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Abstract. In this paper, a two-stage method for segmenting blurry images in the presence of
Poisson or multiplicative Gamma noise is proposed. The method is inspired by a previous work
on two-stage segmentation and the usage of an I-divergence term to handle the noise. The first
stage of our method is to find a smooth solution u to a convex variant of the Mumford-Shah model.
A primal-dual algorithm is adopted to efficiently solve the minimization problem. We prove the
convergence of the algorithm and the uniqueness of the solution u. Once u is obtained, then in the
second stage, the segmentation is done by thresholding u into different phases. The thresholds can be
given by the users or can be obtained automatically by using any clustering method. In our method,
we can obtain any K-phase segmentation (K ≥ 2) by choosing (K − 1) thresholds after u is found.
Changing K or the thresholds does not require u to be re-computed. Experimental results show that
our two-stage method performs better than many standard two-phase or multi-phase segmentation
methods for very general images, including anti-mass, tubular, MRI and low-light images.
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1. Introduction. Image segmentation is an important task in image analysis
and computer vision. It aims to separate objects of interest from each others or
from the background, or to find boundaries of such objects. In [47, 48], Mumford
and Shah introduced an energy minimization model that allows one to compute an
optimal piecewise continuous or piecewise constant approximation u of a given image
f . Since then, their model has been studied in depth in various aspects, e.g. the
properties of minimizers [21], approximations and simplifications of their functional
and its applications to the problem of image segmentation [1, 2, 13, 14, 15, 19, 29, 46].

Denote Ω ⊂ R2 to be the image domain. More specifically, we assume Ω is
bounded, open and connected, with Lipschitz boundary. Let f : Ω → R be a given
gray scale image. In [47, 48], Mumford and Shah proposed to segment f by calculating
an optimal approximation u of f and a decomposition

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωn ∪ Γ

of the image domain such that the following requirements are satisfied: Ωi’s are
disjointly connected open subsets in Ω with Lipschitz boundaries, Γ is the collection
of the boundaries of Ωi’s and u varies smoothly in Ωi. Then the functional E to be
minimized for image segmentation is defined by [47, 48]

E(u,Γ) =
λ

2

∫
Ω

(f − u)2dx+
µ

2

∫
Ω\Γ

|∇u|2dx+H1(Γ), (1.1)
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where H1 denotes the 1-dimensional Hausdorff measure in R2.
Because (1.1) is nonconvex, it is very difficult to find or approximate its minimizer.

Historically, there are two approaches to study the minimizer of (1.1). One is to
approximate the functional by other functionals. In [1, 2], the authors approximated
the functional (1.1) by elliptic functionals defined on Sobolev spaces. In [13, 14, 15, 29,
46], the authors approximated (1.1) by discrete functionals. Recently, a primal-dual
algorithm based on convex relaxation for solving (1.1) was proposed in [50], which
produces results independent of initializations.

Another approach is to simplify the functional (1.1). For example, if we restrict
∇u ≡ 0 on Ω\Γ, then it results in a piecewise constant Mumford-Shah model. In [19],
the method of active contours without edges (Chan-Vese model) for two-phase seg-
mentation was introduced. For the works on the general piecewise constant Mumford-
Shah model, see [36, 59, 60], etc. The main drawback of these methods is that they
can easily get stuck in local minima. To overcome the problem, convex relaxation
approaches [9, 17, 51], graph cut method [31] and fuzzy membership functions [39]
were proposed.

In [11], the authors proposed a novel two-stage segmentation method. In the first
stage, a smooth solution u is extracted from the given image f by minimizing the
functional

E(u) =

∫
Ω

|∇u|dx+
µ

2

∫
Ω

|∇u|2dx+
λ

2

∫
Ω

(Au− f)2dx. (1.2)

Here A is a blurring operator if the given image f is blurred or is the identity operator
if there is no blur. In the second stage, a thresholding technique is adopted to segment
the smooth solution u. This model has several advantages. The first one is the
convexity of the functional (1.2), which, under mild conditions, guarantees a unique
solution that is independent of initializations. The second one is that their model can
handle multiphase segmentation efficiently. The third one is that the thresholding is
independent from the process of finding u. Users therefore can employ an automated
clustering method to find the threshold, or they can try different phases and thresholds
to get a satisfactory segmentation—all without recalculating u. One interesting aspect
of the model (1.2) is that it closely links three major components of image processing
together: denoising, deblurring and segmentation. In fact, model (1.2) has been
employed in [33] as an image restoration model.

Bearing in mind the maximum-a-posteriori (MAP) approach, the model in [11]
with the data fitting term

∫
Ω
(Au−f)2dx is only suitable for images degraded by addi-

tive Gaussian noise. There are in fact many competing methods for segmenting images
corrupted by Gaussian noise, see for instance [5, 11, 19, 22, 35, 39, 51, 54, 62, 63].
However as far as we know, there are only few works on segmenting images corrupted
by Poisson or multiplicative Gamma noise. In [20, 45, 52], the authors proposed
snake-based segmentation methods adapted to physical noise of the exponential fam-
ily (Gaussian, Gamma, Rayleigh, Poisson, etc). In [28], a minimum description length
(MDL) criterion is proposed to image segmentation with speckle, Poisson or Bernoulli
noise. In [55], the authors proposed a general segmentation framework, and studied
additive Gaussian noise, Poisson noise and multiplicative speckle noise. To our knowl-
edge, there are no papers on the segmentation of blurry images corrupted by Poisson
or multiplicative Gamma noise.

Here in this paper, inspired by the works from [11] and [58], we propose a two-
stage convex segmentation method to segment blurry images degraded by Poisson or
multiplicative Gamma noise. In the first stage of our method, we extract a smooth
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image u from the given image f . In the second stage we threshold u to reveal different
segmentation features. To find u, we minimize the functional∫

Ω

|∇u|dx+
µ

2

∫
Ω

|∇u|2dx+ λ

∫
Ω

(Au− f logAu)dx, (1.3)

which is different from the first stage in [11] (i.e. equation (1.2)) by the data fitting
term. As observed in [4], the data fitting term h(u) :=

∫
Ω
(u − f log u)dx is deduced

by MAP probability density p(u|f) when image f is corrupted by Poisson noise. In
[58], the authors used h(u) as the data fitting term, and proposed a new model for
denoising multiplicative Gamma noise. They gave both theoretical explanations and
numerical experiments to justify why h(u) is also suitable to handle multiplicative
Gamma noise. Therefore, it is natural for us to introduce the data fitting term h(u)
to our two-stage segmentation model when the image is blurry, and corrupted by
either Poisson or multiplicative Gamma noise.

We will prove that the minimization of the functional (1.3) has a unique solution u
which can be solved efficiently by popular algorithms such as the split-Bregman [30] or
the Chambolle-Pock algorithm [16, 50]. One nice aspect of our method is that there is
no need to re-compute u if we have to change the threshold in the second stage to reveal
different features in the image. Another nice aspect is that there is no need to specify
the number of phases before u is found. We can obtain any K-phase segmentation
(K ≥ 2) by choosing (K − 1) thresholds after u is computed in the first stage. In
contrast, multiphase methods such as those in [5, 10, 25, 38, 39, 40, 41, 51, 56, 62]
require K to be given first; and if K changes, the minimization problem has to be
solved all over again.

The rest of this paper is organized as follows. In Section 2, we briefly review the
model in [11] and its properties, since it shares a similar structure with our model.
In Section 3, we introduce our method, and show that the minimization model has
a unique solution. In Section 4, we give the detailed implementation of our method,
and show that the resulting algorithm converges. In Section 5, we provide numerical
results to verify the effectiveness of our method. In the last section, we conclude our
discussion, and point out possible improvements.

2. Review on the model in [11]. Since the model in [11] shares a similar
structure with our method, we briefly review it here. The model has two stages. In
the first stage, one solves the minimization problem:

inf
u∈W 1,2(Ω)

E(u) = inf
u∈W 1,2(Ω)

{∫
Ω

|∇u|dx+
µ

2

∫
Ω

|∇u|2dx+
λ

2

∫
Ω

(f −Au)2dx
}
, (2.1)

where µ and λ are positive parameters, A is a given blurring operator, and f is the
given image. After obtaining u, which is a smoothed version of f , one segments u by
a proper thresholding method in the second stage.

This two stage model is based on the Mumford-Shah model, and it is inspired
by the following observation: one can obtain a good restoration of a binary image by
thresholding its smoothed version with a proper threshold, see [11]. Assume that Γ
is a Jordan curve with measure 0. Let Σ = Inside(Γ), then Γ = ∂Σ. The objective
functional in the Mumford-Shah model (1.1) can be written as:

Ẽ(Σ, g1, g2) =
λ

2

∫
Σ\Γ

(f − g1)
2dx+

µ

2

∫
Σ\Γ

|∇g1|2dx+
λ

2

∫
Ω\Σ

(f − g2)
2dx

+
µ

2

∫
Ω\Σ

|∇g2|2dx+ Length(Γ),

(2.2)
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where g1 and g2 are defined on Σ \ Γ and Ω \ Σ respectively. Inspired by the proof
of Theorem 2 in [17], the authors in [11] then proved that a global minimizer of (2.2)
with fixed g1 and g2 can be found by carrying out the following minimization

min
0≤u≤1

{∫
Ω

|∇u|dx+
1

2

∫
Ω

{
λ(f − g1)

2 + µ|∇g1|2 − λ(f − g2)
2 − µ|∇g2|2

}
u(x)dx

}
,

(2.3)
and setting Σ = {x : u(x) ≥ ρ} for ρ ∈ [0, 1] a.e. In this way, the authors replaced the
Length(Γ) term by a convex integral term

∫
Ω
|∇u|dx, and proposed the first stage as

(2.1).
After u is obtained, the authors in [11] proposed several ways to determine proper

threshold(s) ρ’s. For two-phase segmentations, one can set ρ to be the mean of u, or the
user can try different values of ρ to get the best result. For multi-phase segmentation,
one can use clustering techniques to determine values of ρ’s automatically. One such
technique is the K-means method [32, 34, 43], and the authors in [11] used it in their
numerical experiments for both two-phase and multi-phase segmentation. Note that
changing ρ’s does not require u to be re-computed.

3. A two-stage segmentation method for Poisson or multiplicative Gamma
noise. Let us first introduce the Poisson noise and the multiplicative Gamma noise.
For the Poisson noise, for each pixel x ∈ Ω we assume f(x) is a random variable
following the Poisson distribution with mean u(x), i.e., its probability mass function
is:

pf(x)(n;u(x)) =
(u(x))ne−u(x)

n!
.

In this case, we say that f is corrupted by Poisson noise.
For the Gamma noise, suppose that for each pixel x ∈ Ω the random variable

η(x) follows the Gamma distribution, i.e., its probability density function is:

pη(x)(y; θ,K) =
1

θKΓ(K)
yK−1e−

y
θ for y ≥ 0, (3.1)

where Γ is the usual Gamma-function, θ and K denote the scale and shape parameters
in the Gamma distribution respectively. Notice that, the mean of η(x) is Kθ, and
the variance of η(x) is Kθ2. For multiplicative noise, we assume in general that the
mean of η(x) equals 1, see [4, 24]. Then we have Kθ = 1 and its variance is 1/K.
We assume the degraded image is f(x) = u(x) · η(x), and say that f is corrupted by
multiplicative Gamma noise.

Our method is inspired by the following observations. Suppose f is the given
image with noise following a certain statistical distribution. Then based on MAP
approach, restoring the image u is equivalent to maximizing the probability p(u|f).
Assume the prior distribution of u is given by

p(u) ∝ exp (−β

∫
Ω

|∇u|dx),

where β is a parameter. If the noise follows the Poisson distribution, then maximizing
p(u|f) corresponds to minimizing the functional∫

Ω

(u− f log u)dx+ β

∫
Ω

|∇u|dx, (3.2)
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see [37]. If the noise is multiplicative following the Gamma distribution, then maxi-
mizing p(u|f) corresponds to minimizing the functional∫

Ω

f

u
+ log udx+ β

∫
Ω

|∇u|dx, (3.3)

see [4]. However, it is observed in the numerical examples in [4, 57] that for the
denoising model (3.3) the noise survives much longer at low image values if we increase
the regularization parameter. Therefore, in [57] the authors suggested to take w =
log u and change the objective functional (3.3) to∫

Ω

fe−w + wdx+ β

∫
Ω

|∇w|dx. (3.4)

In [58], the authors employed the objective functional (3.2) to restore images
corrupted by multiplicative Gamma noise and they justified their selection as follows.
First, the gradients of the data fitting term in (3.2) and (3.4) are the same if we use
again the relation w = log u. Second, both (3.2) and (3.4) have the same minimizer.
Numerical results from [58] also suggests that the functional (3.2) is effective in dealing
with multiplicative Gamma noise. Therefore, if we want to segment images corrupted
by Poisson noise or multiplicative Gamma noise, it is natural to change the data
fitting term

∫
Ω
(f −Au)2dx in model (2.1) to

∫
Ω
(Au−f logAu)dx. Then we have the

following minimization problem:

inf
u∈W 1,2(Ω)

E(u) = inf
u∈W 1,2(Ω)

{∫
Ω

|∇u|dx+
µ

2

∫
Ω

|∇u|2dx+ λ

∫
Ω

(Au− f logAu)dx
}
.

(3.5)
After obtaining u from the minimization problem (3.5), we adopt the same ap-

proach as in [11] to get a segmentation of u in the second stage. More precisely,
we can try different thresholds to get the best segmentation result, or we can use
the K-means clustering method to get an automatic algorithm. Here we stress again
that there is no need to re-compute u if we change the number of phases K or the
thresholds ρ’s.

In the following, we study the existence and uniqueness of the solution of (3.5).
Since most digital images have predefined ranges, it is natural to assume f ∈ L∞(Ω),
and we further assume inf f > 0. We first study the case when the continuous linear
operator A is the identity operator, i.e.,

inf
u∈W 1,2(Ω)

E(u) = inf
u∈W 1,2(Ω)

{∫
Ω

|∇u|dx+ µ

2

∫
Ω

|∇u|2dx+λ

∫
Ω

(u− f log u)dx
}
. (3.6)

Theorem 3.1. Let Ω be a bounded connected open subset of R2 with a Lipschitz
boundary. Let f ∈ L∞(Ω) with inf f > 0. Then (3.6) has a unique minimizer
u ∈ W 1,2(Ω) satisfying 0 < inf f ≤ u ≤ sup f .

Proof. For any function g ∈ W 1,2(Ω), define g+ = max(g, 0) and g− = −min(g, 0).
Then we have g = g+ − g−. It is clear that {u− f log u} takes its minimum at u = f ,
and it tends to positive infinite when u → ∞, so E(u) is bounded from below. By
taking u ≡ 1 ∈ W 1,2(Ω), we see E(u) < ∞, so E(u) is proper. Let {un} be a mini-
mizing sequence. Then there exists an M > 0 such that E(un) ≤ M for all n ∈ N.
Therefore we have

M ≥
∫
Ω

(un − f log un)dx ≥ −
∫
Ω

(un − f log un)
−dx,
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for all n ∈ N. Since (un−f log un)
− is uniformly bounded from above by |f−f log f | <

∞, we conclude that
∫
Ω
(un−f log un)dx is uniformly bounded from below. From this

and the uniform boundedness of E(un), it is clear that both ∥∇un∥1 =
∫
Ω
|∇un|dx

and ∥∇un∥2 = (
∫
Ω
|∇un|2dx)

1
2 are uniformly bounded.

Since f ∈ L∞(Ω), f is bounded from above. Thus for all y ∈ Ω, there exists a
u0 > 0 such that 2(x− f(y) log x) ≥ x for x ≥ u0. Therefore we conclude that∫

Ω

|un|dx ≤
∫
Ω

max {2(un − f log un), u0}dx ≤ 2

∫
Ω

(un − f log un)
+dx+

∫
Ω

u0dx

≤ 2

∫
Ω

(un − f log un)dx+ 2

∫
Ω

(un − f log un)
−dx+

∫
Ω

u0dx < ∞,

for all n ∈ N. Thus we have proved that ∥un∥1 is uniformly bounded.
From the Poincaré inequality [26], we have

∥un −mΩ(un)∥2 ≤ C∥∇un∥2,

where mΩ(un) =
1
|Ω|

∫
Ω
undx, |Ω| is the Lebesgue measure of Ω and C is a constant

related to Ω. Thus ∥un − mΩ(un)∥2 is uniformly bounded. Notice that we have
already proved that ∥un∥1 is uniformly bounded. From this we conclude that

∥un∥2 ≤ ∥un −mΩ(un)∥2 + ∥mΩ(un)∥2
≤ ∥un −mΩ(un)∥2 + ∥un∥1

is uniformly bounded.
Therefore, up to a subsequence, un converges strongly in W 1,2(Ω) to some u∗,

and ∇un converges weakly as a measure to ∇u∗. By the lower semi-continuity of
E(u), we have E(lim infn→∞ un) ≤ lim infn→∞ E(un), and therefore u∗ is a solution
to (3.6).

Let α = inf f and β = sup f . By Proposition 15 in [21], both min(u∗, β) and
max(u∗, α) are members of W 1,2(Ω), and

|∇(min(u∗, β))| ≤ |∇u∗|, |∇(max(u∗, α))| ≤ |∇u∗|.

Then following the same arguments as in Theorem 4.1 in [4], we have α ≤ u∗ ≤ β.
The uniqueness of the minimizer follows from the strict convexity of the objective

functional in (3.6).

Next we study the case when A is a blurring operator. We show that our main
model (3.5) has a unique solution if Ker(A) ∩Ker(∇) = {0}, where Ker(·) represents
the kernel. This condition says that A1 ̸= 0. In real applications, the blurring
operator is a convolution with positive kernel, so the condition Ker(A)∩Ker(∇) = {0}
is satisfied.

Theorem 3.2. Let Ω be a bounded connected open subset of R2 with a Lipschitz
boundary. Let f ∈ L∞(Ω) with inf f > 0, and let A be a continuous linear operator
from W 1,2(Ω) to itself. Assume Ker(A) ∩ Ker(∇) = {0}, then (3.5) has a unique
minimizer u ∈ W 1,2(Ω).

Proof. Let {un} be a minimizing sequence. Then as argued in the proof of
Theorem 3.1, it is clear that ∥∇un∥1, ∥∇un∥2 and ∥Aun∥1 are all uniformly bounded.
By the Poincaré inequality, we have

∥un −mΩ(un)∥1 ≤ C1∥∇un∥1,
6



for some constant C1. Thus ∥un −mΩ(un)∥1 is uniformly bounded. We have

|mΩ(un)|∥A1∥1 = ∥A(mΩ(un)1)∥1
= ∥A(mΩ(un)− un) +Aun∥1
≤ ∥A(mΩ(un)− un)∥1 + ∥Aun∥1.

Since ∥un − mΩ(un)∥1 is uniformly bounded, A is continuous, and A1 ̸= 0, we see
that mΩ(un) is uniformly bounded. By the Poincaré inequality again, we see that

∥un −mΩ(un)∥2 ≤ C2∥∇un∥2,

for some constant C2. Thus ∥un∥2 ≤ ∥un − mΩ(un)∥2 + ∥mΩ(un)∥2 is uniformly
bounded. Therefore, up to a subsequence, un converges strongly in W 1,2(Ω) to some
u∗, and ∇un converges weakly as a measure to ∇u∗. Then from the lower semi-
continuity of E(u), we conclude that u∗ is a minimizer of (3.5). Notice that Au −
f logAu is strictly convex in Au. Thus the uniqueness of the minimizer follows from
the same argument as in Theorem 2.4 [11].

4. The primal-dual algorithm for solving (3.5). Because of the convexity of
the minimization problem (3.5), many methods can be used to solve it. For example,
the primal-dual algorithms [12, 16, 18, 65], which can be easily adapted to a number
of non-smooth convex optimization problems and is easy to implement; and the alter-
nating direction method with multipliers (ADMM) [8, 27], which is convergent and
is well-suited to large-scale convex problems. Recently, several specific algorithms for
solving TV regularized problems have been proposed: the split-Bregman algorithm
[30], which is closely connected to the ADMM method, and has fast convergence for
TV regularized problems; the Chambolle-Pock algorithm [16], which solves a general
saddle-point problem based on primal-dual approach, is fast, flexible, and there is a
known convergent rate. In this paper, we employ the Chambolle-Pock algorithm to
solve the minimization problem (3.5).

We now derive the discrete version of (3.5). We keep the same notations from
the continuous context for the sake of simplicity. Suppose that the original image f ∈
Rmn×1 is obtained from a two-dimensional pixel-array (size m× n) by concatenation
in the usual columnwise fashion, and f ∈ [1, 255] (we set f = max(f, 1)). Define the
function G : Rmn×1 → R as

G(v) =
∑
i

(vi − fi log vi), v > 0.

The discrete gradient operator is the map ∇ : Rmn×1 → R2mn×1 defined as:

∇u =

(
∇xu
∇yu

)
,

with ∇x and ∇y corresponding to the discrete derivative operators in the x-direction
and y-direction respectively. In our numerical experiments, ∇x and ∇y are obtained
by applying finite difference approximations to the derivatives with symmetric bound-
ary conditions in the respective coordinate directions. In addition, ∥∇u∥1 denotes the
discrete total variation of u, i.e.,

∥∇u∥1 =
∑
i

√
(∇xu)2i + (∇yu)2i .
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Then the discrete version of the minimization problem (3.5) is

min
u

E(u) = min
u

{
∥∇u∥1 +

µ

2
∥∇u∥22 + λG(Au)

}
, (4.1)

where A ∈ Rmn×mn is the blurring matrix from the discretization of A. In the
numerical tests, we impose symmetric boundary conditions on A too.

Next, we introduce new variables v ∈ R2mn×1 and w ∈ Rmn×1, and reformulate
the minimization problem (4.1) as the following constrained optimization problem:

min
u,v,w

{
∥v∥1 +

µ

2
∥v∥22 + λG(w)

}
s.t. v = ∇u,w = Au. (4.2)

To employ the Chambolle-Pock algorithm, we consider the following primal-dual op-
timization problem:

min
u,v,w

max
p,q

{
∥v∥1 +

µ

2
∥v∥22 + λG(w) + ⟨v −∇u, p⟩+ ⟨w −Au, q⟩

}
. (4.3)

Then the Chambolle-Pock algorithm is defined through the iterations:

p(k+1) = argmax
p

{
⟨v̄(k) −∇ū(k), p⟩ − 1

2σ
∥p− p(k)∥22

}
, (4.4)

q(k+1) = argmin
q

{
⟨w̄(k) −Aū(k), q⟩ − 1

2σ
∥q − q(k)∥22

}
, (4.5)

u(k+1) = argmin
u

{
−⟨∇u, p(k+1)⟩ − ⟨Au, q(k+1)⟩+ 1

2τ
∥u− u(k)∥22

}
, (4.6)

v(k+1) = argmin
v

{
∥v∥1 +

µ

2
∥v∥22 + ⟨v, p(k+1)⟩+ 1

2τ
∥v − v(k)∥22

}
, (4.7)

w(k+1) = argmin
w

{
λG(w) + ⟨w, q(k+1)⟩+ 1

2τ
∥w − w(k)∥22

}
, (4.8)

ū(k+1) = 2u(k+1) − u(k), (4.9)

v̄(k+1) = 2v(k+1) − v(k), (4.10)

w̄(k+1) = 2w(k+1) − w(k). (4.11)

Since the objective functions (4.4)–(4.6) are quadratic, the update of p, q and u
can be computed efficiently:

p(k+1) = σ(v̄(k) −∇ū(k)) + p(k), (4.12)

q(k+1) = σ(w̄(k) −Aū(k)) + q(k), (4.13)
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u(k+1) = u(k) + τ(AT q(k+1) − divp(k+1)). (4.14)

The solution of (4.7) can be easily obtained by applying the soft thresholding operator.
Denote t(k) = τ

µτ+1 (
1
τ v

(k) − p(k+1)), we have

v(k+1) = max

{
∥t(k)∥1 −

τ

µτ + 1
, 0

}
· t(k)

∥t(k)∥1
. (4.15)

The optimality condition for (4.8) gives the quadratic equation

w2 + (τ(λ+ q(k+1))− w(k))w − λτf = 0.

Its solution is given by

w =
w(k) − τ(q(k+1) + λ) + [(τ(λ+ q(k+1))− w(k))2 + 4τλf ]1/2

2
. (4.16)

The following algorithm summarizes the procedures to solve the optimization prob-
lem (4.1).

Algorithm 1: Solving (4.1) by the Chambolle-Pock algorithm

1. Initialize: p(0) = 0, u(0) = ū(0) = f, v(0) = v̄(0) = ∇f, w(0) = w̄(0) = Au(0).

2. Do k = 0, 1, . . . , until ∥u(k)−u(k+1)∥
∥u(k+1)∥ < ϵ

(a) Compute p(k+1) by (4.12).
(b) Compute q(k+1) by (4.13).
(c) Compute u(k+1) by (4.14).
(d) Compute v(k+1) by (4.15).
(e) Compute w(k+1) by (4.16).
(f) Update ū(k+1), v̄(k+1) and w̄(k+1) by (4.9), (4.10) and (4.11).

3. Output: u.

Note that if A is the identity operator, there is no need to introduce w and q, and
the algorithm can be simplified accordingly.

In the following, we discuss the existence of solution to (4.3) and the convergence
of Algorithm 1. Define

K =

(
−∇ I 0
−A 0 I

)
, x =

 u
v
w

 , x̄ =

 ū
v̄
w̄

 , y =

(
p
q

)
.

Then (4.3) is equivalent to

min
x

max
y

{H(x) + ⟨Kx, y⟩} , (4.17)

where H(x) = ∥v∥1 + µ
2 ∥v∥

2
2 + λG(w). First we note that

Proposition 4.1. The saddle point set of (4.17) is nonempty.
The proof follows the same arguments as in Proposition 2 [42].

Next we show that Algorithm 1 converges.
Proposition 4.2. Let ∥K∥2 be the operator 2-norm of K and (x(n), x̄(n), y(n)) be

defined by Algorithm 1. If we choose τ and σ such that τσ < 1/∥K∥22, then (x(n), y(n))
converges to a saddle point (x∗, y∗) of (4.17).
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The proposition is a special case of Theorem 1 in [16]. We remark that for the limiting
point (x∗, y∗) = (u∗, v∗, w∗, p∗, q∗), the u∗ will be the unique solution of (4.1) that we
seek. To see that, we first observe that (4.17) is the primal-dual formulation of

min
x

{ι(Kx) +H(x)}, (4.18)

where ι is the indicator function of the set {0}, see [16]. Clearly, by the definition of
K and H, (4.18) is exact the same as (4.2). Since (4.1) has a unique solution (under
the assumption that Ker(A) ∩ Ker(∇) = {0}) and that v := ∇u and w := Au (see
(4.2)), we see that (4.18) has a unique solution too. By Proposition 3.1 of [23], if
(x∗, y∗) is a saddle point of (4.17), then x∗ is a solution of (4.18), and x∗ is therefore
unique.

Finally we give an estimate of ∥K∥2.
Proposition 4.3. Denote α =

√
∥∇∥22 + ∥A∥22. Then ∥K∥2 <

√
α2 + 1.

Proof. To get a bound for the operator K, we have

∥Kx∥2 = ∥
(

−∇u+ v
−Au+ w

)
∥2

≤ ∥
(

−∇u
−Au

)
∥2 + ∥

(
v
w

)
∥2

=
√
∥∇u∥22 + ∥Au∥22 + ∥

(
v
w

)
∥2

≤
√
∥∇∥22 + ∥A∥22∥u∥2 + ∥

(
v
w

)
∥2. (4.19)

When ∥x∥2 = 1, that is ∥u∥22 + ∥
(

v
w

)
∥22 = 1, we have

∥Kx∥2 ≤ α∥u∥2 + ∥
(

v
w

)
∥2

≤
√
α2 + 1 ·

√
∥u∥22 + ∥

(
v
w

)
∥22 (4.20)

=
√
α2 + 1.

Thus ∥K∥2 ≤
√
α2 + 1. However, we claim that the equality can not be achieved.

To see this, (4.20) is an equality if and only if ∥u∥2 = α√
α2+1

and ∥
(

v
w

)
∥2 = 1√

α2+1
.

In this case, ∥u∥2 < 1, and (4.19) becomes a strict inequality.
Since ∥∇∥2 ≤ 8 (see [12]) and ∥A∥2 ≤ 1 (see [42]), we conclude that if τσ ≤ 0.1,

the Algorithm 1 converges.
Let us remark that the above numerical scheme can be applied to handle the

following problem:

min
x

n∑
i=1

fi(Kix),

where for any i, Ki is bounded linear operator from Rp to some Rmi and fi is proper
convex function. Indeed, we can rewrite the above problem as the following equivalent
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min-max problem:

max
y1,...,yn

min
x,w1,...,wn

{
n∑

i=1

fi(wi) +
n∑

i=1

⟨wi −Kix, yi⟩

}
,

or

max
Y

min
X

{f(X) + ⟨KX,Y ⟩}, (4.21)

where X = (x,w1, . . . , wn)
T , Y = (y1, . . . , yn)

T , f(X) :=
∑n

i=1 fi(wi) and

K :=


−K1 I 0 . . . 0
−K2 0 I . . . 0

. . .
−Kn . . . 0 0 I

 .

Readily, we can prove that ∥K∥2 ≤
√
1 +

∑n
i=1 ∥Ki∥22. Now, we can applied the

Chambolle-Pock algorithm on (4.21).

5. Numerical experiments. In this section, we compare our method with
other segmentation methods. To standardize the experiments, all test images have the
range [1, 255] (we set f = max(f, 1)) and we always set the mean Kθ of the Gamma
distribution to 1, see (3.1).

As far as we know, there are no papers on segmenting blurry images with either
Poisson or multiplicative Gamma noise. The most recent paper [55] considered 2-phase
segmentation with additive Gaussian noise, Poisson noise or multiplicative speckle
noise, but with no blur. We will compare this method with ours. Besides, to be more
comprehensive, we will compare with methods in [22, 39, 62, 63] which are effective
segmentation methods for Gaussian noise proposed after 2010. For fair comparisons,
we apply the Anscombe transformation to the test images before the implementation
of the methods [22, 39, 62, 63]. Recall that the Anscombe transformation is defined

by f → 2
√
f + 3

8 , see [3]. Anscombe transformation can stabilize variance, and it has

been used in the removal of Poisson noise, see [44].
We note that method [55] is a region-based variational segmentation framework.

It is not convex and the segmentation results depend on initializations. Method
[63] uses the continuous max-flow algorithm in [61] and a mimetic finite-difference
discretization method [64] to solve the 2D continuous min-cut problem. Method [62]
uses the same algorithm and method to solve the 2D continuous min-cut problem
with multiple labels. Method [22] is based on tight frames and method [39] is based
on fuzzy region competitions. Notice that we can not obtain the codes from authors
in [55], so we coded the algorithm by our own. For the methods [22, 39, 62, 63], the
codes are from the authors.

In our method, we put τ = 4 and σ = 0.025 for a fast and stable implementation
of Algorithm 1, see the remark after Proposition 4.3. For images with no blur, we

terminate the iteration in Algorithm 1 when ∥u(k)−u(k+1)∥
∥u(k+1)∥ < 10−3, or the maximum

iteration number 600 is reached. For images with blur, we terminate the iteration

in Algorithm 1 when ∥u(k)−u(k+1)∥
∥u(k+1)∥ < 10−4, or the maximum iteration number 600 is

reached. After we get u in (3.5), we choose threshold(s) to segment u. The thresh-
olds are chosen by two methods. The first one is to use Matlab K-means function
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“kmeans”. This provides an automatic segmentation process. The second method is
to choose the threshold manually to produce good segmentation results. We use ρK to
denote the thresholds obtained from the “kmeans” command and ρU the thresholds
chosen by us. Since u is calculated prior to the choosing of the number of phases
and the thresholds, users can try different number of phases and thresholds without
re-computing u.

For all the segmentation methods used in this section, we tuned the parameters
in the experiments to achieve the best visual results. The boundaries of the results
are superimposed on the given images for comparison. All the numerical experiments
were run on a PC with 2.4GHz CPU, 4GB RAM and Matlab 7.13 (R2011b).

5.1. Two-phase segmentation. In this subsection, we compare our method
with the two-phase segmentation methods proposed in [22, 55, 63].

Example 5.1 (Poisson noise): Figure 5.1(a) is the original image “Boat”. This
image is difficult to segment because of the inhomogeneity of the light: the brightness
of the water varies with the top corners being darker, and the boat has both dark
and light parts. We corrupted it with Poisson noise to make the segmentation more
challenging, see Figure 5.1(b). Figure 5.1(f) is the solution u of (3.5) using λ = 1 and
µ = 0.05, and (g) is our segmentation result with threshold ρK = 142.13. It can be
seen that our method segmented the body and the reflection of the boat successfully.
Figure 5.1(c) from the method in [63] included the water of the top corners as part
of the segmented object. Figure 5.1(d) from the method in [22] failed to segment the
body and the reflection of the boat as a whole. Figure 5.1(e) of method [55] produced
a segmentation similar to our result.

(a) Original image (b) Noisy image (c) Yuan et al. [63] (d) Dong et al. [22]

(e) Sawatzky et al.
[55]

(f) Solution u (g) With threshold
ρK = 142.13

Fig. 5.1. (a) Original “Boat” image (450× 321 pixels), (b) image corrupted by Poisson noise
(c) Yuan et al. [63], (d) Dong et al. [22], (e) Sawatzky et al. [55], (f) solution u from (3.5) with
λ = 1 and µ = 0.05, (g) u threshold by ρK = 142.13.

Example 5.2 (Multiplicative Gamma noise): Figure 5.2(a) is the original “Anti-
mass” image. We corrupt it by multiplicative Gamma noise with K = 10 to obtain
Figure 5.2(b). The bright object in the image (the continental US) does not have a
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clear cut boundary, and there are many tiny holes in the object, which all make it
challenging to produce a good segmentation result. Figure 5.2(f) is the solution u
from (3.5) using λ = 1 and µ = 0.5. Notice that there is no visible noise left in u,
and the bright object in the original image is smoothed out. Figures 5.2(g) and (h)
are our segmentation results with thresholds ρK = 92.05 and ρU = 20 respectively.
By comparing our results with the results from methods [63], [22] and [55] in Fig-
ures 5.2(c), (d) and (e) respectively, we see that our method can segment the noisy
image successfully with both ρK and ρU and different meaningful details are revealed.
The method [63] produced a result similar to our segmentation with threshold ρK ,
while the methods [22, 55] produced results with holes inside the bright object.

(a) Original image (b) Noisy image (c) Yuan et al. [63]

(d) Dong et al. [22] (e) Sawatzky et al. [55] (f) Solution u

(g) With threshold
ρK = 92.05

(h) With threshold
ρU = 20

Fig. 5.2. (a) Original “Anti-mass” image (384 × 480 pixels), (b) image corrupted by multi-
plicative Gamma noise with K = 10, (c) Yuan et al. [63], (d) Dong et al. [22], (e) Sawatzky et al.
[55], (f) solution u from (3.5) with λ = 1 and µ = 0.5, (g) u with threshold ρK = 92.05, (h) u with
threshold ρU = 20.

Example 5.3 (Blocky blurry image with Poisson noise): Figure 5.3(a) is the syn-
thetic image “Shape” which has three clearly separated objects. We first blur it by a
vertical motion kernel with length 31 and then corrupt it by Poisson noise, see Fig-
ure 5.3(b). The boundaries of the objects are now blurry and vague so that they are
hard to detect. Figure 5.3(f) is the solution u from (3.5) using λ = 15 and µ = 0.001.
Figures 5.3(g) is our segmentation result with threshold ρK = 129.94. It is clear that
both the blur and the noise are reduced in u, and this facilitated the detection of
the separate objects. The method [63] produced a result in Figure 5.3(c) with over-
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smoothed boundaries. Because of the blur, Figure 5.3(d) from the method in [22]
presents distortion (see the annulus). Method [55] in Figure 5.3(e) failed to segment
the three separated objects.

(a) Original image (b) Blurred and
noisy image

(c) Yuan et al. [63] (d) Dong et al. [22]

(e) Sawatzky et al.
[55]

(f) Solution u (g) With threshold
ρK = 129.94

Fig. 5.3. (a) Original “Shape” image (258 × 256 pixels), (b) blurred image (vertical motion
kernel with length 21) with Poisson noise, (c) Yuan et al. [63], (d) Dong et al. [22], (e) Sawatzky
et al. [55], (f) solution u from (3.5) with λ = 15 and µ = 0.001, (g) u threshold with ρK = 129.94.

Example 5.4 (Tubular blurry image with Gamma noise): Figure 5.4(a) is the
synthetic tubular image “Tree” which resembles a fractal with lots of fine structures.
We first blur it by a Gaussian kernel (size 15 × 15 and standard deviation 3), and
then degrade it with multiplicative Gamma noise with K = 10, see Figure 5.4(b).
Figure 5.4(f) is the solution u from (3.5) using λ = 10 and µ = 0.001. Figures 5.4(g)
and (h) are our segmentation results with thresholds ρK = 48.94 and ρU = 14 re-
spectively. Comparing to the methods [63], [22] and [55] in Figures 5.4(c), (d) and
(e) respectively, it is clear that our segmentation method with ρU = 14 produced a
very good result. The methods [22], [55] and our method with ρK failed to detect
fine details of the tree. Because of the blur, the method [63] produced a very coarse
boundary. See Figure 5.4(i)–(l) for a detailed comparison.

Since we can easily obtain the ground truth of Figure 5.3(a) and Figure 5.4(a), in
Table 5.1 we compare the percentage of correct pixels of the segmented binary images.
Let the image size be m×n, and the number of correct pixels segmented be N . Then
the percentage of correct pixels of the segmented image is computed as N

mn . We see
that our method gives the most accurate segmentation.

Example 5.5 (Real cell image): The noisy image “Cells” in Figure 5.5(a) is a
real image from an automated cell tracking system [6] where the authors developed a
system to track cell lineage during Caenorhabditis elegans embryogenesis under low
exposure of lights. In their experiments, noise in the images led to false positives
in nuclear identification. Here, we aim to segment all the cells in the noisy image
Figure 5.5(a). The segmentation result will be useful for further processing, e.g. to
locate the cells by Circular Hough Transform [49]. Figure 5.5(e) is the u from (3.5)
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(a) Original image (b) Blurred and
noisy image

(c) Yuan et al. [63] (d) Dong et al. [22]

(e) Sawatzky et al.
[55]

(f) Solution u (g) With threshold
ρK = 48.94

(h) With threshold
ρU = 14

(i) Detail of
method [63]

(j) Detail of
method [22]

(k) Detail of
method [55]

(l) Detail of our
method with ρU

Fig. 5.4. (a) Original “Tree” image (512 × 512 pixels), (b) blurred image (Gaussian kernel,
standard deviation 3, size 15 × 15) and multiplicative Gamma noise with K = 10, (c) Yuan et al.
[63], (d) Dong et al. [22], (e) Sawatzky et al. [55], (f) solution u from (3.5) with λ = 10 and
µ = 0.001, (g) u threshold by ρK = 48.94, (h) u threshold by ρU = 14, (i) detail of method [63], (j)
detail of method [22], (k) detail of method [55] (l) detail of our method with ρU .

Table 5.1
Percentage of correct pixels segmented for 2-phase segmentation.

Yuan et al. [63] Dong et al. [22] Sawatzky et al. [55] Our method
Figure 5.3 98.64% 94.37% 85.22% ρK 99.72%

ρK 96.40%
Figure 5.4 93.10% 96.86% 96.31% ρU 97.08%

using λ = 10 and µ = 5. Figures 5.5(f) is our segmentation result with thresholds
ρK = 55.09. Figure 5.5(g)–(i) are our segmentation results with ρU = 75, 85, 95
respectively with the same u. We stress that by changing the threshold, we do not
need to re-compute u. It is clear that our threshold with ρK can segment almost
all the cells in the noisy image, while our segment with ρU can get more separated
cells with increasing thresholds, all with smooth boundaries. For the method [63],
the cells are not separated well. For the method [22], some cells are left outside the
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segmented region, and the boundaries present artificial oscillations. For the method
[55], many cells are left outside the segmented region, while some segmented cells are
not separated well.

(a) Original noisy image (b) Yuan et al. [63] (c) Dong et al. [22]

(d) Sawatzky et al. [55] (e) Solution u (f) With threshold
ρK = 55.09

(g) With threshold
ρU = 75

(h) With threshold
ρU = 85

(i) With threshold
ρU = 95

Fig. 5.5. (a) Original “Cells” image (512 × 712 pixels), (b) Yuan et al. [63], (c) Dong et al.
[22], (d) Sawatzky et al. [55], (e) solution u from (3.5) with λ = 10 and µ = 5, (f) u threshold with
ρK = 55.09, (g)–(i) u threshold with ρU = 75, 85, 95 respectively.

Example 5.6 (Real bacteria image): The real “Bacteria” image has intensity only
in [0, 48], for better visualization we linearly stretched the image to the range [1, 255].
The resulting image is depicted in Figure 5.6(a) where one can see that the object
in the image has high level of noise, and the boundary is vague. All the methods we
tested are implemented on this linearly-stretched image. Figure 5.6(e) is the solution
u from (3.5) using λ = 1 and µ = 1. Figures 5.6(f) and (g) are our segmentation
results with thresholds ρK = 88.34 and ρU = 50 respectively. By comparing our
results with the results from methods [63], [22] and [55] in Figures 5.6 (b)–(d), we
see that our segmentation with ρU = 50 produced a boundary that separates the cell
from the background successfully. For the two methods [63, 22], the boundaries of the
segmented regions are not smooth. Method [55] over estimated the region of interest.

In Table 5.2, we give the iteration numbers and CPU time in seconds for our
method and the methods [22, 55, 63] tested above. The codes for all the methods,
including ours, are written in .mat files. It can be seen that except for the deblurring
cases (Figures 5.3 and 5.4), our algorithm uses the least time. The extra time in de-
blurring cases is justified by the good visual results and higher percentage of correctly
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(a) The
linearly-stretched

image

(b) Yuan et al. [63] (c) Dong et al. [22]

(d) Sawatzky et al.
[55]

(e) Solution u (f) With threshold
ρK = 88.34

(g) With threshold
ρU = 50

Fig. 5.6. (a) Original “Bacteria” image after linear stretching (512× 512 pixels), (b) Yuan et
al. [63], (c) Dong et al. [22], (d) Sawatzky et al. [55], (e) solution u from (3.5) with λ = 1 and
µ = 1, (f) u threshold with ρK = 88.34, (g) u threshold with ρU = 50.

segmented pixels, see Table 5.1.

5.2. Multi-phase segmentation. In this section, we compare our method with
the multi-phase segmentation methods in [62] and [39].

Example 5.7 (Multiplicative Gamma noise): Figure 5.7(a) is the original “Air-
craft” image and we corrupt it by multiplicative Gamma noise with K = 10 to get
Figure 5.7(b). Figure 5.7(e) is the solution u from (3.5) using λ = 2 and µ = 0.01. It is
clear that our solution u is free of noise, and the cloud is smoothed out. Figure 5.7(f)
is our segmentation result with thresholds ρK = (48.69, 145.93), and Figures 5.7(g)–
(i) are the three different phases we segmented. In Figure 5.7(c) from the method in
[62], the cloud is not segmented as a whole. In Figure 5.7(d) from the method in [39],
although we used the Anscombe transformation, noise is still visible in the segmented
image.

Example 5.8 (Poisson noise): Figure 5.8(a) is the original “Shape 2” image, and
we corrupt it by Poisson noise to get Figure 5.8(b). Figure 5.8(e) is the solution u
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Table 5.2
Iteration numbers and CPU time in seconds for two-phase segmentation.

Yuan et al. [63] Dong et al. [22] Sawatzky et al. [55] Our method
Example iter. time iter. time iter. time iter. time
Figure 5.1 78 3.29 187 12.66 13 324.52 61 1.52
Figure 5.2 74 5.32 239 19.51 25 562.77 80 3.19
Figure 5.3 25 0.24 66 1.95 19 152.04 325 4.12
Figure 5.4 31 3.76 295 37.13 25 1220.27 263 18.88
Figure 5.5 41 7.01 300 50.47 25 2478.45 101 6.26
Figure 5.6 51 6.33 300 36.08 25 1435.72 74 3.88

(a) Original image (b) Noisy image (c) Yuan et al. [62]

(d) Li et al. [39] (e) Solution u (f) With threshold
ρK = (48.69, 145.93)

(g) First phase (h) Second phase (i) Third phase

Fig. 5.7. (a) Original “Aircraft” image (125×150 pixels), (b) image corrupted by multiplicative
Gamma noise with K = 10, (c) Yuan et al. [62], (d) Li et al. [39], (e) solution u from (3.5) with
λ = 2 and µ = 0.01, (f) u threshold by ρK = (48.69, 145.93), (g)–(i) three-phase segmentation of u.

from (3.5) using λ = 2 and µ = 0.001. It is clear that our u is almost identical to
the original image, with boundaries well preserved. Figure 5.8(f) is our segmentation
result with thresholds ρK = (41.77, 124.34, 206.95). In Figure 5.8(g) we use different
colors to show the boundaries of the four phases. In Figure 5.8(c) from the method
in [62], the boundaries of the triangle has oscillations. Fig 5.8 (d) from [39] produced
a result almost identity to the original image.
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(a) Original image (b) Noisy image (c) Yuan et al. [62] (d) Li et al. [39]

(e) Solution u (f) with threshold
ρK =

(41.77, 124.34, 206.95)

1 1

1 1

2

2

2

3

3

33

4

(g) The four phases

Fig. 5.8. (a) Original “Shape 2” image (256 × 256 pixels), (b) image corrupted by Poisson
noise, (c) Yuan et al. [62], (d) Li et al. [39], (e) solution u from (3.5) with λ = 2 and µ = 0.001,
(f) u threshold by ρK = (41.77, 124.34, 206.95), (g) the four different phases.

Table 5.3
Percentage of correct pixels segmented in 4-phase segmentation.

Yuan et al. [63] Li et al. [39] Our method
Figure 5.8 98.72% 99.99% ρK 99.99%
Figure 5.9 87.03% 85.64% ρK 88.59%

Example 5.9 (Blocky blurry image with Gamma noise): Figure 5.9(a) is the
blurred and noisy image degraded from Figure 5.8(a); first by Gaussian kernel with
standard deviation 3 and size 11 and then by multiplicative Gamma noise with
K = 20. Figure 5.9(d) is the solution u from (3.5) using λ = 2 and µ = 0.001.
It is clear that our solution u is free of noise, and the blurring is significantly reduced.
Figure 5.9(e) is our segmentation result with thresholds ρK = (43.32, 125.01, 205.91),
and Figure 5.9(f) shows the four different phases. Figure 5.9(b) from the method in
[62] presents strong irregular oscillations on the boundaries, and Figure 5.9(c) from
the method in [39] has visible noise and blurry boundaries.

Since we can easily obtain the ground truth of Figures 5.8 and 5.9, in Table 5.3 we
compare the percentage of correct pixels of these segmented 4-phase images. Again,
it can be seen that our method produces the best results.

Example 5.10 (Real MRI image): Finally we test the four-phase segmentation of
a real MRI image, see Figure 5.10(a). Figure 5.10(d) is our solution u from (3.5) using
λ = 10 and µ = 0.01. Figure 5.10(e) is the segmentation of u using the thresholds
ρU = (110, 128, 150). Figures 5.10(f)–(i) are the four phases we segmented. From the
images, it is clear that our method produces the best segmentation, while for methods
[62] and [39], there are holes in the central bright region (marked by a red number 4
in Figure 5.10(e)).
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(a) Blurred and
noisy image

(b) Yuan et al. [62] (c) Li et al. [39] (d) Solution u

(e) With threshold
ρK =

(43.32, 125.01, 205.91)

3

3

3 3

2

2

2

1 1

1 1

4

(f) The four phases

Fig. 5.9. (a) blurred and noisy image: Gaussian kernel with standard deviation 3, size 11 and
multiplicative Gamma noise with K = 20, (b) Yuan et al. [62], (c) Li et al. [39], (d) solution u
from (3.5) with λ = 2 and µ = 0.001, (e) u threshold by ρK = (43.32, 125.01, 205.91), (f) the four
phases.

Table 5.4
Iteration numbers and CPU time in seconds for multi-phase segmentation.

Yuan et al. [62] Li et al. [39] Our method
Example iter. time iter. time iter. time
Figure 5.7 105 0.90 62 0.56 58 0.17
Figure 5.8 130 6.28 53 2.26 35 0.50
Figure 5.9 97 4.65 60 1.91 225 3.26
Figure 5.10 95 4.74 144 4.44 60 1.96

In Table 5.4, we give the iteration numbers and CPU time in seconds for the multi-
phase segmentation we tested above. The codes for all the methods, including ours,
are written in .mat files. Except for the deblurring case (Figure 5.9), our algorithm
always uses the least time. Again, the extra time in deblurring is justified by the good
visual results and higher percentage of correctly segmented pixels, see Table 5.3.

6. Conclusion and possible further improvements. In this paper, we have
proposed a two-stage method for segmentation that makes use of a convex model (3.5).
Our method has a data-fitting term related to blurring, Poisson noise and multiplica-
tive Gamma noise. In the first stage, our method finds the unique smooth minimizer
by the Chambolle-Pock algorithm. Then in the second stage, it uses thresholding
strategy to segment the image. Our method combines the two-phase and multiphase
segmentation into one single algorithm, and in fact one can decide the number of
phases and the thresholds after the solution in (3.5) is obtained. We have employed
the K-means method in Matlab to choose the thresholds automatically, or users can
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(a) Given image (b) Yuan et al. [62] (c) Li et al. [39]

(d) Solution u

4

32

1

(e) With threshold
ρU = (110, 128, 150)

(f) First phase

(g) Second phase (h) Third phase (i) Fourth phase

Fig. 5.10. (a) Original MRI image (512 × 512 pixels) (b) Yuan et al. [62], (c) Li et al. [39],
(d) solution u from (3.5) with λ = 10 and µ = 0.01, (e) u threshold by ρU = (110, 128, 150), (f)–(i)
the four phases.

also easily alter the thresholds without recalculating the solution in model (3.5). Our
numerical experiments show that our method is very effective and robust for many
kinds of images, such as anti-mass, tubular, low-light, noisy, or blurry images.

Our method may be further improved in several ways. One is to employ automatic
clustering algorithms other than the K-means method to find the thresholds. Another
way of improvement is to include local information in the clustering process in the
second stage to better distinguish different objects of interests.
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