) = Ak(t) cos(φk(t)), (1)

where the phase φk(t) is a non-decreasing function, φ′k(t) ≥ 0,
the envelope is non-negative Ak(t) ≥ 0, and, very importantly,
both the envelope Ak(t) and the instantaneous frequency
ωk(t) := φ′k(t) vary much slower than the phase φk(t) [11],
[12].

In other words, on a sufficiently long interval [t − δ, t + δ],
δ ≈ 2π/φ′k(t), the mode uk(t) can be considered to be a
pure harmonic signal with amplitude Ak(t) and instantaneous
frequency φ′k(t) [11]. Note that the newer definition of signal
components is slightly more restrictive than the original one.
The immediate consequence of the IMF assumption is limited
bandwidth.

Indeed, if ωk is the mean frequency of a mode, then its
practical bandwidth increases both, with the maximum devia-
tion of the instantaneous frequency, ∆f ∼ max(|ωk(t)−ωk|),
and with the rate of change of the instantaneous frequency,
fFM ∼ ω′(t), according to Carson’s rule: BW = 2(∆f+fFM)
[13]. In addition to this comes the bandwidth of the envelope
Ak(t) modulating the amplitude of the FM signal, given by its
highest frequency fAM. Hence we estimate the total bandwidth
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a) AM signal and spectrum. (∆f = 0)
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b) FM signal and spectrum. (fFM � ∆f)
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c) FM signal and spectrum. (fFM � ∆f)
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d) AM-FM signal and spectrum. (fAM ∼ fFM ∼ ∆f)

Fig. 1. AM-FM signals with limited bandwidth. Here, we use a signal f(t) =
(1 + 0.5 cos(2πfAMt)) · cos(2πfct+ ∆f/fFM cos(2πfFMt)). a) Pure AM
signal. b) Pure FM signal with little but rapid frequency deviations. c) Pure
FM signal with slow but important frequency oscillations. d) Combined AM-
FM signal. The solid vertical line in the spectrum shows the carrier frequency
fc, the dotted lines correspond to the estimated band limits at fc ± BW/2,
based on (2).

of an IMF as

BW = 2(∆f + fFM + fAM). (2)

Depending on the actual IMF, either of these terms may be
dominant. An illustration of four typical cases is provided in
figure 1, where the last example is rather extreme in terms of
required bandwidth (for illustrational purposes).

Some recent works create a partially variational approach to
EMD where the signal is explicitly modeled as an IMF [14].
This method still relies on interpolation, selection of a Fourier
low-pass filter, and sifting of high-frequency components.
Here, the candidate modes are extracted variationally. The
signal is recursively decomposed into an IMF with TV3-
smooth envelope, and a TV3-smooth residual. The resulting
algorithm is very similar to EMD in structure, but somewhat
more robust to noise.

A slightly more variational, but still recursive decomposition
scheme has been proposed in [15], for the analysis of time-
varying vibration. Here, the dominant vibration is extracted by
estimating its instantaneous frequency as average frequency
after the Hilbert transform. Again, this process is repeated
recursively on the residual signal.

An approach based on selecting appropriate wavelet scales,

dubbed synchrosqueezing, was proposed by Daubechies et al.
[11], [16]. They remove unimportant wavelet coefficients (both
in time and scale) by thresholding of the respective signal en-
ergy in that portion. Conversely, locally relevant wavelets are
selected as local maxima of the continuous wavelet transform,
that are shown to be tuned with the local signals, and from
which the current instantaneous frequency of each mode can
be recovered.

Other recent work pursuing the same goal is the Empirical
Wavelet Transform (EWT) to explicitly build an adaptive
wavelet basis to decompose a given signal into adaptive
subbands [12]. This model relies on robust preprocessing for
peak detection, then performs spectrum segmentation based on
detected maxima, and constructs a corresponding wavelet filter
bank. The filter bank includes flexibility for some mollification
(spectral overlap), but explicit construction of frequency bands
still appears slightly strict.

In this paper, we propose a new, fully intrinsic and adaptive,
variational method, the minimization of which leads to a
decomposition of a signal into its principal modes. Indeed, the
current decomposition models are mostly limited by 1) their al-
gorithmic ad-hoc nature lacking mathematical theory (EMD),
2) the recursive sifting in most methods, which does not allow
for backward error correction, 3) the inability to properly cope
with noise, 4) the hard band-limits of wavelet approaches,
and 5) the requirement of predefining filter bank boundaries
in EWT. In contrast, we propose a variational model that
determines the relevant bands adaptively, and estimates the
corresponding modes concurrently, thus properly balancing
errors between them. Motivated by the narrow-band properties
corresponding to the current common IMF definition, we
look for an ensemble of modes that reconstruct the given
input signal optimally (either exactly, or in a least-squares
sense), while each being band-limited about a center frequency
estimated on-line. Here, our variational model specifically can
address the presence of noise in the input signal. Indeed,
the tight relations to the Wiener filter actually suggest that
our approach has some optimality in dealing with noise. The
variational model assesses the bandwidth of the modes as
H1-norm, after shifting the Hilbert-complemented, analytic
signal down into baseband by complex harmonic mixing. The
resulting optimization scheme is very simple and fast: each
mode is iteratively updated directly in Fourier domain, as
the narrow-band Wiener filter corresponding to the current
estimate of the mode’s center-frequency being applied to the
signal estimation residual of all other modes; then the center
frequency is re-estimated as the center-of-gravity of the mode’s
power spectrum. Our quantitative results on tone detection
and separation show excellent performance irrespective of
harmonic frequencies, in particular when compared to the
apparent limits of EMD in this respect. Further, qualitative
results on synthetic and real test signals are convincing, also
regarding robustness to signal noise.

The rest of this paper is organized as follows: Section
II introduces the notions of the Wiener filter, the Hilbert
transform, and the analytic signal. Also, we briefly review the
concept of frequency shifting through harmonic mixing. These
concepts are the very building blocks of our variational mode
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decomposition model. Section III presents and explains our
variational model in detail, our algorithm to minimize it, and
finer technicalities on boundaries, periodicity, and windowing.
Section IV contains our experiments and results, namely some
simple quantitative performance evaluations, and comparisons
to EMD, and various synthetic multi-mode signals and our
method’s decomposition of them. Specifically, tone detection
and separation will be analyzed and compared to that of
EMD. Additionally, real signals will be considered. Section
V concludes on our proposed variational mode decomposi-
tion method, including some future directions and expected
improvements.

II. TOOLS FROM SIGNAL PROCESSING

In this section we briefly review a few concepts and tools
from signal processing that will constitute the building blocks
of our variatonal mode decomposition model. First, we present
a classical case of Wiener filtering for image denoising.
Next, we describe the Hilbert transform and its use in the
construction of a single-side band analytic signal. Finally, we
show how multiplication with pure complex harmonics is used
to shift the frequencies in a signal.

A. Gaussian regularizer and Wiener filtering

Let us start with a simple denoising problem. Consider the
observed signal f0(t) to be a copy of the original signal f(t) to
be recovered, affected by additive zero-mean Gaussian noise:

f0 = f + η (3)

Recovering the unknown signal f is a typical ill-posed inverse
problem [17]. If the original signal is known to vary smoothly,
one would typically write the following Tikhonov regularized
minimization problem in order to estimate the noise-free signal
[18], [19]:

min
f

{
‖f − f0‖22 + α‖∂tf‖22

}
(4)

This is a standard, Gaussian regularized minimum mean
squares, i.e. “L2-H1” problem, of which the Euler-Lagrange
equations are easily obtained as

f − f0 = α∂2t f. (5)

These EL equations are typically solved in Fourier domain:

f̂(ω) =
f̂0

1 + αω2
, (6)

where f̂(ω) := F{f(·)}(ω) := 1/
√

2π
∫
R f(t)e−jωtdt, with

j2 = −1, is the Fourier transform of the signal f(t). Clearly,
the recovered signal f is a low-pass narrow-band selection
of the input signal f0 around ω = 0. Indeed, the solution
corresponds to convolution with a Wiener filter, where α
represents the variance of the white noise, and the signal has
a lowpass 1/ω2 power spectrum prior [20], [21].

B. Hilbert transform and analytic signal

Here, we cite the definition of the Hilbert transform given
in [22]:

Definition The 1-D Hilbert transform is the linear, shift-
invariant operator H that maps all 1-D cosine functions into
their corresponding sine functions. It is an all-pass filter that
is characterized by the transfer function ĥ(ω) = −j sgn(ω) =
−jω/|ω|.
Thus, the Hilbert transform is a multiplier operator in the spec-
tral domain. The corresponding impulse response is h(t) =
1/(πt). Because h(t) is not integrable the integrals defining
the convolution do not converge. Instead, the Hilbert transform
Hf(t) of a signal f(t) is therefore obtained as the Cauchy
principal value (denoted p.v.) of :

Hf(t) =
1

π
p.v.

∫
R

f(v)

t− v dv. (7)

Finally, the inverse Hilbert transform is given by its negative,
H−1 = −H, thus:

H2f(t) = −f(t). (8)

For further properties and analysis of the Hilbert transform,
we refer e.g. to [23]. The most prominent use of the Hilbert
transform is in the construction of an analytic signal from a
purely real signal, as proposed by Gabor [24].

Definition Let f(t) be a purely real signal. The complex
analytic signal is now defined as:

fA(t) = f(t) + jHf(t) = A(t)ejφ(t). (9)

This analytic signal has the following important properties.
The complex exponential term ejφ(t) is a phasor describing the
rotation of the complex signal in time, φ(t) being the phase,
while the amplitude is governed by the real envelope A(t).
This representation is particularly useful in the analysis of
time-varying amplitude and instantaneous frequency, defined
as ω(t) = dφ(t)/dt. The second property is the unilateral
spectrum of the analytic signal, consisting only of non-negative
frequencies, hence its use in single-sideband modulation. Fi-
nally, we note that from such an analytical signal, the original
real signal is easily retrieved as the real part:

f(t) = <{fA(t)}. (10)

It is worthwhile highlighting the simple relations between the
Fourier spectra of the real signal and its analytic counterpart,
as defined by (9). First, we recall that the (Fourier) spectrum
of a real signal is a Hermitian function:

f̂(−ω) = f̂(ω). (11)

In contrast, the spectrum of the analytic signal has only non-
negative frequencies. In particular:

f̂A(ω) =


0 ω < 0

f̂(0) ω = 0

2f̂(ω) ω > 0.

(12)
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C. Frequency mixing and heterodyne demodulation

The last concept that we wish to recall before introducing
the proposed variational mode decomposition, is the principle
of frequency mixing. Mixing is the process of combining two
signals non-linearily, thus introducing cross-frequency terms in
the output. The simplest mixer is multiplication. Multiplying
two real signals with frequencies f1 and f2, respectively,
creates mixed frequencies in the output at f1−f2 and f1 +f2,
which is easily illustrated by the following trigonometric
identity:

2 cos(2πf1t) cos(2πf2t) = cos(2π(f1+f2)t)+cos(2π(f1−f2)t).
(13)

Typical applications are the heterodyne downmixing of the
modulated high-frequency carrier signal with a local (het-
erodyne) oscillator in a radio receiver. In such devices, the
selection of either of the two output terms is achieved by
filtering. Here, instead of filtering the output, we mix the two
respective analytic signals:

ej2πf1tej2πf2t = ej2π(f1+f2)t, (14)

i.e., the mixed signal is automatically “mono-tone” (consti-
tuted of a single frequency only). In Fourier terms, this is
well known as the following transform pair:

fA(t)e−jω0t F←→ f̂A(ω) ∗ δ(ω + ω0) = f̂A(ω + ω0), (15)

where δ is the Dirac distribution and ∗ denotes convolution.
Thus, multiplying an analytic signal with a pure exponential
results in simple frequency shifting.

III. VARIATIONAL MODE DECOMPOSITION

In this section we introduce our proposed model for vari-
ational mode decomposition, essentially based on the three
concepts outlined in the previous section.

The goal of VMD is to decompose an input signal into
a discrete number of sub-signals (modes), that have specific
sparsity properties while reproducing the input. Here, the
sparsity prior of each mode is chosen to be its bandwidth
in spectral domain. In other words, we require each mode k
to be mostly compact around a center pulsation ωk, which is
to be determined along with the decomposition.

In order to assess the bandwidth of a mode, we propose
the following scheme: 1) for each mode uk, compute the
associated analytic signal by means of the Hilbert transform
in order to obtain a unilateral frequency spectrum. 2) for each
mode, shift the mode’s frequency spectrum to “baseband”, by
mixing with an exponential tuned to the respective estimated
center frequency. 3) The bandwidth is now estimated through
the H1 Gaussian smoothness of the demodulated signal, i.e.
the squared L2-norm of the gradient. The resulting constrained
variational problem is the following:

min
uk,ωk

{∑
k

∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}
s.t.

∑
k

uk = f (16)

The reconstruction constraint can be addressed in different
ways. Here, we suggest making use of both a quadratic penalty
term and Lagrangian multipliers in order to render the prob-
lem unconstrained. Therefore, we introduce the augmented
Lagrangian L as follows [25], [26]:

L(uk, ωk, λ) =α
∑
k

∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

+
∥∥∥f −∑uk

∥∥∥2
2

+
〈
λ, f −

∑
uk

〉
. (17)

The solution to the original minimization problem (16) is now
found as the saddle point of the augmented Lagrangian L
in a sequence of iterative sub-optimizations called alternate
direction method of multipliers (ADMM), see algorithm 1. In
the next paragraphs, we detail how the respective sub-problems
can be solved.

Algorithm 1 ADMM optimization concept for VMD
Initialize u1k, ω1

k, λ1, n← 0
repeat

n← n+ 1
for k = 1 : K do

Update uk:

un+1
k ← arg min

uk

L(un+1
1 , . . . , un+1

k−1 , uk, u
n
k+1, . . . , u

n
K ,

ωn1 , . . . , ω
n
K , λ

n) (18)

end for
for k = 1 : K do

Update ωk:

ωn+1
k ← arg min

ωk

L(un+1
1 , . . . , un+1

K , ωn+1
1 , . . . , ωn+1

k−1 ,

ωk, ω
n
k+1, . . . , ω

n
K , λ

n) (19)

end for
Dual ascent:

λn+1 ← λn + τ

(
f −

∑
k

un+1
k

)
(20)

until convergence:
∑
k ‖un+1

k − unk‖22/‖unk‖22 < ε.

A. Minimization w.r.t. uk

To update the modes uk, we first rewrite the subproblem
(18) as the following equivalent minimization problem:

un+1
k = arg min

uk∈R

{
α

∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

+

∥∥∥∥f −∑ui +
λ

2

∥∥∥∥2
2

}
. (21)
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Making use of the Parseval/Plancherel Fourier isometry under
the L2 norm, this problem can be solved in spectral domain:

ûn+1
k = arg min

ûk,ûk=û∗
k

{
α ‖jω [(1 + sgn(ω + ωk))ûk(ω + ωk)]‖22

+

∥∥∥∥∥f̂ −∑ ûi +
λ̂

2

∥∥∥∥∥
2

2

 . (22)

We now perform a change of variables ω → ω + ωk in the
first term:

ûn+1
k = arg min

ûk,ûk=û∗
k

{
α ‖j(ω − ωk) [(1 + sgn(ω))ûk(ω)]‖22

+

∥∥∥∥∥f̂ −∑ ûi +
λ̂

2

∥∥∥∥∥
2

2

 . (23)

Exploiting the Hermitian symmetry of the real signals in the
reconstruction fidelity term, we can write both terms as half-
space integrals over the non-negative frequencies:

ûn+1
k = arg min

ûk,ûk=û∗
k

{∫ ∞
0

4α(ω − ωk)2|ûk(ω)|2 (24)

+ 2

(
f̂ −

∑
ûi +

λ̂

2

)2

dω

 .

The solution of this quadratic optimization problem is readily
found by letting the first variation vanish for the positive
frequencies:

ûn+1
k =

f̂ −∑
i6=k

ûi +
λ̂

2

 1

1 + 2α(ω − ωk)2
, (25)

which is clearly identified as a Wiener filtering of the current
residual, with signal prior 1/(ω − ωk)2. The full spectrum of
the real mode is then simply obtained by Hermitian symmetric
completion. Conversely, the mode in time domain is obtained
as the real part of the inverse Fourier transform of this filtered
analytic signal.

B. Minimization w.r.t. ωk
The center frequencies ωk do not appear in the reconstruc-

tion fidelity term, but only in the bandwidth prior. The relevant
problem thus writes:

ωn+1
k = arg min

ωk

{∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}
.

(26)
As before, the optimization can take place in Fourier domain,
and we end up optimizing:

ωn+1
k = arg min

ωk

{∫ ∞
0

(ω − ωk)2|ûk(ω)|2dω
}
, (27)

This quadratic problem is easily solved as:

ωn+1
k =

∫∞
0
ω|ûk(ω)|2dω∫∞

0
|ûk(ω)|2dω , (28)

which puts the new ωk at the center of gravity of the corre-
sponding mode’s power spectrum. This mean carrier frequency
is the frequency of a least squares linear regression to the
instantaneous phase observed in the mode.

Plugging the solutions of the sub-optimizations into the
ADMM algorithm 1, and directly optimizing in Fourier do-
main where appropriate, we get the complete algorithm for
variational mode decomposition, summarized in algorithm 2.

Algorithm 2 Complete optimization of VMD

Initialize û1k, ω1
k, λ̂1, n← 0

repeat
n← n+ 1
for k = 1 : K do

Update ûk for all ω ≥ 0:

ûn+1
k ← f̂ −∑i<k û

n+1
i −∑i>k û

n
i + λ̂n

2

1 + 2α(ω − ωnk )2
(29)

Update ωk:

ωn+1
k ←

∫∞
0
ω|ûn+1

k (ω)|2dω∫∞
0
|ûn+1
k (ω)|2dω (30)

end for
Dual ascent for all ω ≥ 0:

λ̂n+1 ← λ̂n + τ

(
f̂ −

∑
k

ûn+1
k

)
(31)

until convergence:
∑
k ‖ûn+1

k − ûnk‖22/‖ûnk‖22 < ε.

C. Inexact reconstruction and denoising

Here, the role of the Lagrangian multiplier is to enforce the
constraint, while the quadratic penalty improves convergence.
If exact reconstruction is not required, but some slack is to be
allowed, using the quadratic penalty only while dropping the
Lagrangian multiplier would be the appropriate choice. Indeed,
the quadratic penalty on its own represents the least-squares
fidelity prior associated with additive Gaussian noise.

D. On boundaries, periodicity, and windowing

Up until now, the signals f and the modes uk have been
considered continuous over the whole axis t ∈ R. However,
in signal processing we are much more likely to be working
with signals that are both finite in time and resolution. Let
us say we restrict the time window to t ∈ [0, 1]. Luckily
the results presented so far equally hold for discrete, finite
time signals, where simply the continuous Fourier transform
is replaced by its discrete counterpart. The only problems arise
at the boundaries of the signal.

Indeed, when considering short-time signals, the implicit
assumption here is that the signal considered is just a one-
period extract of an infinitely long, periodic signal. Conse-
quently, the spectrum of a seemingly simple “general trend”-
function on a short interval, say f : [0, 1] 7→ R : f(t) = t,
contains an important amount of high-frequency harmonics,
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since we are effectively looking at the spectrum of the periodic
sawtooth function. Conversely in time domain, we realize that
at the endpoints of the domain, the periodized function is
discontinuous, thus severely affecting the H1 smoothing term.

There are two remedies to this. Ideally, one should exclude
the boundaries of the domain in the evaluation of the smooth-
ness, i.e. restrict its evaluation to the open interval (0, 1).
However, this clearly breaks the Parseval/Plancherel Fourier
isometry and the whole beauty of the spectral solution is
lost. Therefore, we suggest a less far-reaching remedy, that
is classically used in short-term Fourier analysis: smooth win-
dowing. This approach is particularly useful in cases, where
the variational mode decomposition is anyway performed on
short chunks of a much longer time series signal.

For simplicity, in the following examples, we will use
a Gaussian window. This window is simply applied to the
input signal f prior to performing the VMD algorithm. After
decomposition, the individual modes can be “unwindowed” by
simple division. This, however, will largely affect reconstruc-
tion fidelity close to the window borders. This is particularly
apparent in the single frame decomposition. In a sliding win-
dow short-time analysis of a larger time series signal, however,
instead of window division, the modes can be stitched together
by simple addition without error amplification.

IV. EXPERIMENTS AND RESULTS

In this section, we apply the proposed VMD algorithm
to a series of test signals in order to assess the validity of
our approach. First, we focus on a few problems that have
been successfully employed for highlighting the strengths and
shortcomings of the EMD / Hilbert-Huang-Transform, namely
tones versus sampling, and tones separation [2]. Then we
briefly investigate noise robustness of VMD. Finally, we shift
our attention to more complex signals, which have already
been used in [14] and [12].

A. Tones and sampling

When the input signal f = fν(t) = cos(2πνt) is composed
of a pure harmonic, then the mode decomposition is expected
to output exactly this harmonic. As reported in [2], this does
not happen to be the case with EMD, since the local extrema
can suffer from important jittering with increasing frequency.
In [2], the relative error

e(ν) = ‖fν(t)− u1(t)‖2/‖fν(t)‖2 (32)

was introduced, and a quadratic increase with frequency of
an upper bound to this relative error was reported for EMD.
Further, EMD has pronounced spikes of near-perfect recon-
struction when the sampling frequency is an even multiple of
the tone’s frequency.

Here, we perform this analysis for the proposed VMD
model. We refrain from windowing and consider exactly
the same signals as for the EMD analysis. The results for
different convergence tolerance levels ε are shown in figure 2.
It can be clearly seen that the relative reconstruction error is
largely independent of the harmonic’s frequency. Moreover,
the relative error is nicely controlled by the tolerance level ε.
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Fig. 2. Mode decomposition of a pure harmonic: Relative error for a range
of 257 frequencies, for different convergence tolerance levels ε. The relative
error does not correlate with the tone frequency. Further, reconstruction error
can be controlled by decreasing the stopping criterion’s convergence tolerance,
except for frequencies very close to the Nyquist frequency. In contrast, EMD’s
relative tone reconstruction error is bounded by a quadratic increase with
frequency (dotted line) [2].
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Fig. 3. Tones separation. In a superposition of two tones of frequencies
ν2 < ν1 < fs/2 and equal amplitudes, the mode decompositions between
EMD and VMD vary significantly. The plot indicates relative error, with
values between 0 (white) and 0.5 (black). a,c,e) EMD has important areas
of confusion (dark), where the tones cannot be separated correctly [2]. b,d,f)
In contrast, VMD achieves good tones separation almost everywhere but for
ν1 too close to the Nyquist frequency.
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Fig. 4. VMD decomposition of noisy tri-harmonic. (a) The noisy input signal.
(b)-(d) The three modes extracted by denoising VMD, and the theoretical
mode (dotted). (e) The spectrum of the input signal, and (f) its distribution
over the three modes.

B. Tones separation

The next slightly more complicated challenge is the separa-
tion of two different superimposed tones [2]. Here, the input
signal is composed of two different, pure harmonics:

fν1,ν2(t) = a1 cos(2πν1t) + a2 cos(2πν2t), (33)

with ν2 < ν1 < fs/2, and a1,2 two possibly different
amplitudes. As a function of the amplitude ratio ρ = a1/a2,
EMD exhibits different, important regions of confusion, where
the two signals are too close in frequency to be separated
correctly, as reported in [2] and illustrated in figure 3.

Again, we apply the same analysis to the proposed VMD
model, and again we do not employ any windowing. The
results for varying amplitude ratios ρ ∈ {1/4, 1, 4} are shown
in figure 3 along with the corresponding EMD results. As can
be clearly seen, the proposed VMD achieves good tones sepa-
ration over the whole domain except at the Nyquist frequency.
In particular, the decomposition quality is not significantly
worse for close harmonics.

C. Noise robustness

To illustrate the VMD robustness with respect to noise in the
input signal, we test using the following tri-harmonic signal,
affected by noise:

fn(t) = cos(4πt)+
1

4
cos(48πt)+

1

16
cos(576πt)+0.1η, (34)
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Fig. 5. EMD decomposition of noisy tri-harmonic. (a) noisy input signal.
(b)-(h) The seven modes extracted by EMD. None of the modes corresponds
to a pure harmonic.

where η ∼ N (0, 1) represents the Gaussian additive noise. The
noise level is quite important with respect to the amplitude of
the highest harmonic. We perform variational modes decom-
position into three modes, without Lagrangian multipliers in
order to remove the noise. The signal, and the three compo-
nents estimated using VMD are shown in Fig. 4. The strong,
lowest frequency signal is recovered almost flawlessly. The
medium-strength medium-frequency signal is still detected at
acceptable quality. The weak, high-frequency signal, however,
is difficult. The VMD algorithm correctly tunes the third
center-frequency on this harmonic, but the recovered mode is
highly affected by the noise. Here, decreasing the bandwidth
by increasing α comes at the risk of not properly capturing
the correct center frequency, while too low an α includes
more noise in the estimated mode. The mode could, however,
be cleaned further in post-processing. For reference, we note
that the estimated VMD center frequencies are off by 0.27%,
1.11% and 0.18% only.

We provide a comparison with EMD1 based on exactly the
same signal in Fig. 5. The EMD produces 7 estimated modes.
The first two modes contain the highest-frequency harmonic,
and important amounts of noise. The forth mode comes closest
to the middle harmonic, however important features have been
attributed to the third and fifth mode. The sixth mode picks up
most of the low frequency harmonic, but is severely distorted.

1Implementation by Gabriel Rilling, available at http://perso.ens-lyon.fr/
patrick.flandrin/emd.html



8 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. Y, ZZZ 20WW

0 0.2 0.4 0.6 0.8 1
0
2
4
6
8

0 0.2 0.4 0.6 0.8 1
0

2

4

6

a) fSig1(t) b) 6t

0 0.2 0.4 0.6 0.8 1
−1
−0.5

0
0.5
1

0 0.2 0.4 0.6 0.8 1
−0.4
−0.2

0
0.2
0.4

c) cos(8πt) d) 0.5 cos(40πt)

101 102 103
10−2

101

104

e) |f̂Sig1|(ω)

Fig. 6. a) fSig1(t), b–d) its constituent modes. e) The signal’s spectrum.

D. Complex multimode signals

Now we look at slightly more complex signals to be
decomposed. In particular, we consider the same test signals
that were previously suggested in [14] and also used in [12],
with the purpose of increased comparability.

1) Example 1: The first signal is a composition of three
simple components, namely a general linear trend and two
different harmonics:

fSig1(t) = 6t+ cos(8πt) + 0.5 cos(40πt). (35)

The signal, its three constituent modes, and the composite
Fourier spectrum are shown in figure 6. The main challenge
of this signal is the linear growth term. Without windowing,
the higher order harmonics of the periodized sawtooth signal
spread over the whole spectrum.

In order to reduce the effects of periodization, we apply
Gaussian windowing. The corresponding windowed signal,
and the respective VMD results are illustrated in detail in
figure 7. In particular, we show how the two non-zero center
frequencies ω2 and ω3 quickly converge towards the exact har-
monics. The corresponding modes constitute a nice partition
of the input spectrum, with each mode being clearly dominant
around its respective center frequency. The three modes in
time domain show nice separation into three distinct signals of
characteristic oscillations. After “unwindowing” by pointwise
division of the estimated modes by the Gaussian window, we
recover good estimates of the true underlying modes (dotted
lines), valid on the central 60% of the signal.

2) Example 2: The second example uses a quadratic trend,
a chirp signal, and a third mode with sharp transition between
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Fig. 7. VMD decomposition of fSig1. a) The applied window, b) the
windowed signal, and c) its spectrum. d) Evolution of the detected center
frequencies, and e) the corresponding spectrum decomposition. f–h) the
reconstructed modes prior to, and i–k) after Gaussian window removal.
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Fig. 8. a) fSig2, b–d) its constituent modes. e) The signal’s spectrum.

two constant frequencies2:

fSig2(t) = 6t2+cos(10πt+10πt2)+

{
cos(60πt) t ≤ 0.5

cos(80πt− 10π) t > 0.5
(36)

The signal, its three constituent modes, and the composite
Fourier spectrum are shown in figure 8. The instantaneous
frequency of the chirp is given by the time derivative of its
phase:

ω(t) := ∂tφ(t) = 10π + 20πt. (37)

Thus, for t ∈ [0, 1] the instantaneous frequency varies linearly
between 10π an 30π. Consequently, the theoretical center
frequency of the mode is located at 20π. The piecewise-
constant bi-harmonic has spectral peaks expected at 60π and
80π.

Here, too, we employ Gaussian windowing to alleviate
periodization artifacts. Indeed, the windowed signal has a
much cleaner spectrum, and the expected peaks of the signal’s
components become more prominent, as illustrated in figure 9.
Again, the estimated center frequencies ωk converge to the
expected frequencies precisely. Here, we chose to decompose
into four modes, thus assigning each half of the piecewise-
constant frequency signal to a separate mode. The spectral
partitioning can be nicely appreciated in the spectral plot of
the different modes. The unwindowed mode estimates fit well
the theoretical signals, except again for boundary issues.

2Here, we changed the phase shift in the third component, with piecewise-
constant frequency, from 15π to 10π, in order to have a continuous signal.
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Fig. 9. Results of VMD on fSig2. a) The applied window, b) the windowed
signal, and c) its spectrum. d) Evolution of the detected center frequencies, and
e) the corresponding spectrum decomposition. f–i) the reconstructed modes
prior to, and j–m) after Gaussian window removal.
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Fig. 10. a) fSig3, b–c) its constituent modes. d) The signal’s spectrum.

3) Example 3: The third synthetic signal has intrawave
frequency modulation:

fSig3(t) =
1

1.2 + cos(2πt)
+

cos(32πt+ 0.2 cos(64πt))

1.5 + sin(2πt)
.

(38)
The signal, its three constituent modes, and the composite
Fourier spectrum are shown in figure 10. While the first, bell-
shaped component has mostly low-pass content, the second
mode’s main peak is clearly identified at 32π. However,
due to the non-linear intrawave frequency modulation, an
important amount of higher-order harmonics are also observed
at 32π+64π = 96π, 32π+2·64π = 160π and 32π+3·64π =
224π, respectively. This second component obviously violates
the narrowband assumption, and one would naturally expect
some difficulties recovering this mode using VMD. Indeed,
by Carson’s rule, the mode’s bandwidth here is dominantly
controlled by the relatively high frequency of the modulating
term cos(64πt), essentially spreading the mode over the whole
practical spectrum.

The slightly windowed signal and the corresponding VMD
results are illustrated in figure 11. The non-zero ω2 quickly
converges to the correct main frequency 32π. The higher order
harmonics are not uniquely attributed to the second mode,
but shared between both modes. Consequently, the intrawave
frequency modulation is shared by both modes, creating some
ripples in the otherwise low-frequency mode. Nonetheless, the
reconstructed estimated modes fit well the constituent signals
(dotted lines). Most of the error occurs at the boundaries, and
at the very center of the signal, where the low-frequency mode
has a sharp peak, involving some higher frequency features
wrongly attributed to the higher-frequency mode.

4) Example 4: The forth example is a real signal from
an electrocardiogram (ECG), data shared by [12]. These data
present numerous components, as seen in figure 12. Beyond
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Fig. 11. Results of VMD on fSig3. a) The applied window, b) the windowed
signal, and c) its spectrum. d) Evolution of the detected center frequencies, and
e) the corresponding spectrum decomposition. f–g) the reconstructed modes
prior to, and h–i) after Gaussian window removal.

the expected spikes-train driven by the rhythm of the heartbeat,
one can clearly see an oscillating low-frequency pattern. At
the other end of the spectrum, there is distinct high-frequency
noise at a single high-pitch harmonic, most likely the electric
power-line frequency. The distinct spikes of the ECG signal
create important higher-order harmonics.

The spectrum after slight Gaussian windowing, and the
results of VMD are depicted in figure 13. We chose a high-
number of 10 modes to be detected, to accommodate the
numerous higher-order harmonics of the spikes. The respective
center frequencies nicely converge to these spectral peaks. The
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Fig. 12. a) ECG signal 7. b) Detail. c) The signal’s spectrum.

first, low-frequency mode captures the low-frequency oscil-
lation of the baseline. The highest frequency mode contains
the most noise. The first actual ECG specific mode oscillates
precisely at the frequency of the heartbeat. The higher ECG
modes then contain the higher-order wave-packages around
the highly non-sinusoidal spikes. A “clean” ECG signal can
be reconstructed by summing all but the first and last VMD
modes, thus discarding the low-frequency baseline oscillation
and most of the high-frequency noise.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a novel variational method
for decomposing a signal into an ensemble of band-limited
intrinsic mode functions, that we call Variational Mode De-
composition, (VMD). In contrast to existing decomposition
models, like the empirical mode decomposition (EMD), we
refrain from modeling the individual modes as signals with
explicit IMFs. Instead, we replace the most recent definition
of IMFs, namely their characteristic description as AM-FM
signals, by the corresponding narrow-band property. Indeed,
we provide a formula that relates the parameters of the explicit
AM-FM descriptors to the estimated signal bandwidth.

Our decomposition model solves the inverse problem as fol-
lows: decompose a signal into a given number of modes, either
exactly or in a least squares sense, such that each individual
mode has limited bandwidth. We assess the mode’s bandwidth
as the squared H1 norm of its Hilbert complemented analytic
signal with only positive frequencies, shifted to baseband
by mixing with a complex exponential of the current center
frequency estimate. The variational problem is solved very
efficiently in a classical ADMM approach: The modes are
updated by simple Wiener filtering, directly in Fourier domain
with a filter tuned to the current center frequency, then the
center frequencies are updated as the center of gravity of the
mode’s power spectrum, and finally the Lagrangian multiplier
enforcing exact signal reconstruction is updated as dual ascent.

In our experiments, we show that the proposed VMD
scheme clearly outperforms EMD with regards to tone de-
tection, tone separation, and noise robustness. Further, we
apply our model to more complicated signals for comparison
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Fig. 13. Results of ECG signal 7. a) The applied window, b) the windowed
signal, and c) its spectrum. d) Evolution of the detected center frequencies.
e–l) The reconstructed modes prior to Gaussian window removal. m) Cleaned
ECG, and n) detail.
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with other state-of-the-art methods, and can show successful
decomposition.

The most important limitation of the proposed VMD is
with boundary effects, and sudden signal onset in general.
This is strongly related to the use of an L2-based smoothness
term, that overly penalizes jumps at the domain borders and
within; conversely, this is also reflected by implicit periodicity
assumptions when optimizing in Fourier domain, and by the
narrow-band violation caused by discontinuous envelopes in
such AM-FM signals. Another point that critics might high-
light, is the required explicit (manual) selection of the number
of active modes in the decomposition, like in EWT but as
opposed to EMD. Current work addresses these shortcomings,
and we are also working on suitable extensions to signals on
domains of dimension greater than one.
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[5] N. Klügel, “Practical Empirical Mode Decomposition for Audio Syn-
thesis,” in Int. Conference on Digital Audio Effects (DAFx-12), no. 2,
2012, pp. 15–18.

[6] B. Barnhart and W. Eichinger, “Empirical Mode Decomposition applied
to solar irradiance, global temperature, sunspot number, and CO2 con-
centration data,” Journal of Atmospheric and Solar-Terrestrial Physics,
vol. 73, no. 13, pp. 1771–1779, Aug. 2011.

[7] S. Assous, A. Humeau, and J.-P. L’huillier, “Empirical mode decompo-
sition applied to laser Doppler flowmetry signals : diagnosis approach.”
IEEE Engineering in Medicine and Biology Conference (EMBC), vol. 2,
pp. 1232–5, Jan. 2005.

[8] A. O. Andrade, S. Nasuto, P. Kyberd, C. M. Sweeney-Reed, and F. Van
Kanijn, “EMG signal filtering based on Empirical Mode Decomposi-
tion,” Biomedical Signal Processing and Control, vol. 1, no. 1, pp. 44–
55, Jan. 2006.

[9] S. Liu, Q. He, R. X. Gao, and P. Freedson, “Empirical mode decompo-
sition applied to tissue artifact removal from respiratory signal.” IEEE
Engineering in Medicine and Biology Conference (EMBC), pp. 3624–
3627, Jan. 2008.

[10] I. Mostafanezhad, O. Boric-Lubecke, V. Lubecke, and D. P. Mandic,
“Application of empirical mode decomposition in removing fidgeting
interference in doppler radar life signs monitoring devices,” IEEE
Engineering in Medicine and Biology Conference (EMBC), pp. 340–
343, Jan. 2009.

[11] I. Daubechies, J. Lu, and H.-T. Wu, “Synchrosqueezed wavelet trans-
forms: An empirical mode decomposition-like tool,” Applied and Com-
putational Harmonic Analysis, vol. 30, no. 2, pp. 243–261, Mar. 2011.

[12] J. Gilles, “Empirical Wavelet Transform,” IEEE Transactions on Signal
Processing.

[13] J. Carson, “Notes on the Theory of Modulation,” Proceedings of the
IRE, vol. 10, no. 1, pp. 57–64, Feb. 1922.

[14] T. Y. Hou and Z. Shi, “Adaptive Data Analysis via Sparse Time-
Frequency Representation,” Advances in Adaptive Data Analysis,
vol. 03, no. 1 & 2, pp. 1–28, Apr. 2011.

[15] M. Feldman, “Time-varying vibration decomposition and analysis based
on the Hilbert transform,” Journal of Sound and Vibration, vol. 295, no.
3-5, pp. 518–530, Aug. 2006.

[16] H.-T. Wu, P. Flandrin, and I. Daubechies, “One or Two Frequencies?
the Synchrosqueezing Answers,” Advances in Adaptive Data Analysis,
vol. 03, no. 01n02, pp. 29–39, Apr. 2011.

[17] M. Bertero, T. A. Poggio, and V. Torre, “Ill-Posed Problems in Early
Vision,” in Proceedings of the IEEE, vol. 76, no. 8, 1988, pp. 869–889.

[18] A. N. Tichonov, “Solution of incorrectly formulated problems and the
regularization method,” Soviet Mathematics, vol. 4, pp. 1035–1038,
1963.

[19] V. A. Morozov, “Linear and nonlinear ill-posed problems,” Journal of
Mathematical Sciences, vol. II, no. 6, pp. 706–736, 1975.

[20] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary
Time Series, 1949.

[21] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Addison
Wesley, 1992.

[22] M. Unser, D. Sage, and D. Van De Ville, “Multiresolution Monogenic
Signal Analysis Using the Riesz Laplace Wavelet Transform,” IEEE
Transactions on Image Processing, vol. 18, no. 11, pp. 2402–2418, 2009.

[23] S. L. Hahn, Hilbert transforms in signal processing. Artech House,
Inc., 1996.

[24] D. Gabor, “Theory of Communication,” Journal of the Institution of
Electrical Engineers - Part III: Radio and Communication Engineering,
vol. 93, no. 26, pp. 429–457, 1946.

[25] D. P. Bertsekas, “Multiplier methods: A survey,” Automatica, vol. 12,
no. 2, pp. 133–145, 1976.

[26] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. Springer,
Berlin, 2006.

Konstantin Dragomiretskiy received the
B.S. (Hons.) degree in mathematics and the
B.A. degree in economics from the University of
California, San Diego, CA, USA, in 2010.

He was an Intern Researcher at Sun
Microsystems, Menlo Park, CA, USA, in 2006,
and an Undergraduate Researcher at California
State University, Chico, CA, USA, in 2008. He is
currently a Research Assistant at the Department
of Mathematics at the University of California,
Los Angeles, CA, USA, working towards his Ph.D.

degree with Prof. Andrea L. Bertozzi. His current research interests include
variational and PDE based methods applied to signal and image processing
problems.

Dominique Zosso (S’06–M’11) received the M.Sc.
degree in electrical and electronics engineering and
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