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Reducing Artifact in JPEG Decompression via a
Learned Dictionary

Huibin Chang, Michael K. Ng, Tieyong Zeng

Abstract—The JPEG compression is among the most successful
compression schemes since it readily provides good compressed
results at a rather high compression ratio. However, the de-
compressed result of the standard JPEG decompression scheme
usually contains some visible artifacts, such as blocking artifacts
and Gibbs artifacts (ringing), especially when the compression
ratio is rather high. In this paper, a novel artifact reducing
approach for the JPEG decompression is proposed via sparse
and redundant representations over a learned dictionary. Indeed,
an effective two-step algorithm is developed. The first step
involves dictionary learning and the second step involves the total
variation regularization for decompressed images. Numerical
experiments are performed to demonstrate that the proposed
method outperforms the total variation and weighted total
variation decompression methods in the measure of peak of signal
to noise ratio, and structural similarity.

Index Terms—JPEG; Decompression; Total Variation;
Learned Dictionary; Primal-dual algorithm

I. INTRODUCTION

THE JPEG method [1, 2] is one of the most popular
lossy compression schemes. It can be easily implemented

and is capable to generate acceptable compressed images at a
rather high compression ratio. Basically, the JPEG compres-
sion consists of three stages: the first stage is to split the whole
image into non-overlapping blocks of size 8× 8, and to apply
the discrete cosine transformation (DCT) on each block; the
second stage is to divide the above cosine transform coeffi-
cients by a quantization table pointwisely, and the quantized
values are rounded to their nearest integers; the final stage is
to use lossless compression coding (e.g., entropy coding) to
generate a compressed data file. The decompression for JPEG
images is also very simple. The procedure involves lossless
decoding, dequantization and computing the inverse DCT to
each block. In Fig. 1, we show the procedure description of
the JPEG compression and decompression schemes, see [2]
for more details.

One readily sees that the loss of the information for the
JPEG compression takes place in the stage of quantization. The
decompressed image is thus not exactly equal to the original
input image. As round-off errors appear in each block, there
are inevitably some artifacts in the decompressed image, see
for instance the decompressed image in Fig. 2(b) where the
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Fig. 1. The upper diagram: JPEG compression; the lower diagram: JPEG
decompression.

original input image is shown in Fig. 2(a). In particular, when
the compression ratio is high, more visible artifacts appear in
the decompressed image, see Fig. 2(c). The main aim of this
paper is to study an image processing method to improve the
quality of decompressed images.

In literature, there are two main classes of methods to
reduce the artifacts of JPEG decompressed images, namely,
image enhancement methods and image restoration methods,
see the review paper [3]. The image enhancement methods
are heuristic approaches to improve the quantity of perceptual
sense, while the image restoration approaches are based on
the optimization of certain objective criteria with constraints
to recover the original input images. The most recent image
restoration methods include the projection onto convex sets
[4], the stochastic methods as maximum a posteriori estimation
(MAP) [5, 6], and the energy based methods [7, 8]. In partic-
ular, Bredies et al. [8] studied the total variation method and
Alter and Durand [7] presented the weighted total variation
method by setting special weights in the total variation term
to reduce the artifacts of decompressed images. Although their
restoration results are quite good, the basic assumption is
that the minimizers of the variational models are piecewise
constant, which could be violated for the original input images.
Therefore, their decompressed models break the structure of
texture regions of decompressed images.

All these methods referred above for JPEG decompression
are basically pixel based methods. The image pixels are
considered independently and the image features like texture
structures, repeated patterns have not been well preserved.
The sparse representation techniques are proved be very
successful for Gaussian noise removal [9] and multiplicative
noise removal [10] for gray images, color image denoising
and inpaiting [11], image sequence restoration [12], Poisson
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Fig. 2. (a): The original input image; (b): the JPEG decompressed image at
a low compression ratio 12:1; (c): the JPEG decompressed image at a high
compression ratio 30:1; (d): histogram of the difference between (a) and (b);
(e): histogram of the difference between (a) and (c); (f): a dictionary learned
from (c) by K-SVD.

image deblurring [13], etc. It is interesting to handle the JPEG
decompression by sparse representation techniques for image
patches. Jung et al. [14] proposed to derive a general dictionary
from a training images set, which was used to remove the
block artifacts of JPEG compression images. In this paper,
we propose and develop a novel artifact reducing method for
restoring JPEG decompressed images. Different to [14], our
idea is to build a dictionary attached to the restored image
and find a sparse representation over the learned dictionary.
The restored image can keep the features of the original input
image. Indeed, although the visible artifacts exist in the JPEG
images as Fig. 2 (b) and (c), the histograms of the differences
between the uncompressed image and the JPEG compressed
images are symmetric and rapidly decrease to zero, which are
the essential properties of Gaussian distribution, see Fig. 2 (d)
and (e). Thus it is possible for us to dig out a dictionary to rep-
resent the typical features from the JPEG compressed images.
In Fig. 2 (f), we show our learned dictionary by the classical
K-SVD method [15] from the JPEG compressed image (Fig. 2
(c)). Clearly, the atoms in the dictionary are somewhat related
to the typical patterns in the original image (Fig. 2 (a)) and
they should be useful for the coming image decompressed
procedure. Indeed, the later optimization problem for our

proposed model involves the summation of the fitting term
between the restored image and the JPEG decompressed image
(indictor function of a constraint set), the term of the sparse
representation of the restored image in the dictionary, and
the total variational regularization term. By this, an effective
two-step algorithm for JPEG image decompression is thus
obtained. The first step involves dictionary learning and the
second step involves the total variation regularization for
restoring images. Numerical experiments will be performed
to demonstrate that the proposed method outperforms the total
variation and weighted total variation decompression methods
in the measure of peak of signal to noise ratio and structural
similarity.

The remaining part of the paper is organized as follows.
A brief review of the previous works on K-SVD and total
variation decompression models is given in Section II. In
Section III, we present the proposed model and algorithm.
In Section IV, the numerical tests are done to demonstrate the
efficiency of the proposed method. We conclude the paper in
Section IV.

II. PREVIOUS WORKS

In the following two subsections, we give the brief review of
K-SVD for the dictionary based model and the total variation
decompression model.

A. K-SVD

Elad and Aharon [9] first proposed the K-SVD denoising
method, which assumes that each image patch can be repre-
sented sparsely using a linear combination of the atoms from
a special chosen dictionary. Specifically, it is “sparse” on the
sense that Y ≈ DX with the sparse coefficient matrix X,
where D is the dictionary, and the matrix Y consists of all
the image patches selected from the given image rewritten
as a column vector. In order to remove some noise from f
with N pixels of size n × n, which is rewritten as column
vector f ∈ RN using the lexicographical ordering, the K-SVD
denoising model was given

min
{γi,j},D,u

λ∥f − u∥2 + 1

2

∑
(i,j)∈P

(
∥Dγi,j −Ri,ju∥2

+ µi,j∥γi,j∥0
) (1)

to generate a learned dictionary D ∈ Rm2×c and the recovered
result u. D is a dictionary of size m2-by-c attached to the
restored image with c atoms in the dictionary; Ri,j is the
sampling matrix of size m2-by-N to construct a patch for
the part of u; γi,j is a vector of size c-by-1 containing the
encoding coefficients for the patch of u represented in the
dictionary; P = {1, 2, · · · , n−m+ 1}2 denotes the index set
for different patches of u; ∥ · ∥2 denotes the Euclidean norm
of a vector; ∥ · ∥0 denotes the number of non-zero elements;
The parameter λ is a positive parameter of data fitting term,
and µi,j is the positive patch-specific weight.

The first term in (1) is the data fitting term; the second
term requires the image patch Ri,ju can be represented by the
given dictionary D with the coefficient γi,j , which is sparse as
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the third term requires the number of its nonzero elements is
small. A two-step algorithm was adopted in [9]: determining
the dictionary D and sparse coefficients γi,j by K-SVD [15] in
the first step and taking the average of the denoising patches
and the noisy image with the weight λ to obtain the final
results in the second step.

B. Total variation decompression model for JPEG

Based on the energy minimization methods, Bredies and
Holler [8] proposed a total variation based model

min
u∈U∩BV (Ω)

TV (u) (2)

where

TV (u) = sup
p∈C1

c (Ω,R2)

{
−
∫
Ω

u divp dx : |p(x)| ≤ 1

}
,

|p| =
√

p21 + p22, with p = (p1, p2),

BV (Ω) = {u ∈ L1(Ω) : TV (u) < +∞},

and ∇, div are the gradient and divergence operator re-
spectively; Alter and Durand [7] presented a weighted total
variation model

min
u∈U

TVα(u) =

∫
Ω

α(x)|∇u|dx (3)

where values of weight function α(x) were chosen to be larger
on the boundary pixels of the 8×8 blocks of the compression
images. The task of the above models is to recover the image
from all the possible solutions belonging to the set U, which is
generated by JPEG compression (see details in the following
section). In [8] Bredies and Holler considered a general case
of U which defined a pointwise restriction set with respect
to any L2-orthonormal basis. Rigorous analysis was given in
the continuous setting, and a fast primal-dual algorithm was
proposed to solve the given model efficiently. However, the
total variation based model assumed that the minimizer was
piecewise constant. Different artifacts (i.e. staircase artifacts)
are introduced, especially for the images with more textures.
In the following section, based on the ideas of sparse repre-
sentation and energy minimization methods, we will propose
a novel decompression method via a learned dictionary in
order to decompress JPEG images with less artifacts and better
features.

III. THE PROPOSED MODEL

The original input image is of size n×n, i.e., N = n2 pixels,
and it is represented by a vector u of size N in lexicographical
ordering. Let us define a block discrete cosine transform N -
by-N matrix A which converts each 8×8 block of the original
input image to its frequency domain. The quantization matrix
is denoted by Mq of size 8 × 8 with the quality index q.
Here Mq consists of delicately selected integers to balance
the image quality and the storage size controlled by the index
q. Let z be the JPEG compressed data of u. It holds for the
round-off error in the stage of JPEG quantization

|[Au](k−1)∗n+l/[M]k,l−[z](k−1)∗n+l| ≤ 1/2, 1 ≤ k, l ≤ n,

where M is a matrix of size n-by-n with Mk,l = [Mq]k̄,l̄. k̄
and l̄ refer to the modulo operation of k and l respectively by
8. By setting

[b](k−1)∗n+l = [M](k−1)∗n+l/2, 1 ≤ k, l ≤ n

and

[w](k−1)∗n+l = [M](k−1)∗n+l × [z](k−1)∗n+l, 1 ≤ k, l ≤ n,

the above inequality reduces to

|[Au](k−1)∗n+l−[w](k−1)∗n+l| ≤ [b](k−1)∗n+l, 1 ≤ k, l ≤ n.

For simplicity, we write

|Au−w| ≤ b.

(entrywise inequality)

The image restoration task is to recover u from the following
set

U = {u : |Au−w| ≤ b}.

In this paper, we develop a reducing artifact model for
restoring JPEG decompressed images in the discrete setting:

min
{γi,j},D,u

∑
(i,j)∈P

(
1

2
∥Ri,ju−Dγi,j∥22 + µi,j∥γi,j∥0

)
+

λT V(u) + U(u). (4)

The notations used in the above objective functional are given
as follows: T V(u) is the discrete version [16] of the total
variation TV (u) introduced in Section II-B

T V(u) :=
N∑
i=1

√
([∇u(x)]k)2 + ([∇u(y)]k)2,

∇ is the discrete gradient operator with Neumann boundary
conditions, [∇u(x)]k and [∇u(y)]k are the x-derivative and y-
derivative values at the k-th pixel (1 ≤ k ≤ N ) discretized by
forward difference schemes;

U(u) =

{
0, if u ∈ U

+∞, otherwise,
(5)

and other notations are the same as Section II-A. In the
optimization problem (4), the first term ∥Ri,ju − Dγi,j∥22
is related to the representation of the restored image in the
dictionary. The second term ∥γi,j∥0 is used to require the
encoding coefficients vector to be sparse. The combination of
the first and second terms requires the restored image is a
sparse linear combination of elements in the dictionary. The
third term T V(u) is used to minimize the total variation
of the restored image. The fourth term U(u) is used to
require the solution belonging to the given data requirement.
The advantage of this model is that we determine a sparse
representation of the restored image in the learned dictionary
so that the restored image can keep the features of the original
input image.
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A. The Algorithm

In [9–12], a fixed dictionary is learned via K-SVD, and
the restored images are then derived based on the learned
dictionary. Similarly, we propose a two-step algorithm approx-
imately to solve (4). We note from (4) that there are three sets
of unknowns: {γi,j}, D and u. In this paper, the following
two-step algorithm to determine these unknowns is given:

Algorithm I

1. Initialization: Parameters λ, µi,j and the JPEG
compressed image u0.

2. • (Step 1) Solve

(γ⋆
i,j ,D

⋆) = arg min
γi,j ,D

∑
(i,j)∈P

(1
2
∥Ri,ju

0 −Dγi,j∥22

+ µi,j∥γi,j∥0
)

(6)

• (Step 2) Solve

u⋆ = min
u∈U

λT V(u) +
∑

(i,j)∈P

1

2
∥Ri,ju−D⋆γ⋆

i,j∥22

(7)
3. Output u⋆ as the decompressed result.

In (6), the encoding coefficients γ⋆
i,j and the dictionary

D⋆ are required to be determined. We employ K-SVD [15]
to solve this subproblem. More precisely, it is a two-step
iterative method. In each iteration, the first step is to use the
orthonormal matching pursuit (OMP) algorithm [17] to update
the encoding coefficients:

γ⋆,s
i,j = argmin

γi,j

∥γi,j∥0, s.t. ∥Ri,ju
0 −D⋆,s−1γi,j∥2 ≤ δ,

(8)
for each (i, j) ∈ P; the second step is to use SVD to update
the dictionary:

min
D

∑
(i,j)∈P

1

2
∥Ri,ju

0 −Dγ⋆,s
i,j ∥

2
2,

where the index s denotes the s-th iteration.
In order to solve the subproblem in (7), we introduce the

following operators first

F̂(p) =
∑

1≤i≤N

√
p2i,1 + p

2
i,2, ∀ p ∈ RN×2,

Ĝ(u) =
∑

(i,j)∈P

1

2λ
∥Ri,ju−D⋆γ⋆

i,j∥22, ∀ u ∈ RN ,

and express (7) as follows:

min
u∈U

F̂(∇u) + Ĝ(u).

In order to deal with the constraints and the non-differential
total variation term, auxiliary vectors v,d ∈ RN , and the dual
variable p ∈ RN×2 are introduced as

max
p,d

min
v,u

⟨p,∇u⟩+ ⟨d,u− v⟩+ Ĝ(u) + U(v),

where the first term is introduced due to the dual formulation
of total variation, the second term is introduced to deal with
the equality u = v, ⟨·, ·⟩ usually denotes the inner product of
two vectors, and we still use this notation to denote the inner
product of p, q ∈ RN×2 as

⟨p, q⟩ =
∑

1≤i≤N

([p]i,1[q]i,1 + [p]i,2[q]i,2).

For simplicity, it is equivalent to solve the following saddle
point problem [16, 18]

min
u,v

max
p,d

⟨(p,d),K(u,v)⟩+ G(u,v)−F(p,d),

where
K(u,v) = (∇u,u− v),

F and G are denoted as

F(p,d) =

{
0, if ([p]i,1)2 + ([p]i,2)

2 ≤ 1, ∀ 1 ≤ i ≤ N

+∞, otherwise
(9)

and
G(u,v) = Ĝ(u) + U(v)

respectively; the inner product is denoted as

⟨(p,d), (q, b)⟩ = ⟨p, q⟩+⟨d, b⟩, ∀ (p,d), (q, b) ∈ RN×2⊗RN .

Based on the above definitions, we employ the first order
primal-dual algorithm [16, 18] to update the restored image.
The algorithm for solving (7) is listed as follows.

Algorithm II for solving (7)

1. Initialization: Parameters τ , σ, and u0, v0, p0, d0, ū0,
v̄0

2. Compute pk, dk, uk, vk, ūk and v̄k iteratively for k =
1, 2, · · · , L
• (Step 1) Compute

(pk,dk) = (I+σ∂F)−1((pk−1,dk−1)+σK(ūk−1, v̄k−1))
(10)

• (Step 2) Compute

(uk,vk) = (I + τ∂G)−1((uk−1,vk−1)− τK∗(pk,dk))
(11)

• (Step 3) Compute

(ūk, v̄k) = 2(uk,vk)− (uk−1,vk−1)

3. Output uL

In Algorithm II, I refers to the identity operator, and one
readily obtains the conjugate operator K∗ of K as

K∗(p,d) = (−divp+ d,−d),

where div denotes the discrete divergence operator satisfying
the following relation

⟨∇u,p⟩ = −⟨u,divp⟩.
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Now the key issue is to solve the two subproblems in (10)
and (11). For (10), define

(p∗,d∗) := (I + σ∂F)−1(p̂, d̂),

where the closed-form solutions are given by

[p∗]i,j =


[p̂]i,j , if (p̂i,1)2 + (p̂i,2)

2 ≤ 1;

p̂i,j√
(p̂i,1)2 + (p̂i,2)2

, otherwise,

for 1 ≤ i ≤ N and 1 ≤ j ≤ 2, and d∗ = d̂.
For the subproblem in (11), we get

(u∗,v∗)

= (I + τ∂G)−1(û, v̂)

= argmin
u,v

1

2τ
∥u− û∥22 +

∑
(i,j)∈P

1

2λ
∥Ri,ju−D⋆γ⋆

i,j∥22

+
1

2τ
∥v − v̂∥22 + U(v)

:= argmin
u,v

E1(u) + E2(v)

(13)

where

E1(u) =
1

2τ
∥u− û∥22 +

∑
(i,j)∈P

1

2λ
∥Ri,ju−D⋆γ⋆

i,j∥22,

and
E2(v) =

1

2τ
∥v − v̂∥22 + U(v).

The minimization problem in (13) can be solved by minimiz-
ing E1(u) and E2(v) independently.

We first express 1
2

∑
i,j

∥Ri,ju−D⋆γ⋆
i,j∥22 by

1

2
⟨Wu,u⟩+ 1

2

∑
i,j

∥D⋆γ⋆
i,j∥22 − ⟨ψ,u⟩,

where W is a diagonal matrix with its main diagonal entries
given by

∑
i,j

R∗
i,jRi,j (it is used to count how many times each

pixel is used to construct the patches), ψ =
∑
i,j

R∗
i,jD

⋆γ⋆
i,j .

Thus the subproblem of minimizing E1(u) is reduced to

u∗ = argmin
u

λ

2τ
∥u− û∥22 +

1

2
⟨Wu,u⟩ − ⟨ψ,u⟩

= (λI + τW)
−1

(λû+ τψ) .
(14)

Since the matrix W is diagonal, the equation can be solved
by the pointwise division.

The subproblem of minimizing E2(v) has a closed form
solution given by v = Q(v̂), where

[Q(v̂)]i =


[v̂]i, |[v̂]i − [w]i| ≤ [b]i,
[w]i + [b]i, [v̂]i > [w]i + [b]i,
[w]i − [b]i, [v̂]i < [w]i − [b]i,

for 1 ≤ i ≤ N .
By [16], one can easily prove the convergence of Algorithm

II if τσ < 1
∥K∥2 . Thus one shall estimate the norm of K.

Since ∥∇∥2 ≤ 8 in [19],

∥K(u,v)∥2 = ∥∇u∥22 + ∥u− v∥22
≤ 9∥u∥22 + ∥v∥22 + 2⟨u,v⟩
≤ (9 + 1/t)∥u∥22 + (1 + t)∥v∥22,

for the arbitrary positive constant t. By choosing t =
√
17+4,

s.t. 9 + 1/t = 1 + t, we obtain ∥K∥2 ≤ 5 +
√
17.

Proposition 1: Algorithm II is convergent if τσ < 5−
√
17

8 .
Let us analyze the computational complexity of the pro-

posed method to solve (4). The complexity of K-SVD in Step
1 of Algorithm I is O(cm2JξN) [9] where J is the number
of K-SVD iterations, m × m is the image patch size, ξ is
the average of number of nonzero elements in the encoding
coefficients vectors γi,j , c is the number of atoms in the
dictionary and N is the number of pixels. The computational
cost of Algorithm II is of O(NL) operations where L is the
number of iterations required for Algorithm II. Finally, the
total complexity of the proposed method is O((cm2Jξ+L)N)
which is linear with respect to the number of pixels of the
decompressed image.

IV. NUMERICAL EXAMPLES

In this section, we conduct experiments to illustrate the
performance of the proposed method. We use q in between
0 and 100 to represent the quality of compression. When q is
large (or small), the compression ratio is low (or high). The
standard quantization matrix [1] M50 for q = 50 is given as
follows:

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


.

This quantization matrix is designed based on human visual
system. According to M50, we generate the other quantization
matrices with q ≤ 50 where

Mq = round(50M50/q).

as suggested in [20]. Seven uncompressed 256× 256 images
are tested and shown in the first column of Fig. 3, whose names
are “Wall”, “Letters”, “Lena”, “Barbara”, “Boat”, “House”,
and “Peppers” from top to bottom, respectively. Note that N =
2562.

We compare the proposed DicTV algorithm with the TV
algorithm [8] and the WTV algorithm in [7]. Primal dual
algorithm is used to solve TV, and the step-size parameters
σ and τ are set to be σ = τ =

√
1/8. The weighted total

variation term for WTV [7] is discretized as

TVα(u) =
∑

1≤i,j≤n

√
a2i,j + b2i,j + c2i,j + d2i,j ,
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with

ai,j = αi%8([u]i∗n+j − [u](i−1)∗n+j),

bi,j = αj%8([u](i−1)∗n+j+1 − [u](i−1)∗n+j),

ci,j = α(i−1)%8([u](i−1)∗n+j − [u](i−2)∗n+j),

di,j = α(j−1)%8([u](i−1)∗n+j − [u](i−1)∗n+j−1),

where % is the modulo operator. The weight αi is set to be

α0 = α6 = 2, α1 = α5 = 1.5, α2 = α3 = α4 = 1, α7 = 3.

Projected gradient descent algorithm is used to solve WTV
with iteration-dependent step-size of 1

i+1 , i is the iteration
number. We stop TV and WTV when the relative error of uk

satisfies ∥uk−uk−1∥2

∥uk∥2
≤ 1×10−3 or the iteration numbers reach

100. The maximum PSNR values can often be reached before
the final iteration.

In the proposed DicTV algorithm, the Matlab package
by Rubinstein [21] is used directly to realize the K-SVD
computation in Step 1 of Algorithm I. The image patch size
is set to be 6 × 6 (i.e., m = 6), and therefore the number of
patches is equal to 251 × 251. The number of atoms in the
dictionary is set to be 108 = 62 × 3 (the redundancy factor
is chosen to be 3 empirically), and the size of the dictionary
is equal to 62 × 108. In Algorithm I, λ is set to be 50 for
texture images “Barbara”, “Wall” and “Letters”, and to be
150 for others. In Step 1 of Algorithm I, the number J of
iterations is set to be 20 to update the encoding coefficients
and learn the dictionary iteratively. The parameters σ, τ are set
to be σ = τ =

√
1/10 in Algorithm II. The same stopping

condition is used for Algorithm II as that used by TV and
WTV. We also consider the case without TV term ( “Dic” for
short) by setting λ = 0 in (4).

Two evaluation criteria are used to measure the quality of
the restored image from the decompression. The first one is
peak of signal to noise ratio (PSNR):

PSNR(u,ur) = 10 log10

 2552√ ∑
1≤i≤N

([u]i−[uc]i)2

N

 .

The second one is the SSIM metric [22]. Assuming that u(i)
and ur(i) are the 11-by-11 sub-images (rewritten as column
vector using the lexicographical ordering) centered at the i-th
pixel location of two images u and ur respectively, the local
SSIM index is defined by

SSIMlocal(u(i),ur(i))

=
[2µ(u(i))µ(ur(i)) + c1][2σ(u(i)ur(i)) + c2]

[µ2(u(i)) + µ2(ur(i)) + c1][σ2(u(i)) + σ2(ur(i)) + c2]

where µ(u(i)) and µ(ur(i)) are the mean values of u(i)
and ur(i), σ(u(i))2 and σ(ur(i))

2 are the related variances,
respectively; σ(u(i)ur(i)) is the covariance of u(i) and ur(i),
and c1, c2 are two constants dependent on the dynamic range
of u and ur. The average SSIM index,

SSIM(u,ur) =
1

N

N∑
i=1

SSIMlocal(u(i),ur(i)),

is used to evaluate the overall image quality. The larger the
value is, the better the restoration result we have. TV, WTV
and DicTV are all coded in Matlab and the numerical tests are
done by MatlabR2011a on desktop computer with Inter(R)
Core(TM) 2 Quad Q9450@2.66GHz CPU and 4G Ram.

We give the decompressed results by different methods
when q = 50/3 in Fig. 3. The corresponding zoomed parts
are shown in Fig. 4. We see that the proposed Dic and DicTV
methods produce decompressed images with more features
than the others, and do not introduce other new artifacts. JPEG
artifacts are reduced greatly as well. Specifically, texture parts
are well restored than others in 1st, 2nd and 4th rows of Fig.
4; edges are well restored in 5th and 6th rows of Fig. 4;
flat regions are much smoother in the 3rd and 7th rows of
Fig. 4. In Table I, we test several values of q and report the
PSNR and SSIM values of decompressed images by different
methods. The maximum PSNR values among all iterations and
corresponding SSIM values are chosen to be shown for TV and
WTV. According to this table, The PSNR and SSIM values
of decompression images by WTV are not always better than
those by TV, as [8] has pointed out. One readily sees that the
proposed DicTV method is better than the other two methods
to derive higher quality images, especially for images with
more textures as “Barbara”, “Wall”, and “Letters”. The average
PSNR and SSIM values are given in the last two columns
of Table I. The average PSNR values for the decompressed
images by using our proposed methods “Dic” and “DicTV” are
almost 0.5db higher than those by the TV and WTV methods.

By comparing the decompressed images by Dic and DicTV,
the PSNR and SSIM differences are small. However, Dic
without the TV regularization will decompress the image with
some visible residual artifacts. One can observe the differences
between the images by DicTV and Dic from Fig. 5 and
Fig. 6, especially in the regions marked by green rectangles.
Some visible artifacts exist near the edges of Fig. 5 (c) and
(e). Similar artifacts exist in Fig. 6 (c) and (g) as well. Dic
method just learns the repeated patterns, and can not guarantee
to removal the artifacts from the JPEG compressed images
completely. By adding the TV term, it helps to remove the
visible artifacts better than the Dic method, see Fig. 5 (d), (f)
and Fig. 6 (d), (h) for details.

It takes 11 seconds (37 iterations), 11 seconds (36 itera-
tions), and 19 seconds (9s dictionary learning and 10s for
Algorithm II) for TV, WTV and DicTV to test the image
“Peppers” with q = 50/3, respectively. The computation time
of K-SVD is about 50% of total computational time for DicTV.
One may consider how to accelerate the K-SVD algorithm or
adapt other more fast dictionary learning schemes instead to
reduce the total computation cost for DicTV.

We study the sensitivity of the parameter λ. Different values
of λ are set to be 1, 10, 100, 1000 when q = 50/3, and the
results are put in Fig. 7. By observing the given results, our
proposed model is rather robust for a wide range of values
of λ. By setting larger λ = 1000, the decompressed result
is quite close to that by TV, and obvious staircase artifacts
appear as well. Therefore, we propose to choose smaller λ for
our proposed model.
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q Name JPEG TV WTV Dic DicTV

10

Wall PSNR 23.25 23.76 23.96 25.07 25.00
SSIM 0.8892 0.8891 0.8949 0.9208 0.9174

Letters PSNR 19.51 20.32 20.33 21.08 21.09
SSIM 0.7823 0.8880 0.8795 0.9181 0.9194

Lena PSNR 28.31 29.26 29.24 29.28 29.39
SSIM 0.8132 0.8505 0.8551 0.8555 0.8565

Barbara PSNR 26.28 26.72 26.88 27.28 27.24
SSIM 0.7879 0.8014 0.8100 0.8158 0.8141

Boat PSNR 26.94 27.67 27.67 27.92 27.89
SSIM 0.7703 0.7911 0.7937 0.7952 0.7936

House PSNR 30.55 31.60 31.56 31.79 31.95
SSIM 0.8183 0.8443 0.8448 0.8484 0.8502

Peppers PSNR 29.92 31.13 31.16 31.29 31.39
SSIM 0.8379 0.8826 0.8863 0.8907 0.8920

50/3

Wall PSNR 25.71 26.41 26.44 27.86 27.90
SSIM 0.9378 0.9425 0.9434 0.9613 0.9606

Letters PSNR 21.29 22.40 22.32 23.15 23.22
SSIM 0.8266 0.9380 0.9258 0.9497 0.9490

Lena PSNR 30.14 30.89 30.88 31.01 31.00
SSIM 0.8657 0.8878 0.8892 0.8883 0.8881

Barbara PSNR 28.50 28.99 29.13 29.69 29.67
SSIM 0.8640 0.8743 0.8785 0.8797 0.8807

Boat PSNR 28.74 29.43 29.41 29.63 29.61
SSIM 0.8240 0.8402 0.8413 0.8410 0.8394

House PSNR 32.45 33.27 33.19 33.30 33.50
SSIM 0.8520 0.8667 0.8648 0.8667 0.8687

Peppers PSNR 32.13 33.24 33.21 33.35 33.47
SSIM 0.8918 0.9195 0.9201 0.9227 0.9234

25

Wall PSNR 27.72 28.40 28.33 29.57 29.70
SSIM 0.9604 0.9641 0.9639 0.9741 0.9743

Letters PSNR 22.87 24.29 24.14 24.90 24.99
SSIM 0.8590 0.9619 0.9530 0.9661 0.9673

Lena PSNR 31.39 32.05 32.02 32.17 32.17
SSIM 0.8947 0.9106 0.9102 0.9126 0.9108

Barbara PSNR 30.41 30.80 30.92 31.63 31.52
SSIM 0.9034 0.9115 0.9127 0.9153 0.9154

Boat PSNR 30.11 30.79 30.75 30.94 30.94
SSIM 0.8585 0.8710 0.8706 0.8706 0.8691

House PSNR 33.72 34.41 34.29 34.42 34.53
SSIM 0.8741 0.8829 0.8803 0.8808 0.8831

Peppers PSNR 33.76 34.77 34.75 34.91 34.95
SSIM 0.9193 0.9384 0.9378 0.9396 0.9396

Average PSNR 28.27 29.08 29.08 29.54 29.58
SSIM 0.8586 0.8884 0.8884 0.8959 0.8958

TABLE I
PSNR AND SSIM VALUES FOR DIFFERENT q

Finally, the convergent study of Algorithm II is done. Define

Ek = λT V(uk) +
1

2
⟨Wuk,uk⟩ − ⟨ψ,uk⟩

The histories of relative errors of u, error between uk and
vk, PSNR values and objective functional energy values Ek

are shown in Fig. 8, which demonstrate that the proposed
algorithm converges well.

CONCLUSION

In this paper, we have presented a JPEG image decompres-
sion approach to reduce artifact via the learned dictionary,
which outperforms the total variation and weighted total
variation decompression methods. An efficient algorithm is
given to solve the proposed model as well. Experimental
results have shown that the proposed method is better than
the other testing methods. As a future research, we would like
to explore how to design an efficient dictionary algorithm to

(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a): Decompressed images of House by Dic; (b): decompressed
images of House by DicTV; (c) and (e): zoomed parts by Dic; (d) and (f):
zoomed parts by DicTV when q = 50/3.

reduce the computational time. On the other hand, because
some high frequency information is lost after quantization,
it is interesting to design other compression schemes with
the proposed method together to restore highly compressed
images.
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Fig. 3. The first column: uncompressed images of size 256 × 256; the second column: JPEG decompressed images (the quality index for all images is
q = 50/3, and the compression ratios are 9:1, 8:1, 18:1, 15:1, 15:1, 24:1, and 20:1 from top to bottom); the third column: decompressed images by the
TV method; the fourth column: decompressed images by the WTV method; the fifth column: decompressed images by the Dic method; the sixth column:
decompressed images by the DicTV method.
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Fig. 4. Zoomed parts of images in Fig. 3. The first column: zoomed part of uncompressed images of size 256× 256; the second column: zoomed part of
JPEG decompressed images; the third column: zoomed part of decompressed images by the TV method; the fourth column: zoomed part of decompressed
images by the WTV method; the fifth column: zoomed part of decompressed images by the Dic method; the sixth column: zoomed part of decompressed
images by the DicTV method.


