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Abstract

HodgeRank on random graphs is proposed recently as an effective framework for multimedia quality

assessment problem based on paired comparison methods. With a random design on graphs, it is

particularly suitable for large scale crowdsourcing experiments on the Internet. However, there still

lacks a systematic study about online schemes to deal with the rising streaming and massive data

in crowdsourceable scenarios. To fill in this gap, we propose in this paper an online ranking/rating

scheme based on stochastic approximation of HodgeRank on random graphs for Quality of Experience

(QoE) evaluation, where assessors and rating pairs enter the system in a sequential or streaming way.

The scheme is shown in both theory and experiments to be efficient in obtaining global ranking by

exhibiting the same asymptotic performance as batch HodgeRank under a general edge-independent

sampling process. Moreover, the proposed framework enables us to monitor topological changement and

triangular inconsistency in real time. Among a wide spectrum of choices, two particular types of random

graphs are studied in detail, i.e., Erdös-Rényi random graph and preferential attachment random graph.

The former is the simplest I.I.D. (independent and identically distributed) sampling and the latter may

achieve more efficient performance in ranking the top-k items due to its Rich-get-Richer property. We

demonstrate the effectiveness of the proposed framework on LIVE and IVC databases.
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I. INTRODUCTION

The Quality of Experience (QoE) issue [1], [2], which aims at the assessment of a user’s subjective

expectation, feeling, perception, and satisfaction with respect to multimedia content, has drawn increasing

attention from multimedia researchers during recent years. As the ultimate goal is to provide a satisfying

end-user experience, there is a strong demand to investigate a technique that can measure the quality

of multimedia content efficiently, reliably, and is easy to implement in reality. Since QoE results from

the psychological fulfillment of the user’s expectations on the utility and enjoyment of the multimedia

content given the user’s personality and current state, traditional subjective user studies are conducted

in a laboratory environment with a tight control on influential variables. While many and possibly even

diverging views on the quality of the multimedia content can be taken into account – entailing a good

understanding of the QoE and its sensitivity – lab-studies can be time-consuming and costly, since the tests

have to be conducted by a large number of users for statistically relevant results. Crowdsourcing arises

to be a promising alternative approach. With crowdsourcing, subjective user studies can be efficiently

conducted at low costs with adequate user numbers to get statistically significant QoE ranking scores. In

addition, the desktop-PC based setting of crowdsourcing provides a highly realistic setting for assessing

the rapidly growing online multimedia data such as Flickr and Youtube which is nearly impossible in

traditional lab-studies of QoE [3], [4]. However, additional challenges emerge due to the remote test

settings, among which we focus here on experimental designs with distributive sampling, reliability of

users or ratings, divergent expectations of users, and the treatment of big and streaming data.

Paired comparison method is gaining rising attention in QoE recently [5], [6], since compared with

the Mean Opinion Score (MOS) [7] rating scheme, it is an easier and less demanding task for raters,

yielding more reliable rating data in crowdsourcing tests. In a typical MOS test, individuals are asked

to give a rating from Bad to Excellent (e.g. Bad-1, Poor-2, Fair-3, Good-4, and Excellent-5) to grade

the quality of a stimulus, which however may suffer from various problems such as ambiguity and even

divergence in defining the scales. On the other hand, in paired comparison method raters are asked to

compare two stimuli simultaneously and vote which one has the better quality, which provides more

accurate results against personal scale variations. However, paired comparison method leaves a heavier
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burden on participants with a larger number
(
n
2

)
of comparisons. Here, n represents the number of items

to be assessed. While there has been a large volume of statistical literature on deterministic incomplete

block design [8], these designs are not suitable for crowdsourcing on the Internet where the raters are

distributive over Internet with varied backgrounds and it is hard to control with traditional designs.

To address such a challenge, we recently propose a new framework [9], [10], called HodgeRank on

Random Graphs (HRRG), which exploits randomized paired comparison method [6] based on random

graph theory where small subsets of all possible pairs are randomly chosen for each assessor to view. In

[9], [10], we systematically answer the following two fundamental questions arising from randomization:

(1) how to deal with the imbalanced and incomplete data distributed on random graphs; (2) how many

samples are needed to achieve certain approximation of the complete design. Our framework exploits a

recent development on a Hodge-theoretic approach to statistical ranking [11], which decomposes paired

comparison data as edge flows on graphs orthogonally into three components: a gradient flow which

provides a global ranking score, a triangular curl flow, and as well as a harmonic flow, both of which

characterize the local and global inconsistency in the data, respectively. Such a decomposition enables us

to get global ranking and investigate the reliability of pairwise ratings simultaneously. Random graphs

play a central role in guiding random sampling designs for crowdsourcing experiments. For example,

Erdös-Rényi random graphs select pairs of stimuli uniformly from all possible candidates, while random

k-regular graphs keep a balanced sampling where each stimulus receives the same number of comparisons

against others, which is important for numerical stability of global ranking [10]. Equipped with recent

developments in random graph theory, O(n log n) distinct random edges are necessary to ensure the

inference of a global ranking and O(n3/2) distinct random edges are sufficient to remove the global

inconsistency. Experiments show that such a random design provides good approximations of global

ratings derived from complete experimental designs.

Despite the successful developments above for subjective multimedia assessment, it remains open to

explore online algorithms to deal with streaming data in crowdsourcing experiments on the Internet.

Although most of current QoE datasets are of medium sizes which are suitable for both laboratory and

crowdsourcing studies, we are witnessing a rapid growth of online multimedia data such as Flickr and

Youtube with big and streaming data [3]. Such data calls for online algorithms as a sequential decision

process via incremental data updates to improve its prediction accuracy which is scalable for large scale

data analysis. Even though the image/video quality itself is constant in time, in subjective QoE evaluation,

preferences may vary over raters and comparisons contingent on different salient features of stimuli in

attention, noise from environment, and levels of attention, etc. Thus it is a fundamental question in online
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algorithmic design how to aggregate preferences of multiple sequential assessors into a global ranking,

reflecting the statistical consensus on multimedia quality over population.

In this paper, we fill in this gap by presenting an online algorithm based on the classic Robbins-

Monro procedure [12] or stochastic approximation of batch HodgeRank [10]. While there has been an

extensive study of online rating algorithms in literature [13]–[15], we choose online HodgeRank mainly

due to that it systematically addresses the global rating and the inconsistency of paired comparison data

simultaneously, particularly suitable for crowdsourcing QoE studies.

Online algorithms could offer significant computational advantages over batch algorithms, when dealing

with streaming or large-scale data. In this framework, every item (e.g. image) in comparison is regarded

as a graph node and an assessor collects some samples of node pairs or edges, independently and

with a fixed distribution which may vary over edges. Such an edge-independent process [16] include

two important online random graph models investigated in this paper: (1) Erdös-Rényi random graph

which models the simplest I.I.D. sampling scheme; (2) preferential attachment random graph which

models the Rich-get-Richer scenario. We will show that our proposed online algorithm converges to

the batch HodgeRank algorithm at a minimax optimal rate for all edge-independent sampling processes,

and preferential attachment model is particularly useful when one expects higher accuracy and faster

convergence on top-ranked items, while tolerates lower accuracy and slower convergence on bottom-

ranked ones. Furthermore, we note that online algorithms can be applied to more general settings with

Multiplicative-attribute random graphs, dependent sampling such as Markov sampling, and tracking time-

varying environment.

We demonstrate the effectiveness and generality of the proposed framework on LIVE [17] and IVC [18]

databases, which include 15 different reference images and 15 distorted versions of each reference, being

widely studied in laboratory settings and here online crowdsourcing settings. Totally 186 observers have

carried out the crowdsourcing tests via Internet, providing us 23,097 paired comparisons. Experimental

results show that the proposed online algorithm can save the computational time-cost in magnitudes,

while provides nearly the same error rates as the batch HodgeRank where all the samples in hand are

processed once. Thus online HodgeRank is promising and has potentially wide applications for large

scale crowdsourceable QoE evaluation.

Our contributions in this work are three-fold:

1. We propose a novel framework of online ranking/rating on random graphs for exploratory quality

assessment. The framework provides the possibility of making assessment procedure significantly faster

without deteriorating the accuracy, while maintaining the freedom of assessors.
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2. The online rating algorithm is based on Robbins-Monro procedure or stochastic gradient descent for

HodgeRank on random graphs. For every edge independent sampling process, the online rating reaches

minimax optimal convergence rates hence asymptotically as efficient as a batch algorithm. Moreover,

online tracking of ranking inconsistency is possible via triangular curl and persistent homology in this

framework.

3. To conduct paired comparisons, two random design schemes are proposed based on Erdös-Rényi

random graph and preferential attachment random graph. For Erdös-Rényi random graph, it further

confirms the theoretical analysis by showing that the proposed online rating algorithm could achieve

similar convergences to batch algorithms. For preferential attachment random graph, it may lead to better

performance for top-k ranking items in HodgeRank than Erdös-Rényi random graph due to its Rich-get-

Richer property.

This paper is an extension of our conference paper [19], which only studies HodgeRank with Erdös-

Rényi random graph. The following distinctions are made in this paper: A new random graph called

preferential attachment random graph is systematically studied in this version. The reason to choose

preferential attachment random graph is that it could provide a more efficient ranking process for the

top-k items which is important in various applications such as coding strategy and parameters selection in

image/video coding community. Both random graph models favor an online fashion to generate samples.

Erdös-Rényi random graph has all edges sampled independently and with an identical distribution, thus

is the simplest example of I.I.D sampling, while the original preferential attachment random graph has an

dependent sampling process. In this paper we adopt an edge-independent implementation of preferential

attachment random graph suggested in [16], which concentrates on top-ranked items and is a special case

of multiplicative-attribute random graphs [20].

The remainder of this paper is organized as follows. Section II contains a review of related work.

Then we describe the proposed framework in Section III, and establish the theory of online HodgeRank

based on batch HodgeRank. The detailed experiments are demonstrated in Section IV, including simulated

examples and real-world data. Section V presents the conclusive remarks along with discussion for future

work.

II. RELATED WORK

A. Crowdsourcing QoE

Existing methods of QoE evaluation can be divided into two categories: subjective assessment and

objective assessment. Objective assessment builds objective quality measurement models (refer to survey
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[21] and references therein) to predict perceived quality automatically and intelligently, which may or

may not reflect human’s perceptual experience. On the other hand, subjective assessment can provide the

ground-truth and verification for objective models, which is however labor-intensive and time-consuming.

In subjective viewing tests, stimuli are shown to a group of viewers, and then their opinions are

recorded and averaged to evaluate the quality. Among various approaches of conducting subjective test,

paired comparison is expected to yield more reliable results; however, this is an expensive and time-

consuming process. To tackle the cost problem, with the growth of crowdsourcing platforms, such as

Amazon Mechanical Turk (MTurk) [22], more and more researchers tend to seek help from the Internet

crowd to conduct user studies on QoE evaluation [5], [9], [10], [19]. In [5], a crowdsourceable framework

based on paired comparison is first proposed for QoE evaluation. However, one major shortcoming of

this work lies in that it makes a strong assumption that all paired comparison data collected are complete

which is impossible in practice. To address this issue, the work in [6], [9], [10], [19] all suggest a

randomized paired comparison method to reduce the number of comparisons. However, crowdsourceable

data are collected in a distributive and streaming way from a large population over Internet participants.

Therefore, it is necessary to develop an online rating method to deal with this kind of data, which will

be the main concern of this paper.

B. HodgeRank and Online Algorithms

HodgeRank, as an application of combinatorial Hodge theory to preference or rank aggregation prob-

lem, is firstly introduced in [11], which inspires a series of studies in statistical ranking [23]–[26] and

game theory [27]. Most recently, we developed the application of HodgeRank with random graph designs

in subjective QoE evaluation [9], [10], together with online algorithms for sequential data [19] and outlier

detection [28]. Other applications of Hodge theory includes fluid mechanics [29] and computer vision

[30], [31], etc.

Online learning is a well established subfield of machine learning concerned with estimation problems

with limited access to the entire data. It is a sequential decision process (ft)t∈N in the hypothesis space,

where each ft is decided by the current observation zt = (xt, yt) and ft−1 which only depends on previous

examples, i.e. ft = Tt(ft−1, zt). As a contrast, batch learning refers to a decision utilizing the whole

set of examples available at time t [32], [33]. The most famous examples of online learning algorithms

can be traced back to Perceptrons [34] in classification, Adaline [35] in regression, and Kalman-Bucy

filters as recursive least square methods [36], [37], etc. The online ranking scheme in this paper is based

on stochastic gradient decent method in the setting of HodgeRank on random graphs, also called the
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Robbins-Monro procedure [12] for mean normal equations in least square ranking, and can reach optimal

convergence rates as batch learning algorithms [38].

The most famous online algorithm for ranking is probably the Elo rating system, developed by Arpad

Elo [13] and adopted by United States Chess Federation in 1960. Such a rating system is later generalized

by Glickman [14], [39] using Bayesian inference, which is further extended in TrueSkill [15] to multiple-

team players and implemented in online games by Microsoft Co. Ltd. The scheme proposed in this paper

is equivalent to the Elo rating when restricted to uniform models in both cases. However adapted from the

Hodge decomposition, our scheme unifies in the same framework various statistical general linear models

[10], such as Thurstone-Mosteller, Bradley-Terry, and Angular Transform etc., with a decomposition of

paired comparison data into both gradient flow of global ranking and (local and global) cyclic flows

as measurements of inconsistency. The latter component is ignored in the ranking algorithms above but

crucial in preference aggregation as highlighted by the Arrow’s impossibility theorem in economics.

Recently, there arose various studies on active sampling in ranking. Most of these are concerned with

sample complexity. For example, Ailon [40] discusses the application of a polynomial time approximate

solution (PTAS) for the NP-hard minimum feedback arc-set (MFAST) problem, in active ranking with

sample complexity O(n · poly(log n, 1/ε)) to achieve ε-optimum. Moreover, if the ranking function is

decided by a Euclidean distance function from a reference point in Rd or a linear function in such a

space, [41] shows the active sampling complexity can be reduced to O(d log n), which are successfully

applied in beer taste [42] etc. Most recently, [25] approaches active sampling from a statistical perspective

as Fisher information maximization, which is equivalent to maximize the smallest nonzero eigenvalue of

graph Laplacian in HodgeRank with integer weights. However these works are different to preferential

attachment random graph models in this paper, which is an active sampling scheme for the purpose of

pursuing top-k ranking effectively.

C. Random Graphs

Random graph is a graph generated by some random process [16], [43]. It starts with a set of n vertices

and adds edges between them at random. With such models we aim at crowdsourcing experimental designs

where assessors may select image/video pairs at random. Different random graph models produce different

probability distributions on graphs. The most commonly studied one is the Erdös-Rényi random graph

[44] which is a stochastic process that starts with n vertices and no edges, and at each step adds one new

edge uniformly. This kind of random graph can be viewed as a random sampling process of image/video

pairs or edges independently and identically distributed (I.I.D.), and thus is well suited to our online
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crowdsourcing test system. In [9], [10], a random design principle based on Erdös-Rényi random graph

theory is investigated to conduct crowdsourcing tests. Experimental results show that for large Erdös-

Rényi random graph G(n, q) with n nodes and every edge sampled with probability q, it is necessary

to have q � n−1 log n such that the graph is connected and global ranking is thus possible; to avoid

global inconsistency from Hodge Decomposition, it suffices to have larger sampling rates at q � n−1/2.

Moreover, [10] further investigates the sampling based on random k-regular graph, which may obtain a

more balanced sampling and hence better performance than Erdös-Rényi random graph for small k, as

well as a good approximation to Erdös-Rényi random graph for large k.

There are some other kinds of random models, such as preferential attachment random graph [45],

small world random graph [46] and geometric random graph [47], etc., which may also play important

roles under certain circumstances. However, in this paper, according to practical application requirements

in QoE evaluation, we particularly focus on two types of them, Erdös-Rényi and preferential attachment

random graph, leaving other models for future studies.

III. ONLINE HODGERANK FOR QOE

In this section, we propose a new online design to conduct paired comparison for subjective QoE

evaluation and two random design principles are exploited to meet the crowdsourcing scenario, including

Erdös-Rényi and preferential attachment random graphs. Specifically, we first describe HodgeRank on

general graphs, and then explain how to develop the online rating algorithms based on stochastic ap-

proximation or Robbins-Monro procedure. Second, an upper bound for convergence of such online rating

algorithms is given to justify the settings where the minimax optimal convergence rate is met. Finally,

we discuss how to online track triangular curls and topological changement.

A. Batch HodgeRank on Graphs

HodgeRank [11] is a general framework to decompose paired comparison data on graphs, possibly

imbalanced (where different pairs may receive different number of comparisons) and incomplete (where

every participant may only give partial comparisons), into three orthogonal components:

aggregate paired ranking =

global ranking
⊕

local inconsistency
⊕

global inconsistency

To be precise, consider paired ranking data on a graph G = (V,E), Yα : E → R such that Y α
ij = −Y α

ji

where α is the participant index. Without loss of generality, one assumes that Y α
ij > 0 if α prefers i to
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j and Y α
ij ≤ 0 otherwise, with the magnitude representing the degree of preference. In a dichotomous

choice, Y α
ij can be taken as {±1}.

In subjective multimedia assessment, it is natural to assume

Y α
ij = s∗i − s∗j + εαij , (1)

where s∗ : V → R is some true scaling score on V and εαij are independent noise of mean zero and fixed

variance.

Under such assumptions, Gauss-Markov theorem tells us that the unbiased estimator of global ranking

score s : V → R, up to a translation degree of freedom for connected graph G, is given by the following

least square problem,

min
s∈R|V |

∑
i,j,α

ωαij(si − sj − Y α
ij )2, (2)

where ωαij denotes the number of paired comparisons on {i, j} made by rater α and si, sj represent the

global ranking score of item i and j, respectively.

It can be rewritten as the following weighted least square form

min
s∈R|V |

∑
i,j

ωij(si − sj − Ŷij)2, (3)

where Ŷij = (
∑

α ω
α
ijY

α
ij )/(

∑
α ω

α
ij) and ωij =

∑
α ω

α
ij . Written in this form allows an extension of

the linear model (1) to the following general linear model family when only binary comparisons are

available.

In general linear models [8], one assumes that the probability of pairwise preference is fully decided

by a linear ranking/rating function in the following way

πij = Prob{i is preferred over j} = Φ(β∗i − β∗j ), β∗ ∈ RV (4)

where Φ : R → [0, 1] can be chosen as any symmetric cumulated distributed function. In an inverse

direction, if an empirical preference probability π̂ij is observed in experiments, one can map π̂ to a

skew-symmetric paired comparison data by the inverse of Φ,

Ŷij = Φ−1(π̂ij), (5)

where Ŷij = −Ŷji. Different choices of Φ lead to different general linear models. In [10] we compare

four well known models in subjective multimedia QoE assessment: Uniform model (equivalent to the

linear model (1)), Thurstone-Mosteller model, Bradley-Terry model, and Angular-Transform model, where
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the simplest uniform model (the linear model (1)) is nearly the best (slightly worse than the Angular-

Transform model) in the setting of that paper. Therefore in the sequel we only focus on the uniform

model while the principle can be applied to general linear models.

To characterize the solution and residue of (3), we first define the triangle set of G as all the 3-cliques

in G:

T =

{i, j, k} ∈
V

3

 |{i, j}, {j, k}, {k, i} ∈ E
 . (6)

Then every Ŷ admits an orthogonal decomposition adapted to G

Ŷ = Ŷ g + Ŷ h + Ŷ c, (7)

where

Ŷ g
ij = ŝi − ŝj , for some ŝ ∈ RV , (8)

Ŷ h
ij + Ŷ h

jk + Ŷ h
ki = 0, for each {i, j, k} ∈ T , (9)∑

j∼i
ωij Ŷ

h
ij = 0, for each i ∈ V , (10)

and the residue Ŷ c actually satisfies (10) but not (9). Here we make some remarks about the Hodge

decomposition above.

• Ŷ g satisfies (8) as the discrete gradient of a global ranking score ŝ, where ŝ is given by a solution

of the weighted least square problem (3).

• Ŷ h satisfies two conditions, the curl-free condition (9) and the divergence-free condition (10), which

is called the harmonic flow and accounts for the global inconsistency of paired comparison data Ŷ .

Global inconsistency generally involves loops consisting all nodes in comparisons (e.g. i � j � k �

... � i), indicating the fixed tournament issue – arbitrary order can be achieved by manipulating the

tournament schedule. Harmonic flow or global inconsistency will vanish if the underlying triangular

clique complex is loop-free, i.e. the first Betti number is zero.

• Ŷ c with a non-vanishing curl which fails (9), hence often called the curl flow, accounts for the

locally triangular inconsistency of data Ŷ . Such local inconsistency can be fully characterized by

triangular cycles, such as i � j � k � i.

Two residues, Ŷ h and Ŷ c, as inconsistency measurements associated with the global ranking obtained,

show the validity of the ranking and can be further studied in terms of its geometric scale, namely whether
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inconsistency in the ranking data arises locally or globally. This provides us a quantitative tool to explore

reliability of ratings given incomplete data. More details can be found in [9]–[11].

For a connected graph G = (V,E), there is a translation degree of freedom for global ranking score

in Eq. (1) and the minimizers of (2). To remove such a degree of freedom, we select the global ranking

score estimator as the minimal norm least square solution of (2) which satisfies the following normal

equation

∆0ŝ = δ∗0Ŷ , (11)

where δ0 : RV → RE is a finite difference operator (matrix) on G defined by δ0((i, j), i) = −1,

δ0((i, j), j) = 1, and otherwise zero, δ∗0 = δT0 W (W = diag(ωij)), ∆0 = δ∗0 · δ0 is the unnormalized

graph Laplacian defined by (∆0)ii =
∑

j∼i ωij and (∆0)ij = −ωij . In fact, with the Moore-Penrose

(pseudo) inverse of graph Laplacian ∆†0, we have ŝ = (∆0)
†δ∗0Ŷ .

An interesting variation of this l2-norm scheme (3) is an analogous l1-projection onto the space of

gradient flows,

min
s∈R|V |

∑
i,j

ωij |si − sj − Ŷij |. (12)

This optimization problem is applied to the case that the noise is sparse but can be large, often regarded

as outliers. It is more robust to outliers when compared with the l2-norm, and thus can be regarded as a

kind of robust ranking. For more details, readers may refer to [11], [24].

As the input of this HodgeRank framework is a paired comparison multigraph (the whole set of

paired comparison data in one batch) provided by participants, we may call this type of work as batch

HodgeRank. For details of the theoretical development, readers may refer to [11]. The work in [9], [10]

adopt such batch HodgeRank to obtain quality scores of videos. However, for crowdsourcing test on the

Internet, participants and pairs enter the system one by one in a dynamic and random way. Therefore,

batch HodgeRank is not an efficient tool for crowdsourcing. To meet this challenge, we propose an online

HodgeRank as Robins-Monro procedure or stochastic approximation of (11).

B. Online HodgeRank Algorithms

The online rating algorithm considered in this paper is constructed from Robbins-Monro procedure

[12] to solve linear operator equation Āx = b̄,

xt+1 = xt − γt(Atxt − bt), (13)
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where At and bt are matrix- and vector-valued random variables whose expectations satisfy E(At) = Ā

and E(bt) = b̄, respectively. Such a scheme has been widely exploited in online learning, e.g., [38], [48].

Now consider the normal equation (11) for the least square problem (2), ∆0s = δ∗0Ŷ . In this case, at

time t when a new rating Yt(it, jt) = −Yt(jt, it) entered with pair (it, jt), we have

• At is a |V | × |V | matrix defined by At(it, it) = At(jt, jt) = −At(it, jt) = −At(jt, it) = 1 and

otherwise zero;

• bt is a |V |-dimensional vector defined by bt(it) = −bt(jt) = Yt(it, jt) and otherwise zero.

Let st = xt. With the realization above, Eq. (13) leads to

st+1(it) = st(it)− γt[st(it)− st(jt)− Yt(it, jt)]

st+1(jt) = st(jt) + γt[st(it)− st(jt)− Yt(it, jt)] (14)

where the initial choice is s0 = 0 or any vector such that
∑

i s0(i) = 0, and the step size γt is a

nonnegative sequence whose choice is often taken in the following form

γt =
a

(t+ t0)θ
, θ ∈ [0, 1]. (15)

The choice of step size will be discussed in more detail in the next subsection with a convergence analysis

which shows minimax rates with independent and identically distributed sampling. Algorithm 1 below

shows the procedure of this online rating method. Note that updates here only occur locally on the nodes

associated with edge {it+1, jt+1}, which is suitable for asynchronized parallel implementation.

For the sake of comparison, we also present a stochastic subgradient method for online rating with

l1-norm in (12), which is given by:

st+1(it) = st(it)− γt sign(st(it)− st(jt)− Yt(it, jt))

st+1(jt) = st(jt) + γt sign(st(it)− st(jt)− Yt(it, jt))

with similar choices on initial score and steps. Compared to online HodgeRank algorithm in Algorithm 1,

for l1-based online algorithm it suffices to consider sign functions, gij = sign(st(it)−st(jt)−Yt(it, jt)).

C. Optimal Convergence Rates of Online HodgeRank

There has been extensive work on convergence analysis of subgradient methods, e.g. [49]. Typical

convergence results require the conditions that step sizes
∑

t γ
2
t <∞ while

∑
t γt =∞, and boundedness

of subgradients, which are in particular s(i)− s(j)− Y (i, j) and sign(s(i)− s(j)− Y (i, j)) here. When

general convex loss functions are assumed, the analysis is typically formulated as regret bounds [50].
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Algorithm 1: Online HodgeRank Procedure.

1 Initialization:

2 s0 = 0 or any vector such that
∑

i s0(i) = 0; // Initialize the quality scores of each items.

3 With a new rating Yt(it, jt); // A new paired comparison (it, jt) occurs at time t.

4 Compute gij = st(it)− st(jt)− Yt(it, jt);

5 Then

6 st+1(it) = st(it)− γt ∗ gij ;

7 st+1(jt) = st(jt) + γt ∗ gij . // Quality scores at time t+1.

In particular, when the square loss is adopted, one may achieve the following probabilistic upper bound

which in fact reaches the minimax optimal rates for parametric regression, up to a logarithmic factor.

In the following, assume that Yt(it, jt) is an independent and identically distributed (I.I.D.) sequence and

the resulting random graph is edge-independent. Recall that a random graph G is called edge independent

(or independent, for short) [16] if there is an edge-weighted function p : E(Kn)→ [0, 1], satisfying

p(G = (V,E)) =
∏
e∈E

p(e)
∏
e6∈E

(1− p(e)).

Here Kn denotes the complete graph of n vertices. Edge-independent processes allow different occurrence

probabilities for different edges, but they have to be independent and static. Many dependent sampling

process of random graphs can be well approximated by edge-independent random graphs. The following

two examples are particularly important edge-independent random graphs used in this paper.

• Erdös-Rényi random graph [16]: an edge (i, j) ∈ E is independently drawn at a fixed probability

pij = p uniformly. This is the simplest example of I.I.D. sampling.

• Multiplicative-Attribute random graph [20]: let each vertex i ∈ E be associated with an attribute

parameter θi ∈ Rd (e.g. degree or centrality of the vertex), and each edge (i, j) ∈ E is drawn

independently according to a probability pij = f(θi, θj) with attribute (e.g. degree) parameters

θi and θj affiliated to vertex i and j, respectively. A preferential attachment random graph can

be well approximated by such models with θi being the expected degree of vertex i [16]. In the

experimental section, we will study a sort of preferential attachment random graphs with θi as the

expected preference of vertex i (image or video).
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The convergence analysis can be applied to all these examples. Define a random matrix

Πt
k =


(I − γtAt) . . . (I − γkAk) , k ≤ t;

I, k > t.

(16)

If we replace Ai by Ā, we obtain a deterministic positive definite matrix, say Π̄t
k.

The following lemma leads to a martingale decomposition for error xt−x∗, given in [38], [48], which

is crucial to lead to the error bounds.

Lemma. For all t ∈ N,

xt = Πt−1
1 x0 +

t−1∑
k=1

γkΠ
t−1
k+1bt (17)

and

xt − x∗ = Π̄t−1
1 (x0 − x∗)−

t−1∑
k=1

ξk, (18)

where

ξk =


γkΠ̄

t−1
k+1((Ak − Ā)xk − (bk − b̄)), 1 ≤ k < t;

0, k ≥ t.

is a martingale difference sequence such that E[ξt : Ft−1] = 0 for a filtration Ft−1 up to time t− 1.

The first part in error, Π̄t−1
1 (x0 − x∗), is called the initial error and the martingale difference tail,∑

ξk, is called the sample error. Initial error can be bounded deterministically, while the sample error

can be bounded via a Pinelis-Bernstein probabilistic inequality. Combining these bounds will lead to the

following theorem, whose derivation can be found in [26].

Theorem III-C. Let G = (V,E, P ) be the edge independent random graph model such as each edge

{i, j} ∈ E is drawn independently with probability pij ∈ [0, 1], and 0 = λ0 < λ1 ≤ . . . ≤ λn−1 be

eigenvalues of the graph Laplacian ∆0 = E(At). Assume that A = 2 ∨ λn−1 and |Yt(i, j)| ≤ B. Then

there exists a choice of step size γt = a/(t+ t0) (e.g. a = 1/λ1 and t0 ≥ B/λ1) such that the following

holds for all t ∈ N with probability at least 1− δ (δ > 0),

‖st − s∗‖2 ≤
7
√
AB|E|
λ
3/2
1

t−1/2 log(t+ t0) · log
2

δ

where st is defined by (14).

The theorem says that the online rating algorithm converges to the underlying true score s∗ under

the edge independent sampling process above. The convergence rate is minimax optimal at O(t−1/2), as

good as batch HodgeRank and Kalman-Bucy filters as recursive least squares. The choice of step size

γt ∼ t−1 is crucial, with large enough t0. Although the choice of a and t0 does not affect the asymptotic
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Fig. 1. Large curl due to multicriteria in paired comparisons among users. The image is undistinguishable due to its small

size, so image IDs in LIVE database are printed here.

rate in theory, in practice they influence the speed of convergence when t is small. We shall see this in

experimental section.

D. Online Tracking of Triangular Curls

Hodge decomposition (7) has a component Ŷ c which satisfies Ŷ c
ij + Ŷ c

jk + Ŷ c
ki 6= 0 for each triangle

(i, j, k) ∈ T . This encodes the information about triangular or local inconsistency. For a graph G = (V,E)

whose 3-clique complex χG = (V,E, T ) does not contain a “loop” (i.e. the first Betti number β1 = 0),

global inconsistency vanishes and such triangular inconsistency explains all sorts of inconsistency. It

happens when Erdös-Rényi random graphs are sufficiently dense [9], [10]. Therefore it is desired to track

triangular curls:

curlijk = Ŷ c
ij + Ŷ c

jk + Ŷ c
ki = Ŷij + Ŷjk + Ŷki,

which is nothing but triangular trace of Ŷ [11]. Curl is easy for online and parallel realizations. In [9],

another relative curl is introduced as extensions of combinatorial intransitive triangles,

rel-curlijk =
|Ŷij + Ŷjk + Ŷki|
|Ŷij |+ |Ŷjk|+ |Ŷki|

∈ [0, 1].

Relative curl on a triangle (i, j, k) ∈ T is one if and only if (i, j, k) is intransitive.

The existence of large curls or intransitive triangles may be either due to noise or suggesting the

existence of multicriteria in paired comparisons. If the latter case happens on a triangule (i, j, k), on each

edge say (i, j) ∈ E, it will have a Ŷij consistently away from zero, and incur a large curl. In Figure 1, we

exhibit one example of such intransitive triangle existing in the data we collected so far, which indicates
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a stable cyclic preference on a natural scene picture in LIVE dataset such that JPEG2000 (img91) is

better than Fast Fading (img91), Fast Fading (img91) is better than White Noise (img40), and White

Noise (img40) is better than JPEG2000 (img91). This is due to the fact when different pairs of images

are presented to raters, different salient features are adopted by raters implicitly. Triangular curls due to

noise will vanish when the sample size goes to infinity while curls due to multicriteria will persist with

the increase of sample complexity. Therefore, online tracking of curls will be useful to identify such a

kind of inconsistency.

Algorithm 2 outlined below shows how to track the triangular curl in an online way.

Algorithm 2: Online Tracking of Curls.

1 With a new rating Y (t)
ij ;

2 n
(t+1)
ij = n

(t)
ij + 1; // n(t)ij is the number of paired comparisons up to time t.

3 Ŷ
(t+1)
ij = (1− 1/n

(t+1)
ij )Ŷ

(t)
ij + Y

(t)
ij /n

(t+1)
ij ; // Ŷ (t)

ij follows the same definition in Section III-A.

4 for each k s.t. (i,j,k) is a triangle do

5 curl
(t+1)
ijk = Ŷ

(t+1)
ij + Ŷ

(t+1)
jk + Ŷ

(t+1)
ki ;

6 rel-curl(t+1)
ijk =

|curl(t+1)
ijk |

|Ŷ (t+1)
ij |+|Ŷ (t+1)

jk |+|Ŷ (t+1)
ki |

.

7 end

E. Online Tracking of Topology Evolution via Persistent Homology

The work in [9] shows that when the resultant graph provided by assessors is connected, we can derive

global scores for all the items in comparison from batch HodgeRank. Besides, when its clique complex

is loop-free, there is no global inconsistency, and as thus tracking local inconsistency (triangular curls)

presented above will be enough. Motivated by these two observations, [9] adopts persistent homology

[51]–[54] to check if a given graph instance satisfies the two conditions.

In fact, persistent homology is an online algorithm to check topology evolution when nodes, edges and

triangles enter in a sequential way. Here we just discuss in brief the application of persistent homology

to monitor the number of connected components (β0) and loops (β1) in our online settings. In random

graph designs for image comparisons, we can assume that the images (nodes) are created at the same

time, after that pairs of images (edges) are presented to assessors independently one by one. A triangle

{i, j, k} is created immediately when all the three associated edges appear. In practice with sampling of

multigraph data, one may consider certain thresholds on edges and triangles for their presence, which can
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Fig. 2. An example of persistence Barcodes of Betti numbers .

be dealt with in a similar way. With such a streaming data, persistent homology may return the number

of β0 and β1 at each time when a new node/edge/triangle is born.

Figure 2 illustrates an example of this birth process and its associated Betti numbers (β0 and β1) that

are computed and plotted by JPlex [55]. At the first frame (say t = 0), 6 nodes are collected, which

corresponds to β0 = 6 at t = 0 in Barcode: Betti 0. On the second frame (t = 1), an edge connecting

a pair of nodes is created which drops the number of connected components from 6 to 5, i.e. β0 = 5

at t = 1 in Barcode: Betti 0. The same procedure follows and particularly at the fifth frame t = 4, it

creates a loop and there are 3 connected components in the graph, which can be read from β0 = 3 at

t = 4 and β1 = 1 at t = 4, respectively. Note that after the thirteenth frame t = 12, there is only one

connected component β0 = 1 left and no loop exists β1 = 0 as indicated by the Barcodes.

F. Online Preferential Attachment Sampling

Here we give a brief introduction of preferential attachment sampling in this paper, which is slightly

different to traditional preferential attachment random graphs. In traditional preferential attachment ran-

dom graphs, an edge (it, jt) is added with probability pij ∼ didj , i.e. in proportion to the existing degree

of the corresponding vertices. However, this is not an edge-independent process as dit changes along
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the sampling process. To avoid this issue, in this paper we adopt the strategy used in [16], where an

edge (it, jt) is drawn independently at probability pij = f(ŝi, ŝj) ∼ ŝiŝj for some pre-estimated global

rating score ŝ. This is natural in our QoE evaluation scenario, every node has some intrinsic quality, thus

can differentiate its attractiveness from other nodes with different quality. By fixing the estimation ŝ in

online sampling, we have an edge-independent process which is easy to analyze, where the number of

comparisons a vertex received is in proportion to its expected preference estimated by ŝ. Therefore the

higher the preference is, the more comparisons it will receive, which will lead to a faster convergence

on top-ranked items confirmed by our experiments.

Algorithm 3 describes this online preferential attachment sampling. We note that in practice, one can

slowly update global score estimation ŝ after every τ samples, which may improve the performance on

top-ranked estimation. Moreover, one can choose more general pij = f(ŝi, ŝj), e.g. pij = exp(αŝiŝj)

where α = 0 corresponding to Erdös-Rényi random graphs and a large α > 0 adjusts the rates of sampling

on top-ranked items. For simplicity, we adopt the scheme in Algorithm 3 which suffices to illustrate the

speed-up of top-ranked convergence in the setting of this paper.

Algorithm 3: Online Preferential Attachment Sampling.

1 Begin with the initial graph G0 with an estimation ŝ. // Usually, it is taken to be an Erdös-Rényi random

graph with connectivity (p� n−1 log n) and/or loop-free requirement (p� n−1/2).

2 For t > 0, at time t, the graph Gt is formed by modifying Gt−1 as follows:

3 Add a new stimulus pair {i, j} by independently choosing stimulus i and stimulus j with probability

proportional to their quality scores, i.e., pij ∼ ŝiŝj .

IV. EXPERIMENTS

In this section, we systematically evaluate the performance of the proposed online HodgeRank algorithm

on random graphs. Two classes of random graphs are systematically studied here: Erdös-Rényi random

graph as the simplest crowdsourcing sampling scheme and the preferential attachment random graph in

Algorithm 3 in favor of top-ranked candidates. Both schemes find their importance in applications. All

the experiments are conducted with both simulated data and real-world datasets. Finally, we show how

to online track the curls and topological evolution with persistent homology.
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Fig. 3. Comparisons of online HodgeRank and batch HodgeRank for uniform model. (a) l2 distance; (b) Double logarithmic

coordinate axis for l2 distance; (c) Kendall’s τ .

A. Simulated Data

This subsection exploits simulation data to show that online HodgeRank may achieve optimal conver-

gence rates in global ranking estimation, as good as batch HodgeRank, and the preferential attachment

random sampling can be more efficient than Erdös-Rényi random sampling on top-k ranking.

Exp-I: Erdös-Rényi random sampling

This experiment will exhibit that for uniform models with Erdös-Rényi random sampling, online

HodgeRank algorithm (14) achieves the optimal convergence rates predicted by Theorem III-C, nearly

as good as the batch HodgeRank. First, we randomly create a global ranking score as the ground

truth, uniformly distributed on [0, 1] for n = 16 candidates V which is consistent with the other

real-world datasets in this paper. Then paired comparison data are generated by the uniform model:

p(Yij = 1) = 1 − p(Yij = −1) = (si−sj+1)
2 , with each edge (i, j) ∈ E is independent drawn from the

complete graph. This procedure repeats such that we obtain a sequence of paired comparison samples.

We make a note on the choice of step size parameter a and t0 in (15): a = 7.5 ∼ 1/λ1 here to meet the

condition in Theorem III-C; t0 is less sensitive for the convergence rates which is however important for

initial errors and set to be 1000 here for simplicity.
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We adopt two metrics to compare the convergence performance of batch Hodge and online HodgeRank.

As we know the ground-truth score here, the first metric is the l2-distance between estimators and the

true score, ‖ŝ − s∗‖. Another coarse-grained metrics, called Kendall’s τ [56], are also used for the

comparison of the induced global ranking orders. Given two global ranking scores xi and yi on V , define

Xij = sign(xi − xj) and Yij = sign(yi − yj). Then Kendall’s τ coefficient is defined as:

τ(x, y) =

∑
{i,j}∈E XijYij√∑
X2
ij ·
∑
Yij

2
, (19)

which measures the percentage of concordance (XijYij > 0) minus the percentage of mismatch (XijYij <

0) between two rankings.

The results are shown in Figure 3, where online HodgeRank is able to maintain competitive perfor-

mances with the batch HodgeRank, in terms of both metrics above. In particular, in (b) the long term slope

of the two curves in double logarithmic plot is −1/2, which implies both online and batch algorithms

reach a convergence rate at O(t−1/2), which is minimax optimal and thus confirms Theorem III-C. In

summary, online HodgeRank can achieve a nearly optimal convergence to the true score but with much

less computational cost than batch HodgeRank.

Exp-II: Preferential attachment random sampling

This experiment will exhibit some advantages of preferential attachment random sampling compared

with Erdös-Rényi random sampling on the convergence speeds for top-ranked items. Similar to the

experiment above we also choose |V | = n = 16. Besides, in order to simulate the real-world data

contaminated by noise, a random subset of E is reversed in preference direction. In this way, we simulate

a paired comparison graph, possibly incomplete and imbalanced, with different levels of noise to be

specified below. Let the total number of paired comparisons occurred on this graph be SN (Sample

Number), and the number of noisy pairs be NPN (Noisy Pairs Number). Then we define the Noise Ratio

NR = NPN/SN. In the following experiment, we will show a comparison of the two sampling schemes

under different level of noise ratios. Specifically, for each NR level, we add a certain number of pairs

under the guidance of preferential attachment and Erdös-Rényi sampling respectively, followed by online

HodgeRank until its returned top-k ranked candidates are consistent with the ground-truth. Such a random

stopping time is recorded with 1000 repetitions to ensure the statistical stability. Figure 4 shows the mean

stopping time together with the variances of the two sampling schemes, for k = 3 and 5, respectively.

From these experimental results, we make the following comments.

First, it is shown that for the purpose of correct top-k ranking, preferential attachment sampling needs

smaller number of samples than Erdös-Rényi sampling in all cases. This is because, unlike Erdös-Rényi
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Fig. 4. Comparisons of the number of samples required by two sampling schemes when focusing on top-k items, versus noisy

ratios, in Exp-II. For each NR level, the experiments are repeated 1000 times and the median number of sample pairs with

[0.25, 0.75] confidence interval are plotted in the figure.

sampling in which all pairs have equal probability to be sampled, the preferential attachment sampling

provides a more efficient ranking process which automatically emphasizes top-ranked candidates and

truncates pairs for less important bottom-ranked ones.

Second, we can notice that with the increase of k, the performance gap between these two schemes

increases, and with the increase of NR, the number of samples required also increases with a relatively

slow speed.

Third, it should be noted that Erdös-Rényi sampling always shows a larger fluctuation than preferential

attachment sampling, which further confirms the advantage of preferential attachment random graph.

B. Real-world Datasets

Two publicly available datasets, LIVE [17] and IVC [18], are used in this work. The LIVE dataset

contains 29 reference images and 779 distorted images. The distorted images are obtained using five

different distortion processes–JPEG2000, JPEG, White Noise, Gaussian Blur, and Fast Fading Rayleigh.

Considering the resolution limit of most test computers, we only choose 6 different reference images

(480 × 720) and 15 distorted versions of each reference, for a total of 96 images. The second dataset,

IVC, which is also a broadly adopted dataset in the community of QoE evaluation, includes 10 reference

images and 185 distorted images derived from four distortion types–JPEG2000, JPEG, LAR Coding,

and Blurring. Following the collection strategy in LIVE, we further select 9 different reference images

(512× 512) and 15 distorted images of each reference. Eventually, we obtain a medium-sized image set
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Fig. 5. Images in LIVE and IVC databases (The first six are from LIVE and the remaining ones are from IVC).

that contains a total of 240 images from 15 references, as illustrated in Figure 5. Note that we do not

use the subjective scores in LIVE and IVC, but only borrow the image sources they provide. Different

from them, we propose to assess image quality with paired comparison method. There are two aspects

about the size of dataset: (1) number of distortion types; (2) number of reference images. The first is

the number of nodes in our paired comparison graphs, which is n = 16 here. Even on such a scale, it is

almost impossible for a single person to perform all
(
n
2

)
paired comparisons. So it suffices to illustrate the

performance of online algorithm against batch algorithm. The second does not affect the computational

complexity of algorithms, thus a random choice 15 from LIVE and IVC database is to show performance

consistency over these examples.

Exp-III: Erdös-Rényi guided data collection & experimental results

We now present our experiment design guided by Erdös-Rényi random graph for collecting the set of

online paired data. Different from traditional complete design in paired comparison, a session in our test

can have an arbitrary duration (down to a single pair) and participants are free to decide when to quit.

In other words, the number of pairs (#pairs) shown to participants can be adjusted according to their

time constraint and preference. That is, when a participant’s time is adequate, #pairs can be a bigger

value. But if one is under the pressure of time or prefers not to spend more time with the experiment,

#pairs will be smaller.

Before starting the experiment, each participant is briefed about the goal of the experiment and given

a short training session to familiarize himself/herself with the testing procedure. In the testing process,
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Fig. 6. Number of paired comparisons each reference received in LIVE and IVC databases.

images are displayed side by side at their native resolutions to prevent any distortions due to scaling

operations performed by software or hardware. Besides, to make it impossible for participants to cheat

our system by inputting “smart” answers, the order of each pair and the order within each pair are totally

random for each participant. Each assessor is allowed to take as much time as needed to enter their

choice. However, the assessors could not change their choice once entered or view the image again.

Once the choice is entered, the next image pair is displayed.

Moreover, we hope to avoid the situation with successive pairs of test images from the same reference,

to avoid contextual and memory effects in their judgments of quality. For this purpose, after the playlist

for one participant is constructed, our program would go over the entire playlist to determine if adjacent

pairs correspond to the same reference. If such a case is detected, one of the pairs would be swapped

with another randomly chosen pair in the playlist which does not suffer from the same problem.

Finally, 186 observers of different cultural level (students, tutors, and researchers), each of whom

performs a varied number of comparisons via Internet, provide 23,097 paired comparisons in total. The

minimum and maximum numbers of pairs that each subject evaluated is 1 and 1552, respectively. The

number of responses each reference image receives is different, as illustrated in Figure 6. Our collecting

task is still on-going now for further larger-scale studies.

In the following, we will show the comparison experimental results, which involves evaluating the

online algorithm (14) on various datasets against the performance of batch HodgeRank.

As there are no ground-truth scores in real-world data, one can not adopt Kendall’s τ with the ground-

truth as is in simulated data to evaluate the performance of the online method here. In this subsection,

the metric that we used in the evaluation of the performance of various algorithms is the Mismatch Ratio

(MR) εt, i.e., at time t, the percentage of mismatch pairs of a global rating st made on all previous
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Fig. 7. Experimental results of online HodgeRank vs. batch HodgeRank. MR (y-axis) versus the number of samples (x-axis)

on 15 reference images.

examples. For Yτ (i, j) ∈ {±1},

εt :=
1

2t

t∑
τ=1

|sign(st(iτ )− st(jτ ))− Yτ (iτ , jτ )|.

Figure 7 shows the performance comparisons of online HodgeRank against batch HodgeRank with

t0 = 1000 for 15 reference datasets. It is interesting to see that on all of these large scale data collections,

the online HodgeRank is able to maintain competitive performances with the batch case. Besides, Table I

shows the computation complexity achieved by online HodgeRank and batch HodgeRank. It is easy to see

that on our dataset, online HodgeRank can achieve up to nearly 370 times faster than batch HodgeRank,

with similar prediction errors.

Exp-IV: Preferential attachment guided experimental results

In Exp-II, we have shown that preferential attachment random sampling could perform better than
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TABLE I

COMPUTATION COMPLEXITY (S) COMPARISON OF ONLINE AND BATCH HODGERANK.

ref1 ref2 ref3 ref4 ref5 ref6 ref7 ref8 ref9 ref10 ref11 ref12 ref13 ref14 ref15 mean

Online 0.166 0.158 0.159 0.162 0.164 0.163 0.125 0.128 0.131 0.125 0.130 0.128 0.133 0.135 0.133 0.143

Batch 59.28 60.78 58.25 58.65 60.09 58.22 53.15 49.58 47.45 47.81 47.84 48.01 50.29 47.40 47.43 52.95

Fig. 8. Comparisons of the number of samples required by two sampling schemes when focusing on top-k items, in Exp-IV.

For each k, the median number of samples required on reference 1 with [0.25, 0.75] quantile are plotted in the figure.

Erdös-Rényi random graph in simulated data when we focus on ranking the top-k items. In this subsection,

we will continue to show such an improvement on real-world data collected in Exp-III. As there are no

ground-truth ranking in real-world data, results obtained from all the paired comparisons collected in Exp-

III are treated as the ground-truth in our experiment. Preferential attachment sampling is implemented

by resampling with replacement and we run the process 1000 times to ensure the statistical stability.

For top-k ranking, Figure 8 shows the number of samples required against k ranging from 1 to

5 on a randomly selected reference image (ref (1) in Figure 5), where similar observations can be

obtained from other reference images. Similar to the simulation data, it can be seen that preferential

attachment sampling is more efficient than Erdös-Rényi sampling by significantly reducing the sample

complexity over this range of small k. As k increases, such a benefit is increasing, but one should

expect some trade-off between k and efficiency. Moreover, we notice that Erdös-Rényi sampling exhibits

more significant fluctuations than preferential attachment model. By concentrating on top ranked items,

preferential attachment sampling reduces the variance and thus increases the stability effectively.
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Fig. 9. Number of samples versus number of online Betti numbers. For each sample number level, the median number of Betti

numbers over 15 references with [0.25, 0.75] quantile are plotted in the figure.

C. Online Tracking of Topology and Curls

In our online settings, due to the multiple comparisons between a pair of images, a natural question

is raised that how many samples are needed to satisfy the connected & loop-free conditions? As each

reference is similar in sampling scheme, we compute the online mean Betti numbers over 15 references,

as illustrated in Figure 9 (a). As we can see, after about 70 samples on this multigraph, with high

probability the resultant graph is connected & loop-free. In other words, it is easy to meet these two

requirements and thus can avoid the possible issue of harmonic inconsistency in global ranking.

In addition, we can further set a threshold for each edge which can be treated as a confidence level.

That is to say, only edges on which the number of paired comparisons are larger than this threshold will be

added in our resultant graph. The bigger the threshold is set, the more robust the topological structure of

the graph is. Figure 9 (b) shows the online tracking of the first two Betti numbers by persistent homology

when threshold is set to be 3. One can see more examples (250) are needed to reach the connected and

loop-free condition.

Triangular curls and relative curls defined in the last section are helpful to identify possible incon-

sistency or the existence of multicriteria adopted by raters in different paired comparisons. By online

tracking of relative curls in Figure 10, we find the intransitive triangle shown in Figure 1 that JPEG2000

(img91) is better than Fast Fading (img91), Fast Fading (img91) is better than White Noise (img40),

and White Noise (img40) is better than JPEG2000 (img91). The phenomenon suggests that one should

explore the hidden multicriteria behind the paired comparisons among these images which will be left

for future studies.
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Fig. 10. Online tracking of relative curl on triangle (JPEG2000 (img91), Fast Fading (img91), White Noise (img40)). One can

see the intransitive triangle constantly appears over time which suggests possible different criteria adopted by users in paired

comparisons made among them.

V. CONCLUSIONS

In this paper, online algorithms are proposed for crowdsourcing QoE evaluation where the data are

collected in a streaming way. The algorithms are based on Robbins-Monro procedure or stochastic

approximation to solve a HodgeRank problem on random graphs. In particular, we study two random

sampling schemes inspired by Erdös-Rényi and preferential attachment random graph theory, followed

by online HodgeRank to analyze the streaming data collected from Internet crowd. Erdös-Rényi random

graph is the simplest random sampling design bearing the I.I.D. property, while a choice of preferential

attachment random sampling focuses on top-ranked items. The distinction makes preferential attachment

random graph more efficient for top-k ranking problems on large-scale data collections.

Experiments with the images available in LIVE and IVC databases are conducted, including 15 different

reference images and 15 distorted versions of each reference in total. It is shown that in our applications,

the proposed online HodgeRank can achieve as nearly good performance as batch HodgeRank, in both

theory and experiments. Furthermore, we investigate the online tracking of triangular curls and topology

evolution of the paired comparison complex. In particular, we show that online tracking of triangular curls

provides us important information about inconsistency, which may suggest the existence of multicriteria

in rater’s judgement of different object pairs.

Our studies show that online HodgeRank provides us an efficient approach to study large scale

crowdsourcing QoE evaluation on the Internet. It enables us to derive global rating as well as monitor

the inconsistency occurring in the data in the real time.
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With the rapid growth of technologies on rich user interface, in future, we plan to assess user experience

in interactive applications with an active learning setting. Besides, for other kinds of dependent sampling

schemes, such as Markov sampling, etc., dynamics and convergence of online algorithms will also be

our future directions.
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