Height Drift Correction in Non-Raster Atomic Force Microscopy
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We propose a novel method to detect and correct drift in non-raster scanning probe microscopy.
In conventional raster scanning drift is usually corrected by subtracting a fitted polynomial from
each scan line, but sample tilt or large topographic features can result in severe artifacts. Our
method uses self-intersecting scan paths to distinguish drift from topographic features. Observing
the height differences when passing the same position at different times enables the reconstruction
of a continuous function of drift. We show that a small number of self-intersections is adequate for
automatic and reliable drift correction. Additionally, we introduce a fitness function which provides
a quantitative measure of drift correctability for any arbitrary scan shape.
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I. INTRODUCTION

Atomic Force Microscopy (AFM) measures the inter-
action force between a sharp tip and sample to acquire
high resolution images by serially scanning a sample area
while recording these minute interactions often at sub-
nanometer resolution [1-4]. The fact that AFM achieves
high resolution imaging over a large variety of sample
types and environments makes it one of the most fre-
quently used characterization tools in nanoscience. As
AFM mechanically detects sub-nanometer size features,
its accuracy is easily compromised by drift. Drift mainly
originates from thermal fluctuations resulting in the slow
expansion and contraction of instrument parts. Tradi-
tionally, in raster scanning height drift, or z-drift, is
corrected using flattening. Flattening is performed by
removing a low order polynomial fit from each scan
line. This rudimentary technique often results in arti-
facts where sample features become partially removed or
tilted. Extracting accurate topographic data, therefore,
often requires the user to choose an appropriate combi-
nation of different flattening techniques.

Part of the rationale for a raster pattern is that the
data samples align with a regular grid, making the data
ideal for visualizing in a pixelated image. For each data
point raster scanning requires the probe tip to be at
a specific location at a given time. But non-linearities
such as hysteresis and creep associated with the multido-
main properties of high sensitivity piezoelectric materi-
als make this a difficult engineering task [5-8]. We have
shown that these problems can be overcome with Sensor
Inpainting techniques [9] which use advanced inpainting
algorithms [10-15] to generate accurate images based on
position sensor data, see Appendix A. The technique,
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FIG. 1. a) Illustration of a five loop Archimedean spiral show-
ing inward (solid line) and outward (dashed line) scan path.
The gray hexagons illustrate recessed topographic features.
b) measured X and Y positions versus time ¢) The measured
height h(t) along the scan pass comprises effects from the tilt
s(t), drift d(t) as well as the real topography z(t) which we
aim to recover as accurately as possible to generate a clean
topographic image.

furthermore, frees scanning probe microscopy from the
paradigm of raster scanning so that data recorded along
any arbitrary path can be used to generate an image.

This enables the use of sinusoidal scan patterns that
require less bandwidth and are better suited to drive
high inertia nanopositioners [16-18]. FIG. 1 shows an
Archimedean spiral as a typical non-raster scan path.
For legibility we show a scan path with only five loops
for the inward (solid line) and outward scans (dashed
line). Raster scanning typically only uses either trace or
retrace data for generating an image, but in Sensor In-
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FIG. 2. Examples of piecewise linear fitting. The measured
height signal along non-raster scan paths a) The recorded
height h(t) (top) is split into N segments onto which linear
fitting is used to correct the drift component. A corrected
height (bottom) results from subtracting the piecewise lin-
ear fit from the original data. Because of tilt flattening dis-
torts many of the topographic features. b) 500 nm diameter
Archimedean Spiral showing the grains of evaporated gold
where drift data results in rings (raw). Piecewise linear fitting
can flatten these artifacts (N=300). However, drift related
artifacts remain present when too few segments are chosen
(N=30). Height information is lost and topographic features
are flattened when too many segments are used (N=3000).

painting 100% of the data can be displayed and at least
a two-fold increase in temporal or spatial resolution is
achieved. For high temporal resolution inward and out-
ward scans can be used separately, and for higher lateral
resolution a single image can be generated using the data
collected on the inward and outward scan together. As
shown in FIG. 1 ¢) the recorded height h(t) typically con-
tains contributions from the tilt of the sample s(¢) and
drift of the instrument d(¢). In the presence of drift, the
same point in space may have different measured heights
because of temporal separation. It is therefore extremely
important to have reliable methods to detect and correct
drift in non-raster scan AFM. Using Sensor Inpainting

the tip is not required to follow a linear motion. As a
consequence, sample tilt does not necessarily result in a
linear feature in the recorded height time trace. FIG. 2
shows our attempt to generalize the naive fit-and-flatten
approach to non-raster scan paths. FIG. 2 a) shows a
time trace recorded using a non-raster scan pattern over
a calibration grating with 8 nm deep features. A contin-
uous piecewise linear fit is overlaid. The corrected height
signal is shown in the bottom panel. It is clear that
the linear fitting distorts many of the features. Without
distinguishing drift from tilt any fitting algorithm will
potentially distort the measured topography and result
in loss of reliability. Furthermore, for a non-raster scan it
is not obvious how to best choose the length of the linear
segments for line flattening. In FIG. 2 b) we show an
Archimedean spiral scan on evaporated gold; the individ-
ual grains are visible but rings in the raw image resulted
from drift. Piecewise linear fitting can flatten these ar-
tifacts if the appropriate number of segments is chosen
(N=300). The technique suffers from the same prob-
lems as flattening techniques in raster scan AFM where
height information can easily be altered by the flattening
and having too many segments results in a loss of topo-
graphic information (N=3000). The requirement to find
the right flattening parameters makes the technique un-
reliable. In Section II we introduce drift detection using
self-intersecting scan paths. Our new method requires no
human interaction and is significantly more reliable since
it detects and corrects drift independent of sample topog-
raphy or tilt. In Section III we discuss the performance
the self-intersection method, and finally in Section IV we
present a summary and conclusion.

II. DRIFT CORRECTION USING
SELF-INTERSECTING SCANS

A. Self-Intersecting Scan Patterns

Our method for measuring and correcting drift is based
on measuring the height at a known position but differ-
ent times. This requires the scan pattern to self-intersect,
but as Sensor Inpainting [9] can generate an image from
any arbitrary scan path, we are free to use any suit-
able path. FIG. 1 a) shows the most commonly used
non-raster scan pattern: the double Archimedian spiral
(DAS). Note that inverting the Y drive signal for the out-
ward spiral (dashed line) maintains a counter clock wise
motion and leads to a continuos path with no abrupt
changes in scan direction and, more importantly, it in-
troduces two self-intersections per loop. Fig. 3 a) shows
such a spiral scan with 25 loops. The location of the
self-intersections are indicated by red dots, all of which
lie on a line. Measuring the height of a given position
twice with only small temporal separation does not give
a good measure of drift, and since thermal drift occurs on
large time scales, scan paths with intersections of large
temporal separation contain information better suited for
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FIG. 3. Typical non-raster scan patterns where the red dots indicate the locations of self-intersections. a) A double Archimedean
spiral (DAS) with 25 loops b) more intersections are achieved by adding a sine-wave modulation in one scan axis producing
the modulated double Archimedean spiral (MDAS) c) a Spirograph scan pattern with a hundred loops. The temporal maps
(T-maps) d), e), f) show the intersection time pairs for all scan paths. A distribution away from the diagonal from lower left
to upper right is optimal for drift correction. A quantitative measure is provided by the fitness (. The DAS has a low fitness
of ¢ ~ 0.02 indicating poor intersections, adding the modulation it is increased to ¢ ~ 1.2 for MDAS. The Spirograph has the
highest fitness of ¢ ~ 35 but suffers from non-uniform data density, i.e. data collection is denser in the middle and outside.

the detection and correction of drift. In the modulated
double Archimedean spiral (MDAS) shown in FIG. 3 b)
the number of self-intersections and their temporal and
spatial distribution is increased by perturbing one spatial
coordinate with a sine wave of period equal to the scan
time and amplitude of one tenth of the scan size. FIG. 3
¢) shows a Spirograph, another type of sinusoidal scan
pattern which generates many more self-intersections. In
Section IID we will introduce a fitness function which
provides a quantitative measure for drift correctability
for each of these scan forms. However, its description
requires the introduction of the least squares difference
method first.

B. Finding Intersections

The first step in using the differences method for drift
compensation is to find the self-intersections of the curve
that represents the scan path. For a well-defined curve in
continuous space, intersections are equally well-defined.
When the curve is represented by discrete samples, how-

ever, the problem becomes somewhat more complex and
ill-defined. As the AFMs position sensor gives quantized
information at a finite sampling rate, the intersection de-
tection algorithm can easily generate false intersections,
throwing off the differences fitting energy. To combat this
issue, we convolve each of the position sensor signals with
a Gaussian smoothing function with a standard deviation
on the same order as the smallest resolved distance by
the sensors. One solution is to compose the N discrete
samples {Z;}}¥, of the curve into N — 1 connected line
segments joining adjacent samples described by

X; ={(1 = 0)Z; + %11 ’ t e (0,1]}.

Then the line segments can be checked against each other
for intersections in O(N?) time by checking all possible
intersections pair-wise. For a more detailed description
of the algorithm see Appendix B.



C. Least Squares Differences Algorithm

Error in the height measurement due to z-drift is lo-
cally approximately linear and can be modeled as a
smooth function with small second derivative. This
assumption together with the existence of path self-
intersections motivate our approach. Let Z(t) be vector
containing z(t) and y(¢) that describes the scan path i.e.
position of the AFM probe on the sample. Using accu-
rate sensors to measure these positions we can assume
minimal position errors. As introduced in FIG. 1 the
height signal measured by the AFM during a particu-
lar scan is denoted by h(t), which may be decomposed
into h(t) = z(t) + d(t) + s(t) representing the effective
topography z(t), drift d(t) and tilt s(¢) components. It is
assumed that |d”| < |#’|. For a scan path which inter-
sects itself M times, define the times of self-intersection
tn,1, tn2 so that (¢, 1) = Z(t,2) where n =1,2,..., M.
At each of these M points of intersections, we observe
that

h(tn2) — h(tn1) = 2(tn2) — 2(tn1)

+ d(tn,g) — d(tn,l) + S(tn,g) — S(tn,l)
because the topography z and the tilt s are well-defined
functions of position, the difference vanishes at points of
self-intersection and thus,

h(tn’Q) - h(tnal) = d(tn,Q) - d(tn,l) = dn

In order to exploit the existence of self-intersections, we
propose the minimum of the energy functional E(f) for
the continuous drift d(¢).

E() =3 (Fltns) = Fltnr) — dn)+A / )
1)

The minimization reduces to solving an Euler-Lagrange
equation. We find a sufficiently differentiable function
which minimizes E(f) and thus provides the continuous
drift function d(t) = f(t). For this particular problem,
these equations result in the system of the form Ly[f] = h
where L) is a linear operator and h is a vector function
of the data d,,. The derivations for L) and h using a
finite basis expansion are given in Appendix C. While
a finite differences approximation is the usual approach
to solving this, restricting the problem to only the span
of a small basis significantly reduces the computational
complexity. Since the drift function is assumed to be
smooth, a basis of smooth time-localized functions such
as uniformly spaced splines or Gaussian curves, the lat-
ter of which which we use, is appealing. The solution to
this problem, f, is thus a smoothed fit to the difference
errors d,,. The first term in E(f) enforces fidelity to the
measured drift while the second term enforces smooth-
ness of the final result and removes noise. Once f is
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calculated, the signal h(t) — f(t) is the corrected height
from the algorithm. Since the height differences at the
self-intersection points are invariant under sample tilt, we
may first subtract the z-drift fit then secondly subtract a
plane fit from the data, henceforth known as tilt removal,
without worrying about an interaction between the algo-
rithms. Performing the tilt removal first may mistakenly
interpret drift as tilt and subtract it off, permanently dis-
torting the signal. Thus self-intersection drift correction
should precede tilt removal.

D. Quality of Self-Intersections

The different scan paths shown in FIG. 3 a) b) and ¢)
result in different distributions of the intersection times
throughout the scan. This distribution contributes to the
quality of information about drift that the intersections
provide. FIG. 3 d) e) and f) show the temporal maps
for the discussed DAS, MDAS, and Spirograph scan pat-
terns. The temporal maps plot intersection time pairs
(tn,1:tn,2). The diagonal which runs from the lower-left
to upper-right represents intersections with ¢, 1 = ¢, 2,
while distance from this diagonal indicates temporal sep-
aration |t, 1 — tp2|. Since thermal drift occurs on large
time scales, scan paths with intersections of large tempo-
ral separation contain the best information for thermal
drift discovery and removal.

We propose the first non-trivial eigenvalue of Ly, la-
beled henceforth as (, as a measure for the quality of the
intersection information provided by the scan path with
intersection times described by ,, ;. This quantity is re-
lated to both the likelihood of z-drift being detected and
the strength of the minimum of the energy function E(f).
The corresponding eigenfunction represents a drift profile
d which changes the energy the least, and is thus clos-
est to being missed by the model. Scan paths which are
better suited for the proposed algorithm will have large
eigenvalues associated with Ly, and therefore ¢ provides
a quantitative measure of scan path quality. The appro-
priate value of the penalty A used for both the correction
and fitness calculation remains an ongoing problem in the
image processing field. Generally, well-structured curves
with many self-intersections are effectively corrected with
A = 0; however, a low () fitness results when significant
noise is present or the intersection information is insuffi-
cient to describe the drift. Indeed, for particularly poor
intersection data the fitting is singular. Penalization is
suggested to mitigate these situations and guarantee non-
singularity. However, we have generally observed that
penalization is only necessary with scans of exception-
ally poor ( fitness. For the comparison of different scan
paths we henceforth use A = 1073 and the corresponding
¢ as a description of the fitness. Compared to a simple
DAS the modulation in the MDAS increases the fitness ¢
from 0.02 to 1.2. The Spirograph pattern attains an even
higher fitness value than the DAS and MDAS at ¢ = 35.
However, non-uniform sampling over the surface area and
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FIG. 4. a) Raw data of a DAS scan of a gold sample inward (left) and outward (right) scans are shown for comparison. b) Raw
data of a larger MDAS scan with large drift in z ¢) Raw data of a Spirograph scan over an AFM calibration sample. d) Drift
corrected topography using self-intersection method. e) The combination of drift correction and Sensor Inpainting perfectly
reconstructs the real topography even in the presence of significant drift in X,Y and Z. f) Drift corrected Spirograph scan.

significantly more self-intersections than necessary to re-
cover d(t) makes this geometry inherently less attractive.
Nevertheless, the Spirograph demonstrates the wide va-
riety of possibilities and the generality of the proposed
algorithm.

III. RESULTS AND DISCUSSION

We modified a commercial AFM (MFP-3D, Asylum
Research) to steer the tip along any desired scan path
on the sample while recording the height using tapping
mode. To visualize the data we used Sensor Inpaint-
ing [9] using a heat equation algorithm [12]. (A more
detailed description on this image reconstruction tech-
nique is given in Appendix A.) The raw height data is
shown in the top row of FIG. 4 and the bottom row shows
the corrected height using the self-intersection drift cor-
rection method. The first dataset FIG. 4 a) and d) is
the same dataset as used for piecewise linear fitting (see
FIG. 2) showing a 500 nm diameter scan over an annealed
gold sample. To better illustrate the fluctuations in the
measured height we generated an inpainted image using
the raw data of the inward and outward scans and put
two halves of the images next to each other (FIG. 4 a)).
The result obtained using the self-intersection drift cor-

rection method (FIG. 4 d)) shows a clean image which
preserves the height of topographic features. Compared
to the piecewise linear fitting technique our drift cor-
rection algorithms does not need any input parameters
and hence no human interaction is required. The double
Archimedian scan has 1700 loops which result in 111k
self-intersections with a fitness ¢ of 0.8. The second ex-
ample is taken on the same gold sample but this time we
use a larger scan size of 1.4 pum with 27k intersections
using the MDAS scan pattern and 471 loops (FIG. 4 b)).
With the resulting fitness ¢ of 126 our algorithm easily
corrects for the large z drift present. Note that the large
lateral drift in X and Y is accurately recorded by the sen-
sors, and thanks to Sensor Inpainting such drift correctly
results in a slightly elongated image which perfectly rep-
resents the scanned surface (FIG. 4 e)). The third exper-
iment was taken from a silicon calibration sample with
8 nm deep hexagonal features. The raw data (FIG. 4 c))
is recorded over 30 um and shows tilt of the sample.
When using a Spirograph scan path, drift does not re-
sult in concentric rings but artifacts all over the image.
As the scan pattern with 414 loops and 58k intersection
results in a very high fitness of ( = 447 we achieve excel-
lent correction of drift. In a final step a simple plane fit
is subtracted to correct for tilt (FIG. 4 f)). The length
of the recorded datasets for the DAS, MDAS, and Spiro-



graph were 1.5M, 164k, and 500k samples, respectively.
Without any optimization for execution time the corre-
sponding computation times were 5, 0.7, and 0.8 seconds
using an Intel’s Core 2 Duo P9500 processor and 4GB
of system memory. Optimization of the code and use of
distributed processing including multithreading, graph-
ics processing units, or FPGAs could easily shorten the
computation time in order to be used for a live display
at video rates.

IV. CONCLUSIONS

Drift in the height signal during image acquisition is a
common issue in all scanning probe techniques. In this
work, we have shown that self-intersection scan paths
can be used to effectively remove z-drift. Our method
significantly outperforms a generalization of the typical
flattening algorithms (piecewise linear fit). The proposed
self-intersection algorithm is invariant under both tilt and
sample geometry, and depends only on the scan path
used to guarantee reliability. We proposed the fitness
which measures how likely the self-intersection method
can discover the drift component. We demonstrate for
varying scan patterns, scan size, and samples that an
error-free topography is recovered when drift is corrected.
As thermal drift occurs at low frequencies we find that
the existence of a meager set of self-intersections with a ¢
of 0.8 already is sufficient to correct the topographic data.
Our technique is applicable to a large set of possible scan
paths now being explored as fast-scanning alternatives to
the raster pattern, and may be useful for real-time object
tracking or cycloid scans along an object of interest [19,
20].
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Appendix A: Image Reconstruction from
Non-Raster Scan Datasets

With non-raster paths, visualizing the data generally
requires it being put on a grid using inpainting tech-
niques. We do this for the discrete innterpretation of h(t)
by first using bilinear interpolation weights for each sam-
ple to distribute it into the four nearest grid cells. Each
grid cell of the boundary data z(&) contains a weighted
average height of nearby samples, and the fidelity pa-
rameter \(%) is the sum of the weights for each grid cell.
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FIG. 5. The position sensor noise results from the signal being
compressed into a low-bandwith signal and causes significant
problems when detecting self-intersections. In this synthetic
case, a scan path is measured with error and corrected with
the convolution approach we descibe.

Therefore areas with more data will have higher fidelity,
and cells with no data will reasonably have zero fidelity.
A(Z) is then scaled by a user-specified amount indicat-
ing the strength of denoising. The grid points which
get no data are filled using image inpainting. We herein
use heat equation inpainting, which roughly corresponds
to diffusing the information out to the unknown areas
following the physical laws of heat flow. Briefly, this
is performed as follows: the domain is separated into
D = {x(t)|t € [0,7]} where data is known and Q\D
where data is missing, with € the entire sample area.
The topography map 2(Z) is completed by solving the
system of equations

- 0=Az on Q\D
AM2—2)=Az on D,

which may be solved very quickly with multiscale meth-
ods [21], or by directly solving the finite difference sys-
tem. A(%), denoted with a bar to differentiate from A
of the algorithm, varies with space and determines the
point-wise fidelity to z(Z) = 2z(Z(t)); a low value indi-
cates strong denoising.

Appendix B: Finding Intersections on Quantized
Datapoints

The data provided by the AFM has multiple sources
of error, including a noise source due to the truncation of
the position signal for finite bit representation (bitnoise).
Let I, and [, be the smallest measurable distance repre-
sented by least significant bit for X and Y direction. The
noisy signal received is described in terms of the path <
x(t),y(t) > by the function < I, |z(t)/lz] 1, [y(t)/l,] >
where |-| denotes the floor function. This is problem-
atic for the intersection detection algorithm because the
noise can generate many false intersections, throwing off
the differences fitting energy. To combat this issue, we



convolve each of the position sensor signals with a Gaus-
sian smoothing function with a standard deviation on
the same order as [, and [,. An example of a synthetic
signal being corrected is shown in FIG. 5. The focus of
this work is not to remove this noise, however some pro-
cessing has shown necessary for successful performance
of the self-intersection method when considerable noise
is present.

The recursive algorithm for finding intersections is as
follows:

Function quad_tree_recur( list_of_segments,
bounding_box, depth )
If count(list_of_segments) < MIN_SIZE or
depth > MAX_RECURSION then
For all segments A,B in list_of_segments
If A intersects B in bounding_box then
Add intersection to global list.
EndIf
EndFor
Else
Subdivide bounding_box into equal area
rectangles B1, B2, B3, B4.
For n =1, 2, 3, and 4
Let sub_list =
those of list_of_segments
which intersect with Bn.
Call quad_tree_recur( sub_list, Bn,
depth + 1 );
EndFor
EndIf
EndFunction

This is called with an initial list containing all seg-
ments, a bounding box which contains all segments, and
a recursion depth of zero. When the algorithm is imple-
mented efficiently, it may process a million line segments
in well under a second using Intel’s Core 2 Duo P9500
processor and 4GB of system memory. The algorithm is
highly parallelizable through the assignment of indepen-
dent threads to different branches of the recursion. The
ideal choice of the two constants in the algorithm depend
on the system and language of implementation, though
reasonable default values are 100 for MIN_SIZE and 8 for
MAX_RECURSION. The running time can generally be
reduced to O(N log N) by pre-processing the data with
a quad-tree structure [22].

Appendix C: Derivation of Euler-Lagrange
Equations

Our intention is to solve for the minimizing function
f in equation (1) with representation restricted to the
span of a basis of functions {¢;} for i = 1,2,..., N. Thus,
expanding f over this basis with coefficients ¢;, notice
that

fltng2) = f(tna) = Z Ci [pi(tn2) = diltn,1)]

i=1

and proceed much the same way as the classical least-
squares approximation. Recall that d; = d(t;2) — d(tj1)
is the error in height taken at the j* difference of the
function being fit, d(¢).

Let f and d denote the length-M column vectors with,
respectively, components f(t;2) — f(;,1) and d; for j =
1,2,...,M. Let ¢ be the length-N column vector formed
by the coefficients ¢; where ¢ = 1,2, ..., N. Denote by A
the M x N matrix containing the basis differences at the
crossing points with entries A;; = ¢;(t;2) —¢;(ti1). The
error on the differences is thus ||d — f]|?> = ||d — Ad|2.
Define the N x N matrix M with entries

1
My = [ oo a

By algebraic manipulation it may be shown that

1
/|ﬂwﬂﬁ=*Ma
0

Using these results, the functional in (1) may be now
restated in terms of a minimization over ¢

min [|d — Ad)? + A\é Meé.

Differentiation with respect to ¢ leads to the necessary
optimality condition

Lye= (ATA+ M) é=A"d =h.

The matrix Ly is invertible and positive definite if A > 0,
in which case the solution is additionally guaranteed to
be unique.

For the calculation of the () fitness, we use the or-
thonormal Fourier basis and 500 basis elements. This is
because the Fourier basis is simple to calculate, orthog-
onal, and because () is not improved by using a more
exotic basis choice.
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