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Abstract. Compressive sensing has been widely applied to problems in signal and imaging
processing. In this work, we present an algorithm for predicting optimal real-time compression rates
for video. The video data we consider is spatially compressed during the acquisition process, unlike
many of the standard methods. Rather than temporally compressing the frames at a fixed rate, our
algorithm adaptively predicts the compression rate given the behavior of a few previous compressed
frames. The algorithm uses polynomial fitting and simple filters, making it computationally feasible,
and easy to implement in hardware. Based on numerical simulations of real videos, the algorithm
is able to capture object motion and approximate dynamics within the compressed frames. The
adaptive video compression improves the quality of the reconstructed video (as compared to an
equivalent fixed rate compression scheme) by several dB of PSNR without increasing the amount of
information stored as seen in numerical simulations presented here.
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1. Introduction. Adaptive temporal compression is at the frontier of applica-
tions of compressive sensing (CS) [5], making it possible to acquire a large range of
scenes using dynamic compression rates. Compressive systems focus on obtaining
and storing the least amount of information while still maintaining a high level of
recovery. For videos this means removing spatial and temporal redundancy, i.e. the
high variation of physically observed motion, which appears over different time scales
commonly found in video data. Simply stated, we wish to accelerate the acquisition
process when the video is static and decelerate when the scene contains dynamic
components – all in real-time.

In terms of hardware, current CS methods use physical techniques to code pixel
data in order to compress spatial or spectral information. This is commonly done
by coded apertures (typically consisting of mechanical gratings or variable materials)
which block incoming light in a either patterned or random fashion, thereby subsam-
pling the incoming signal. The idea of CS has had many applications to both hardware
and data collection, which include but are not limited to the coded aperture snapshot
spectral imaging (CASSI) [31, 32], single pixel camera [12, 33], cooperative analog and
digital signal processing transform imager (CADSP) [18], random lens imaging [14],
compressive structured light [17], compressive phase retrieval [10, 29], photodetector
array camera and spectrometer [30], sparse magnetic resonance imaging (MRI) [28],
and many more.

Mathematically speaking, the general forward model for CS can be formulated as
follows: if the compression is encoded in a CS matrix A (normally non-invertible), then
the relation between the encoded or compressed signal, vector X, and the “original”
signal, vector F , is given by X = AF , where the assumption is that the data is
obtained via linear measurements. For video compressive sensing (VCS) [22, 36, 19,
15, 26, 35], this F contains each frame of the true video, the X denotes the spatially
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and temporally compressed data, while the A contains the random frame by frame
masks as well as the temporal compression via a linear combination of frames.

The idea of VCS is vastly different, both mathematically and philosophically,
from the classical compression methods. In standard video compression algorithms,
the incoming signal is sensed (acquired) in full. The acquired data is then processed,
through various transformations and operations, until the data is represented in a
sparse way (the compressed video). For example in MPEG-IV, the first frame is
compressed in the wavelet basis and stored [22]. Then each incoming frame is stored
by compressing the difference between the new frame and the first frame in the wavelet
basis. Once the difference exceeds a specific tolerance, the process is reset. In some
sense, this type of compression is sensing then compressing.

The problem we consider in this paper is that the incoming data exceeds the
storage capacity, so the data must be compressed during the acquisition process. For
this reason, we call this video compressive sensing.

Although there are many works in the literature focusing on the spatial compres-
sion of data, the field of variable temporal compression rates is fairly new. There are
many potential gains in developing systems and procedures incorporating adaptive
temporal compression rate. In terms of the memory, variable compression rates lead
to optimized storage space without loss of quality as compared to taking a moderate
to high fixed rate. In terms of cost, the resource and energy savings outweigh the
computational cost of predicting the frame rate, thereby increasing the efficiency of
the system. VCS can be readily applied to many of the common big data sets, for
example surveillance videos [4, 25] and traffic data.

In this work, we propose a simple and flexible real-time method to predict frame
rates based on adaptive patchwise polynomial fitting. Our method is easy to imple-
ment and computationally inexpensive since it is based on temporal differences and
polynomial fitting as well as robust to different applications and data conditions. The
algorithm can be made parallel and can be extended to different imaging modali-
ties. One current application of this method could be to coded aperture compressive
temporal image (CACTI) systems [26].

This paper is organized as follows. Section 1.1 details the data acquired via video
compressive sensing. A derivation of our patch based motion estimator is provided
in Section 2, with theoretical connections to classical methods. Section 3 details the
algorithm and also provides some connections between our model and the underlying
physical behavior captured in the video. In Section 4, numerical simulations on real
data are provided, which demonstrate the improvement in quality of the reconstructed
video given our compression scheme. This section also discusses the robustness of our
algorithm on the data acquisition process and the manner in which our algorithm
adapts to the data. Lastly we conclude with some final remarks in Section 5.

1.1. Description of the Incoming Data. In VCS each compressed frame
Xj ∈ RN×M is a coded linear combination of several true frames Fi|j ∈ RN×M with

0 < i ≤ Tj (where i|j is the ith frame in the jth sequence and where Tj is the frame
rate for the jth encoded sequence), i.e.

Xj :=

Tj∑
i=1

Ai|jFi|j(1.1)

where Ai|j ∈ RN×M is a random binary spatial mask and we take the product above
to be element-wise. Although other spatial compression operators can be used, we
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only consider binary spatial masks. In practice, either each mask Ai|j is independently
generated or only the first mask A1|1 is randomly generated and each subsequential
mask is a fixed translation of the previous one [26]. In this way, Xj has both missing
data and motion blur.

The main methodology of adaptive temporal compression is to give an estimate
to the most restrictive motion present in the most recent coded frames, and to use this
velocity to determine the potential frame rate. In an ideal case, the motion of objects
in a video, i.e. the optical velocity V between frames, can be calculated using the
classical methods of optical flow [20, 6, 1]. From the optical velocity, it is clear that an
optimal compression rate T can be determined by the relationship T ∼ 1

V . Due to the
corruption, direct application of optical flow or block-matching techniques [15, 21, 13]
to estimate V is only possible after reconstructing each frame Fi|j . However, this
drastically increases the computational cost, thus limiting its use in real-time video
capturing. Parallel work [35] applies block matching directly on the raw data Xj to
get a rough estimate of the fast moving blocks.

1.2. Contribution of the work. The main contribution of this work is the
construction of an algorithm which only uses patch based information and simple
extrapolation tools. It is necessary to use easy to implement tools in order to allow
the algorithm to be incorporated in hardware and to be used in real-time. Our main
observation is that as objects enter or leave a given patch, the mean value of the patch
changes by an amount related to their speed. In fact, we can show that the speed of
the means of the patches is directly related to the optical velocity by the following
relationship:

|∂tµP (X(t)) | ≈ |V |
|P |
‖X‖TV (P )(1.2)

where |P | is the size of the patch and ||X||TV (P ) :=
∫
P
|∇X| is the total variation

(TV ) semi-norm of the patch in space (note that this quantity is time dependent).
The proof of this relationship is provided in Section 2 and is important to our proposed
algorithm.

1.3. Notation. There are several important variables and functions, for a quick
reference we provide a list of them here:

• P is a rectangular patch of fixed size p1 × p2.
• V is the velocity of the associated patch P .
• T is the temporal compression rate.
• µP (X(t)) is the mean of a frame X in the patch P at time t, the spatial

dependents of X is suppressed.
• µP

L (t) and µP
Q(t) are the linear and quadratic approximates (respectively) as

a function of time associated with patch P .
• µP

op(t) is the optimal approximation of the mean in time for P .

2. Mean Patch Dynamics. In this section, we will formally derive the rela-
tionship between the mean patch dynamics, ∂tµ, and the velocity of objects moving
between each frame in a sequence, V . Standard optical flow algorithms estimate V
directly by comparing pixels or patches within a given window, those algorithms can
be thought of as a Lagrangian method, tracing out the motion path. Our model
can be considered as an Eulerian based method, since the algorithm fixes the patch
location and observes objects flowing through the patch via ∂tµ.
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In the ideal case, we can define µP (t) to be the mean of frame f over patch P at
a given time t (not the compressed frame). We assume that at a given frame, future
frames can be locally approximated as smoothly generated displacements. Formally
we have the following definition.

Definition 2.1. We say that a set of frames are temporally consistent if they
can be generate by a smooth displacement of the initial frame. More precisely, the
sequence is generated by two functions (f(x, 0), D(x, t)) ∈ C1 × C1([0, T ];BV ) where
future frames are related by f(x, t) = f(D(x, t), 0).

This formulation is motivated mathematically and physically. The definition
above is mainly used as a local approximation to the temporally behavior of the
frames. In particular, if we start with a frame f (setting it to f(x, 0)), the next
frame, over some time dt, will be given by f(x, dt) := f(D(x, dt), 0), where D(x, dt)
is the deformation of the pixels between the two frames over the small time interval.
The rest configuration of the deformation is assumed to be the identity. We will also
assume D ∈ BV and f ∈ C1, which is true for our algorithm since we consider smooth
frames with patchwise (possibly discontinuous) motion.

Definition 2.2. A temporal displacement function D(x, t) is velocity domi-
nated, if its acceleration is smaller than the velocity, in particular ||∂2tD(x, t)|| <<
||∂tD(x, t)||. On the other hand if the first and second time derivatives are on the
same order then we say D(x, t) is accelerated driven .

We assume that typically observed motion is well-approximated by these two be-
haviors. From a mathematical perspective, these conditions reduce the local dynamics
and provide sufficient conditions for polynomial approximations. From the physically
perspective, the underlying assumption is that the observed motion is regular, which
is common for people, cars, natural objects, etc. In the ideal case though, the velocity
of the foreground is restricted to locally constant motion, which we make formal in
the following definition.

Definition 2.3. A temporal displacement function D(x, t) is piecewise rigid, if
for any t, we have ∇∂tD(x, t) ≡ 0 over each patch. Specifically, we consider ∂tD(x,−)
to be in the patchwise constant (a subset of BV ).

The definitions above are related to the standard assumptions in optical flow
[20, 6, 1] as well as image registration [27, 8, 23, 34, 24]. In fact, we can show that in
some limit, our model recovers the first-order optical flow equation:

∂tf −∇f · V = 0

for the ideal sequence f(x, t).

Theorem 2.4. Let f(x, t) be a temporally consistent sequence of frames generated
by a velocity dominated displacement. Then the following hold:

1. If θ(x) is the angle between ∇f and ∂tD(x, t) at t = 0 in patch P and the
angle is bounded by ||θ||L∞(P ) < ε, then

|∂tµP (t)| = 1

|P |

∫
P

|∇f(D(x, dt), 0)| |V (x)| dx+O(dt) +O(ε)

(2.1)
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2. If D(x, t) is also patchwise rigid then

|∂tµP (t)| = |V (P )|
|P |

‖f(x, dt)‖TV (P ) +O(dt) +O(ε)

(2.2)

where V (P ) is the patch velocity.
3. As |P | → 0, we recover the first-order optical flow equation.

Proof. To show 1. we differentiate the mean of the frame f(x, t) at time dt. First,
let |P | be the area of the patch, then by [3, 2] we have

∂tµ
P (t) =

1

|P |

∫
P

∂tf(x, dt)dx

=
1

|P |

∫
P

∂tf(D(x, dt), 0)dx

=
1

|P |

∫
P

∇f(D(x, dt), 0) · ∂tD(x, dt)dx

evaluated at time dt. Next, we use the assumption that D(x, t) is velocity dominated
to expand the time derivative of the displacement ∂tD(x, dt) = ∂tD(x, 0) + O(dt).
Using this Taylor expansion and the fact that f ∈ C1 (specifically, the fact that f has
bounded derivatives) we have:

∂tµ
P (t) =

1

|P |

∫
P

∇f(D(x, dt), 0) · V (x)dx+O(dt)(2.3)

where we define V (x) := ∂tD(x, 0) for simplicity. Next, from the assumption on the
angle between the image gradients and velocity, we have

∂tµ
P (t) =

1

|P |

∫
P

|∇f(D(x, dt), 0)| |V (x)| cos(θ(x))dx+O(dt)

(2.4)

Lastly, Equation (2.1) is achieved via the small angle approximation, cos(θ(x)) =
1−O(θ(x)2) .

For 2, we can easily see that if D(x, t) is patchwise rigid, then

∂tµ(f, P ) =
1

|P |

∫
P

|∇f(D(x, dt), 0)| |V (x)| dx+O(dt) +O(ε)

=
|V (P )|
|P |

‖f(x, dt)‖TV (P ) +O(dt) +O(ε)

where V (P ) is the patch velocity.
And lastly, for 3, to show that the model recovers the optical flow equation recall

1

|P |
∂t

∫
P

f(x, dt)dx =
1

|P |

∫
P

∇f(D(x, dt), 0) · V (x)dx+O(dt)

(2.5)
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At dt = 0, we can differentiate under the integral since f is smooth:

1

|P |

∫
P

∂tf(x, 0)dx =
1

|P |

∫
P

∇f(x, 0) · V (x)dx

(2.6)

therefore we have

1

|P |

∫
P

(∂tf(x, 0)−∇f(x, 0) · V (x)) dx = 0

(2.7)

By Lebegue differentiation theorem, as |P | → 0 the integrand goes to zero, thus
∂tf(x, 0) = ∇f(x, 0) ·V (x) a.e., which is the first-order optical flow equation at t = 0.

Remark 2.5. Note that the patchwise rigid restriction in Theorem 2.4 can be
relaxed to having ||∇V (x, 0)||Lp small (by Poincaré-Wirtinger inequality).

Theorem 2.4 provides the mathematical connection between the ideas presented
in this work with the classical optical flow and block matching. The assumptions
in the theorem are also related to the physical motion of objects in the frame. For
example, the assumption on the angle θ(x) is equivalent to assuming that the velocity
field is applied nearly parallel to the gradients of the dynamic objects in the video.

For the quadratic approximation, second order time derivatives of the patch
mean must be consider. The following theorem provides the relationship between
the ∂2t µ

P (t) and image characteristics.

Proposition 2.6. Let f(x, t) be temporally consistent sequence of images gener-
ated by a acceleration driven displacement then

∂2t µ
P (t) =

1

|P |

∫
P

V (x) · ∇2f(D(x, dt))V (x) +∇f(D(x, dt)) · a(x) dx+O(dt)

Proof. The proof is very similar to Theorem 2.4, but instead of taking a first order
approximation D(x, dt) in time we take a second order approximation: D(x, dt) =

x + ∂tD(x, 0)dt + ∂2tD(x, 0)dt2

2 + O(dt3). Once again, differentiating and expanding
yields:

∂2t µ
P (t) = ∂t

1

|P |

∫
P

∇f(D(x, dt)) · ∂tD(x, dt)dx

=
1

|P |

∫
P

∂tD(x, dt) · ∇2f(D(x, dt))∂tD(x, dt)

+∇f(D(x, dt)) · ∂ttD(x, dt) dx

=
1

|P |

∫
P

V (x) · ∇2f(D(x, dt))V (x)

+∇f(D(x, dt)) · a(x) dx+O(dt)

which provides another relationship between the image gradients, physical character-
istics, and algorithmic terms.
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Using these approximation, we can see that first and second order temporal ap-
proximations relate to different types of physical motion present in video data. The
first order approximation gives an estimation of the dynamics:

µP
L (t) = µ0 + ∂tµ t(2.8)

while the second order approximation yields:

µP
Q(t) = µ0 + ∂tµ t+

∂2t µ

2
t2(2.9)

In the linear case, the expansion estimates objects which move with velocity
dominated motion, i.e. |a| � |V |. On the other hand, the second order approximation
gives information on both the average tangential acceleration of objects in the patch as
well as the twisting, stretching, and bending forces created by the velocity field. The
additional knowledge can give a more appropriate approximation when the objects
movement is governed by higher order effects. These assumptions are appropriate for
surveillance, tracking, traffic, etc.

3. Compression Algorithm. In this Section 3.1, we provide details on our
compression model for VCS which relies on Equation (1.2). We provide some further
remarks on the proposed algorithm in Section 3.2. And lastly, to validate our com-
pression results, we will also provide an adaptation of a well-known method for video
restoration in Section 3.3, although this is not the focus of our work.

3.1. Our Adaptive Polynomial Fitting. The compression algorithm involves
several steps which we summarize below.

1. First we divide each smoothed frame into non-overlapping patches of size
p1 × p2 in order to capture the local movements, where locality is related to
the patch size. The non-overlapping nature breaks the computations down
to a decoupled system of small subproblems of the patch sequences (in time),
also making parallel computing possible.

2. (Optional): Each of the compressed frames patches are processed by applying
an averaging filter with small support (for simplicity we maintain the same
notation for the smoothed frame). This removes the anomalies caused by
missing data, while preserving the general structures.

3. For a given patch sequence, the mean of each element (denoted by µP (X)
for each smoothed frame X and patch P ) is calculated.

4. Using the sequence of patch mean, we make an estimate of the optical velocity
V via Equation (1.2). and determine if we compress at the extremal ratios
or preform adaptive polynomial fitting to estimate the intermediate cases.

The essence of the algorithm is to use ∂tµ
P (X(t)) as a motion estimator for the

optical velocity V instead of directly obtaining V using classical method. This is
necessary since we are only able to view the running sum of compressed frames rather
than each individual frame in the original video, therefore we can not derive V via
the standard optical flow methodology.

To estimate the compression rates in the extremal cases, we can directly use
Equation (1.2). If the approximated patch velocity V is very large (small), then the
lowest (highest) compression rate is chosen. The approximation of V in Equation
(1.2) is a robust estimation of the large and small changes in the patch. Aside from
theoretical reasons, we can also see from equation (1.2) that the TV term also helps
to mitigate the influences of noisy patches.
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In the non-extremal cases, using Equation (1.2) requires specific thresholds re-
lating the optical velocity V to the compression rate T , which is usually much more
difficult than deciding the extremal thresholds. In practice, relating V directly to a
compression rate requires learning on training data [35]. Seeking a more self-contained
estimator, we provide an adaptive approximation of µP (X(t)) directly. Since a thresh-
old on the maximum allowable tolerance of the changes in the mean is related to the
image intensity and the size of the patch, it provides a less sensitive measure than di-
rectly thresholding V . For example, while we can set the tolerance of the change to be
a fraction of the maximum image intensity (known data), the tolerance on the velocity
must be related to the range of object speeds present in the image (approximated or
unknown data).

To adaptively approximate µP (X(t)), we use a predictor-corrector like algorithm
over a small number of previous frames. For the sake of simplicity, we will restrict the
length of the patch sequence to be 4, although the following argument and method-
ology does not dependent on this value. The given data is now the patch means{
µP (X(tj−3)), ..., µP (X(tj))

}
and their associated time points {tj−3, ..., tj}, which

are the frame numbers in the true video data. The first three data points of the se-
quence act as the fitting data, where both a least squares linear fit µP

L (t) and quadratic
interpolation µP

Q(t) are calculated (i.e. the predictor step). Then using the fourth

data point the values µP
L (tj) and µP

Q(tj) are compared to the known value µP (X(tj)),
providing us with an intrinsic way to learn which polynomial fit to use (i.e. the
corrector step). Once a fit is chosen, that optimal polynomial µP

op(t) is used to esti-

mate the maximum compression rate T such that
∣∣µP (tj + T )− µP

op(Xj)
∣∣ is within a

given tolerance. In the experiments presented in this work, we fixed the tolerance to
be 0.15 × 255, although multiples ranging from 0.1 to 0.2 seem to result in visually
comparable results.

In application, the compression rate is usually restricted to a set of fixed values,
for example, all the even numbers up to 16. Here we define Trange as an increasing
sequence of length L storing all the compression rate candidates. We then arrive at
the following algorithm for calculating the compression rate T at time point tj .

In terms of the cost of the algorithm, we consider both the parallel and not
parallel implementations. In any individual patch, the complexity is dominated by the
averaging filter and patch mean which is O(p1p2). If the algorithm is run in a parallel
environment over K arrays, then the MN

p1p2
number of patches can be distributed to

MN
p1p2K

patches per array with a total complexity of O(MN
K ). Thus our algorithm’s

complexity is linear in the number of pixels.
A short visual description of the algorithm is detailed in Fig. 3.1. An example of a

compressed frame using a frame rate of 4 is shown in Fig. 3.1(a) and its corresponding
smoothed version is shown in Fig. 3.1(b). The smoothed version is blurry due to
the temporal averaging (frame compression) and the spatial averaging filter. The
predicted frame rates for each patch is given in Fig. 3.1(c). In Fig. 3.1(d), the region
of predicted motion is highlighted, it contains the car and shadow as well as a few
patches from its previous location.

3.2. Further Remarks on our Algorithm. Depending on the data acquisition
method, the correction step in the adaptive polynomial fitting can vary. In this paper
we consider using the compressed frame X(tj); however, we can also consider using
A(tj + 1)F (tj + 1), the first frame in the uncompressed sequence with spatial mask.
Since this method can be run in real-time, we can acquire this without calculating
the next T . Hence the input data for the fitting can also be chosen as
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Algorithm 1 Our Adaptive Temporal Compression Method

Input: X(tj−3),...,X(tj), tj−3,...,tj , p1, p2, Trange, Vmin, Vmax, threshold.
Initialization: (Optional:) Process each X with averaging filter.

Divide each frame into non-overlapping p1×p2 patches. Set k = 1.
while k ≤ MN

p1p2
do

Compute {µ(X(tj−3)), ..., µ(X(tj))} in the kth patch sequence.
Determine the current V from Equation (1.2) with µ(X(tj−1)), µ(X(tj)), p1, p2

and the most recent patch in this sequence.
if V ≤ Vmin then

Tk = Trange(L). Break.
else if V ≥ Vmax then

Tk = Trange(1). Break.
end if
Calculate µP

L (t) and µP
Q(t) with µ(X(tj−4)), ... , µ(X(tj−1)) and tj−4, ... , tj−1.

Decide the fit µP
op(X(t)) by comparing the values of

∣∣µP
L (tj)− µP (X(tj))

∣∣ and∣∣µP
Q(tj)− µP (X(tj))

∣∣.
Tk = Trange(1). i = 1.
while i < L do

if
∣∣µP

op(tj + Tk)− µP (X(tj))
∣∣ >threshold then

Break.
else

Tk = Trange(i+ 1). Set i = i+ 1.
end if

end while
k = k + 1.

end while
return T = mink Tk.

{X(tj−2), X(tj−1), X(tj), A(tj + 1)F (tj + 1)}

and

{tj−2, tj−1, tj , tj + 1} .

We can also vary the way in which we define the compression rate T . Defining
T as the minimum of all the Tk (the predicted compression rate from the kth patch
sequence) can be restrictive, allowing outlier values of Tk to dominate in the estimate
of T . To avoid this issue, two possible methods can be used. The first is to sort the
set {Tk}k and use the ordered data to determine the value T . For example, we could
pick the smallest or an average of the pth smallest values. This can be costly, since
it may encourage conservative values due to outliers, so instead we introduce another
parameter Tthresh to relax this minimum. When the ratio of the number of minimum
value over MN

p1p2
(the cardinality of the Tk set) is smaller than Tthresh, we define T

as the next compression level in Trange, essentially taking the minimum value over
a more effective set. By doing so we remove outliers in the data, but we only move
up one compression level in order to prevent over estimation. In general, this can
be seen as an ordered weighted average (a weighted average on the sorted data set),
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(a) Compressed Frame (b) Average Filter applied to Com-
pressed Frame

(c) Patchwise Predicted Compres-
sion Rates

(d) Region of Predicted Motion

Fig. 3.1. Example of the motion detection element of our algorithm. The compressed frame (a)
and the smoothed version (b) depict the input data seen by the algorithm. The region of non-trivial
motion detected in the patches is shown in (c) accompanied by the patchwise compression rates in
(d). We see that the car and its shadow are the fast moving elements, as expected.

in which the weights are determined adaptively based on the support of the smallest
block-wise compression rate.

3.3. A Restoration Algorithm. In order to verify the success of the forward
model, we must also have a way of recovering the compressed frame. Inspired by
the reconstruction models from [7, 9], we adapt those previously proposed models
to recover the compressed video. Our adapted model for VCS reconstruction is as
follows:

min
Fi

T∑
i=1

|DFi|+ λ

T−1∑
i=1

|Fi+1 − Fi|, s.t.
T∑

i=1

AiFi = X(3.1)

where D is the forward spatial derivatives. Both regularizers in this model are of
L1 type, therefore the minimization can be efficiently solved via the split Bregman
method [16].

We first introduce two auxiliary variables Gi for i = 1, . . . , T and di for i =
1, . . . , T − 1 and the Bregman variables (constraint enforcing) Xk, Bk and bk are the
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Bregman variables so that the Equation (3.1) becomes:

min
F,G,d

T∑
i=1

|Gi|1 + λ

T−1∑
i=1

|di|1,(3.2)

s.t. Gi = DFi, di = Fi+1 − Fi,

T∑
i=1

AiFi = X

The constraints are incorporated into the energy as follows.

(F k, Gk, dk) =argmin
F,G,d

T∑
i=1

|Gi|1 + λ

T−1∑
i=1

|di|1

+
µ1

2
‖

T∑
i=1

AiFi −X +Xk−1‖2

+
µ2

2

T∑
i=1

‖Gi −DFi +Bk−1
i ‖2

+
µ3

2

T−1∑
i=1

‖di − Fi+1 + Fi + bk−1i ‖2

Xk =

T∑
i=1

AiF
k
i −X +Xk−1

Bk
i =Gk

i −DF k
i +Bk−1

i

bki =dki − Fi+1 + Fi + bk−1i .

The minimizers for Gk and dk are explicit:

Gk
i =shrink(DF k−1

i −Bk−1
i , 1/µ2)

dki =shrink(F k−1
i+1 − F

k−1
i − bk−1i , λ/µ3)

where the shrink function is defined for vectors by: shrink(·, τ) := max(‖ · ‖− τ, 0) ·‖·‖ .

For the F variable update, the minimizing equation is the following linear system

(µ1A
TA+ µ2D

TD + µ3D
T
3 D3)F = µ1A

∗(X −Xk−1) + µ2D
T (Gk +Bk−1) + µ3D

T
3 (dk + bk)

(3.3)

where D3 is the forward difference with respect to the frame (not to be confused with
the spatial differences).

Altogether, we alternate the shrinkage steps with a few iterations of conjugate
gradient to solve Equation (3.3) in order to find F . The convergence of this algorithm
to the correct minimizer is guaranteed, for example see [11].

For the results here, we use the following parameters:

λ(T ) =


2.67, if T = 4

8.33, if T = 8

25, if T = 12

25, if T = 16
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µ1(T ) =


0.67, if T = 4

0.33, if T = 8

1, if T = 12

1, if T = 16

µ2(T ) =


0.167, if T = 4

0.133, if T = 8

0.05, if T = 12

0.1 if T = 16

µ3(T ) =


0.67, if T = 4

1.33, if T = 8

3, if T = 12

5, if T = 16

The PSNR of the results are not very sensitive to these parameters, in the sense that
a 10% change will not dramatically change the value of the PSNR. To choose the
parameters for the reconstruction, we first fit them to a few frames and use the fitted
parameters for the entire video sequence.

4. Experimental Results. In this section we use numerical experiments to
demonstrate the robustness and effectiveness of our algorithm. As shown in [26], the
shifted masks will give comparable reconstruction results compared with completely
random masks. Hence in most of our tests we first generate a random binary mask
with 50% zeros, and keep shifting it in one direction to get subsequent masks. Other
types of masks will also be considered in a later test. In our tests, four different
compression rates are considered, 4, 8, 12 and 16.

The experimental results are divided into smaller sections as follows. In Section
4.1, we show that advantage of using variable compression rates depending on the
sequence dynamics. In Section 4.2, we demonstrate the gain in using adaptive poly-
nomial fitting rather than only using one type of polynomial. We present some results
on the dependence of the algorithm to the patch size in Section 4.3. We also show
the gains over using a fixed rate compression algorithm in Section 4.4. And lastly, we
apply our algorithm to another type binary mask generation in Section 4.5.

4.1. Video Dynamics and Compression. Fig. 4.1 displays some selected
compressed frames using different compression rates. In Fig. 4.1(a), since so few
frames are averaged the effective spatial mask appears to be random, while in Fig. 4.1(b-
d) as the frame rate increases so does the clarity. However, although the resolution
increases with the frame rate, the trade-off is that the image becomes blurred. In
essence, this is the balance in adaptive compressive video sensing.

Before we show the performance of our algorithm, we would like to highlight the
importance of adaptiveness in video compression through some experiments. Let us
first look at how T influences the reconstruction results of different types of video
data. Here in each test T frames are compressed into one according to (1.1), then we
apply TV-based video reconstruction algorithm on this compressed data to recover
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(a) 4 frames (b) 8 frames (c) 12 frames (d) 16 frames

(e) Frame from (a) (f) Frame from (b) (g) Frame from (c) (h) Frame from (d)

Fig. 4.1. In (a-d), various compressed frames are shown. Each scene is compressed with
a different rate and a frame from the scene is displayed in (e-h). The hierarchy shows that the
scene with the car suddenly entering in (a) and (e) has the smallest compression rate while the one
with pedestrian motion has the highest rate. The medium compression rates, as seen in (b)&(f) or
(c)&(g), are related to the car entering in the top left quadrant and the movement of the second
pedestrian, respectively.

Table 4.1
Mean PSNR comparison for different types of video data

Moving frames Frozen frames
T = 4 T=16 T=4 T=16

Test 1 33.7849 28.2370 48.4005 75.3180
Test 2 37.7345 34.9292 45.4085 67.1824

the original frame sequence, and the average PSNR (Peak signal-to-noise ratio) of the
reconstructed sequence will be recorded.

Two types of video data are considered in the test, moving frames and frozen
frames, where moving frames mean all the T frames are different from each other,
while frozen frames stand for the case with T identical frames. The results are recorded
in Table 4.1. We can see from the table that when we have stationary video data, a
larger T value usually leads to better reconstruction results with higher PSNR values.
On the other hand, when there are a lot of movements in the video, a smaller T is
often more desirable.

Based on the above observation, we then use numerical tests to check the ad-
vantage of adaptive compression over fixed rate compression. In the first setting, we
generate a video of 32 frames, where the first 16 frames contain a lot of movements,
while the rest are identical. We then manually compress the video into 5 frames,
where T1 = . . . = T4 = 4 and T5 = 16. According to our assumption on Trange, this
is the optimal way of adaptive compression for this particular video. We also define
another compression by setting T1 = 8 and T2 = . . . = T5 = 6, and this is close to the
fixed rate compression. For each case, the above reconstruction algorithm (3.1) is ap-
plied on these compressed frames to recover each original frame sequence separately,
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and the average PSNR of each sequence is recorded.
In the second setting, the same two compression strategies are used on the video

with 32 moving frames. The mean PSNR are displayed in the following table. Similar
tests are also conducted on videos where the first 16 frames are identical while the
rest are moving frames.

We can see from the PSNR values in Setting 1 that adaptive compression leads
to much better reconstruction results. The results in Setting 2 and 3 justify matching
the compression with the motion, and not the choice of this particular partition, is
responsible for the PSNR gain. In particular, we see that the results of the recon-
struction algorithm can support the choice of compression rate as long as there is a
significant gain in the PSNR.

4.2. Behavior of Adaptive Polynomial Fitting. In Figure 4.2, the temporal
compression rates are plotted for each frame in two real data sets. The red markers
indicate changes in the video sequence, for example an object entering or leaving
the field of view, while the blue dots stand for the compression rate for each frame.
To investigate the effect of our adaptive polynomial fitting step in our algorithm, we
compare our method to the case when we restrict the approximating polynomial to be
either linear or quadratic only. In Figure 4.2 (a), the algorithm is applied to parking
lot surveillance data, containing a static background with moving people and vehicles.
The spatial compression rate is taken to be 50%. The first 12 frames are assigned a
compression rate of 4 in order to generate input data to our algorithm. The initial
computed compression rate is 16 since there is no movement, and decreases to 8 and
4 as the car enters (the first two red markers, where the car starts to enter at the first
marker, and fully enters at the second marker). The second two markers are at the
frame location when the car gradually stops and people enter the field of view. Since
the dynamic component of the video is slowing down, the compression rate should
increase, coinciding with our algorithm’s performance. At the end of the sequence
the moving people become obscure (effectively exiting the field of view) and reappear,
which creates a jump in the compression rate. In this case, the adaptive fitting prefers
the least squares linear fit, since most of the motion is locally constant.

In Figure 4.2 (b), the algorithm is applied to traffic data. Prior to the first marker,
the main moving component consists of non-uniform pedestrian movement, therefore
a medium-level compression rate is favored. This can be seen visually and agrees with
our algorithm’s performance. The first two markers shows the occurrence of a vehicle
entering the field at various speeds with varying visibility. Therefore, we expect the
compression rate to drop. This is exhibited by both the adaptive compression algo-
rithm and the quadratic approximation. The next two markers bound the interval in
which the frames are still. And the last signifies a fast moving car entering the video.
In this case, the adaptive algorithm incorporates information from the quadratic fit-
ting while also capturing information (near frame 35) that is overlooked using one
polynomial exclusively.

Table 4.2
Mean PSNR comparison between adaptive and fixed rate compression

Setting 1 Setting 2 Setting 3
Adaptive Fixed Adaptive Fixed Adaptive Fixed

Test 1 53.1740 40.6072 33.8991 35.0905 39.9775 42.6081
Test 2 55.9060 43.0610 36.5681 37.2725 39.7499 43.2499
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(a) Linear Favored

(b) Combination

Fig. 4.2. Comparison between adaptive polynomial fitting versus fixing the degree of the poly-
nomial. Using different data (a) and (b) shows that the adaptive polynomial fit may favor one
polynomial or use a combination of both.

In general, the linear fit favors consistent motion, since it approximates one veloc-
ity over several compressed frames. The quadratic fit captures more subtle dynamics,
shown through its ability to adjust to gradual changes; however, at times this results
chooses the more prudent compression rate. Since the approximations are done patch
by patch, one interesting observation to note is that the adaptive compression rate
does not necessarily give you either the linear or the quadratic fitting result at any
given frame. Instead, it balances the contributions from both approximations.

4.3. Comparison of Patch Size. In Figure 4.3, we provide a comparison be-
tween different patch sizes. To measure optimality of the patch size, we look at the
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qualitative behavior of the compression results and the quantitative results (compres-
sion rate and PSNR). The optimal patch size for the parking lot data set is 16 by
8 (with an average PSNR of 45.45) and for this reason it is the patch configuration
used in other sections. Figure 4.3 displays the result for patch configurations of 8 by
8 (average PSNR of 41.37), 8 by 16 (average PSNR of 44.96), and 16 by 16 (average
PSNR of 45.15).

The patch size of 8 by 16 gives similar results; however, it neglects the motion
of the pedestrians. The small square patch of size 8 by 8 is more sensitive to small
changes between frames. The larger square patch of size 16 by 16 is less sensitive to
small objects. The 16 by 16 patch size results has issues reconstructing the final part
of the video data, where the small scale motion is dominant. The 8 by 8 patch size
consistently gives too low of a compression rate, since it is sensitive to outliers, thus
making it ineffective as a data reduction tool.

From this we can conclude that the patch size is determined by two factors: the
scale of motion and its directionality. For consistent velocity V over a sampling time
of ∆t, one could argue that the diameter of the patch should satisfy the relationship
diam(P ) = V∆t to capture the correct scale. To correctly resolve directionality, the
patch should be shorter in the direction of fast motion and long in the direction of
slow motion. For the data set tested here, the patch size of 16 by 8 corresponds to
the correct size given this analysis as well. This also shows that since 8 by 16 gives
similar results while 8 by 8 gives worse results, scale plays a more important role then
directionality.

4.4. Comparison with Fixed Rate Compression. As seen in the tables,
reconstruction algorithms for video compressive sensing provide satisfactory results
when (and only when) many frames are averaged over low motion scenes or when few
frames are averaged during high motion scenes. Therefore, since our algorithm takes
advantage of this principle, we would expect that it should yield a better recovered
video than using a fixed rate compression. In Fig. 4.4 and 4.5, the compression rate
versus frame rate is plotted along with the PSNRs of each frame after applying the
reconstruction algorithm. For the results displayed in Fig. 4.4, the mean PSNR is
45.43 dB, compared to a mean of 40.56 dB when applying a fixed rate compression
with the same number of compressed frames (i.e. identical mean compression rates).
The maximum and minimum PSNRs of our algorithm is 77.90 dB and 30.97 dB re-
spectively, while the fixed rate compression yields 55.07 dB and 28.82 dB respectively.
For the results in Fig. 4.5, our mean PSNR is 49.58 dB and the fixed rate compression
has an average PSNR of 42.92 dB. The maximum and minimum PSNR of our method
is 77.20 dB and 30.95 dB, while the fixed rate compression yields 52.67 dB and 28.31
dB, respectively. In both cases, our compression method provides significant gains in
the average PSNR of the reconstructed image.

In Fig. 4.6, six reconstructed frames (Frame 93 to 98) from the video used in
Fig. 4.4 are displayed. In Fig. 4.7, the same six frames are shown which are recon-
structed from data compressed with a fixed rate. The results using our algorithm are
of higher quality in the regions containing fast motion than that of a fixed rate. Also,
since the temporal compression averages consecutive frames, motion elements in some
frames can pollute both the compression and reconstruction of neighboring frames,
as seen by the errors incurred around the car in Fig. 4.5. In these figures, it is clear
that the adaptive compression method yields less motion and compression artifacts
than that of the fixed rate compression, thus resulting in better overall visual quality
of the reconstructed video.
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4.5. Robustness to Compressive Sensing Matrix. Lastly, we apply our al-
gorithm to the case when the spatial compressive sensing mask is randomly generated
for each frame (retaining 45% of the pixels for any given frame). In Fig. 4.8, the mean
PSNR is 44.63 dB ( 39.97 dB for a fixed rate compression) with a maximum and min-
imum PSNR of 74.98 dB and 30.82 dB respectively (53.77 dB and 28.89 dB for a fixed
rate compression). This is comparable with the results from Fig. 4.4, since the algo-
rithm does not depend explicitly on the manner in which the mask is generated. Since
the compression algorithm considers average patch information, a particular mask re-
alization should not alter the patch means significantly. This shows the potential of
incorporating our algorithm in various video compression applications.

5. Conclusion. We present an adaptive algorithm for predicting compression
rates in real-time. The underlying idea is simple: compress more when the video
contains little motion and compress less during dynamic scenes. Using this idea, we
build an efficient and compact way to estimate the motion of a sequence of compressed
and subsampled frames using patch means. By considering the patch means, we
reduce the size of the problem and decouple each task. Also, by using each individual
patch’s history to predict its own compression rate, we accelerate the time it takes
to compute the predicted frame rate. Our adaptive model is shown to improve the
PSNR of the reconstructed video by several dB as well as the visual quality of the
images.
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(a) Patch Size of 8 by 8
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(b) Patch Size of 8 by 16
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(c) Patch Size of 8 by 16

Fig. 4.3. Comparison of compression results for various patch sizes using our algorithm.
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Fig. 4.4. The compression rates (in blue) and the corresponding PSNRs (in green) of the
reconstructed video method to the results generated by our algorithm to the surveillance data set. To
increase the range of motion in our video data, we freeze the video at the 100th frame and resume
the original video at the 201st frame.
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Fig. 4.5. The compression rates (in blue) and the corresponding PSNRs (in green) of the
reconstructed video method to the results generated by our algorithm to the traffic data set.
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Fig. 4.6. The reconstruction results of six consecutive frames compressed by our algorithm.
The PSNRs for the first row starting from the left is: 33.7896 35.7451 36.1793 and the PSNRs for
the second row starting from the left is: 33.7118 32.6931 34.7961.

Fig. 4.7. The reconstruction results of six consecutive frames compressed using a fixed rate,
chosen to match the average compression rate of our algorithm. The PSNRs for the first row starting
from the left is: 32.5228 33.9217 34.5397 and the PSNRs for the second row starting from the left
is: 33.9049 32.0122 29.9636.



22 Schaeffer, Yang, Zhao, and Osher

100 200 300 400
0

10

20

30

40

50

60

70

80

Frames

 

 

Compression rate
Event time point
PSNR

Fig. 4.8. The compression rates (in blue) and the corresponding PSNRs (in green) of the
reconstruction method applied to the results generated by our algorithm to the data that is acquired
via a random CS mask. Notice the qualitative and quantitative similarity to Fig. 4.4.


