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This paper describes a general formalism for obtaining spatially lo-
calized (”sparse”) solutions to a class of problems in mathematical
physics, which can be recast as variational optimization problems,
such as the important case of Schrödinger’s equation in quantum
mechanics. Sparsity is achieved by adding an L1 regularization term
to the variational principle, which is shown to yield solutions with
compact support (”compressed modes” or CMs). Linear combi-
nations of these modes approximate the eigenvalue spectrum and
eigenfunctions in a systematically improvable manner, and the lo-
calization properties of CMs make them an attractive choice for
use with efficient numerical algorithms that scale linearly with the
problem size.

L1 Regularization | Schrödinger equation | Compressed Modes

S ignificant progress has been recently achieved in a variety
of fields of information science using ideas centered around

sparsity. Examples include compressed sensing (Ref. [1, 2]),
matrix rank minimization (Ref. [3]), phase retrieval (Ref. [4])
and robust principal component analysis (Ref. [5]), as well as
many others. A key step in these examples is use of a vari-
ational formulation with a constraint or penalty term that is
an `1 or related norm. A limited set of extensions of sparsity
techniques to physical sciences and partial differential equa-
tions (PDEs) have also appeared recently, including numer-
ical solution of PDEs with multi-scale oscillatory solutions
(Ref. [6]) and efficient materials models derived from quan-
tum mechanics calculations (Ref. [7]). In all of these exam-
ples, sparsity is for the coefficients (i.e., only a small set of
coefficients are nonzero) in a well-chosen set of modes (e.g.,
a basis or dictionary) for representation of the correspond-
ing vectors or functions. In this paper, we propose a new
use of sparsity-promoting techniques to produce “compressed
modes” - modes that are sparse and localized in space - for
efficient solution of constrained variational problems in math-
ematics and physics.

Our idea is motivated by the localized Wannier functions
developed in solid state physics and quantum chemistry. We
begin by reviewing the basic ideas for obtaining spatially local-
ized solutions of the independent-particle Schrödinger’s equa-
tion. For simplicity, we consider a finite system with N elec-
trons and neglect the electron spin. The ground state energy
is given by E0 =

∑N
j=1 λj , where λj are the eigenvalues of the

Hamiltonian, Ĥ = − 1
2
∆ + V (x), arranged in increasing order

and satisfying Ĥφj = λjφj , with φj being the corresponding
eigenfunctions. This can be recast as a variational problem
requiring the minimization of the total energy subject to or-
thonormality conditions for wave functions:

E0 = min
ΦN

N∑
j=1

〈φj , Ĥφj〉 s.t. 〈φj , φk〉 = δjk. [1]

Here ΦN = {φj}Nj=1 and 〈φj , φk〉 =

∫
Ω

φ∗j (x)φk(x)dx (Ω ⊂

Rd).

In most cases, the eigenfunctions φj are spatially extended
and have infinite support, i.e., they are “dense”. This presents
challenges for computational efficiency (since the wave func-
tion orthogonalization requires O(N3) operations, dominating
the computational effort for N ≈ 103 electrons and above)
and is contrary to physical intuition, which suggests that the
screened correlations in condensed matter are usually short-
ranged (Ref. [8]). It is well understood that the freedom to
choose a particular unitary transformation (“subspace rota-
tion”) of the wave functions φj can be used to define a set

of functions that span the eigenspace of Ĥ, but are spatially
localized or “sparse”. Methods for obtaining such functions
have been developed in solid state physics and quantum chem-
istry, where they are known as Wannier functions (Ref. [9]).

Mathematically, the Wannier functions are obtained as a
linear combination of the eigenfunctions,

Wj(x) =
∑
k

Ujkφk(x), [2]

where the subspace rotation matrix U is unitary, U†U = I.
Currently, the most widely used approach to finding Wj(x)
is the one proposed in Ref. [10] for calculating maximally
localized Wannier functions (MLWFs). This approach starts
with the pre-calculated eigenfunctions φj and determines Wj

by minimizing the second moment,

〈∆x2
j 〉 = 〈Wj , (x− 〈xj〉)2Wj〉, [3]

where 〈xj〉 = 〈Wj ,xWj〉. More recently, a method weighted
by higher degree polynomials has been discussed in Ref. [11].
While this approach works reasonably well for simple sys-
tems, constructing optimally localized real-valued Wannier
functions is often difficult because the minimization problem
Eq. [3] is non-convex and requires a good starting point to
converge to the global minimum. Another difficulty is that
when the resulting MLWFs are used to construct efficient nu-
merical algorithms, they need to be cut off “by hand”, which
can result in significant numerical errors when the MLWFs
are calculated “on the fly” and their range is not known in
advance. It would be highly desirable to devise an approach
that does not require the calculation of the eigenfunctions and
would converge to localized functions, while simultaneously
providing a variational approximation to the total energy E0.
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In this paper, we propose a novel method to create a set of
localized functions {ψi}Ni=1, which we call compressed modes,

such that
∑N
j=1〈ψj , Ĥψj〉 approximates E0 =

∑N
j=1〈φj , Ĥφj〉.

Our idea is inspired by the `1 regularization used in compres-
sive sensing. As a convex relaxation of `0 regularization, `1
regularization is commonly used for seeking sparse solutions
for the underdetermined problem Ax = b (Ref. [12, 2]). Mo-
tivated by advantages of the `1 regularization for the spar-
sity in the discrete case, we propose a modification of the
objective functional given by Eq. [1], which can immediately
obtain functions with compact support and calculate approx-
imate total energy “in one shot”, without the need to calcu-
late eigenfunctions. This is accomplished by introducing an
L1 regularization of the wave functions:

E = min
ΨN

N∑
j=1

(
1

µ
|ψj |1 + 〈ψj , Ĥψj〉

)
s.t. 〈ψj , ψk〉 = δjk,

[4]
where ΨN = {ψj}Nj=1 and the L1 norm is defined as |ψj |1 =∫

Ω
|ψj |dx. For simplicity, we are requiring that the wave func-

tions ψj are real; generalization to complex-valued wave func-
tions, required to handle relativistic effects, is straightforward.
The parameter µ controls the trade-off between sparsity and
accuracy: larger values of µ will give solutions that better
minimize the total energy at the expense of more extended
wave functions, while a smaller µ will give highly localized
wave functions at the expense of larger errors in the calcu-
lated ground state energy. Due to the properties of the L1

term, the functions that minimize Eq. [4] will have compact
support. In contrast to other approaches that use manually-
imposed cutoff distances, the main advantage of our scheme
is that one parameter µ controls both the physical accuracy
and the spatial extent, while not requiring any physical intu-
ition about the properties of the solution. In other words, the
wave functions ψj are nonzero only in those regions that are
required to achieve a given accuracy for the total energy, and
are zero everywhere else. Furthermore, due to the fact that
exponentially localized Wannier functions are known to exist,
the solution to Eq. [4] will provide a good approximation to
the true total energy of the system (in fact, it converges to E0

as µ−2).
As a major contribution in this paper, we propose localized

compressed modes (CMs) using an L1 regularized variational
formula. In addition, we propose a numerical algorithm to
solve the proposed non-convex problem.

Variational Model for Compressed Modes
Free-electron case. Consider a 1D free-electron case defined
on [0, L] with periodic boundary conditions. Namely, the

Schrödinger operator is Ĥ0 = − 1
2
∂2
x. It is clear that Ĥ0 has

eigenfunctions 1√
L
ei2πnx/L with the corresponding eigenval-

ues 2(πn/L)2, n = 0,±1,±2, · · · . With a unitary transforma-

tion Umn = 1√
L
ei2πnm/L, one can construct quasi-localized

orthonormal functions as

Wm =
1

L

∑
n

ei2πn(x−m)/(L). [5]

Figure 1 illustrates the real part of one of the resulting quasi-
localized functions obtained from the above unitary transfor-
mation. It is evident that the resulting Wm are not even

exponentially localized, as expected for metallic systems with
continuous energy spectrum at zero temperature (Ref. [8]).
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Fig. 1. A quasi-localized Wannier function for 1D Laplace operator.

As an example, we can analytically check that the L1 reg-
ularization introduced in Eq. [4] can localize the resulting
functions. Let’s again consider the 1D free-electron model de-

fined on [0, L] with the Schrödinger operator Ĥ0 = − 1
2
∂x2 .

Then the lowest mode satisfies

ψ1 = arg min
ψ

1

µ

∫
Ω

|ψ|dx− 1

2

∫
Ω

ψ∂2
xψdx

s.t.

∫
Ω

ψ(x)ψ(x)dx = 1. [6]

The solution of the above minimization problem will be a
“sparse” solution, i.e., the Dirac delta function when µ → 0,

and will approach the first eigenfunction of Ĥ when µ → ∞.
Intuitively, we expect to be able to express the solution of
Eq. [6] as an approximation to a truncated diffusion of Dirac
delta function via the Schrödinger operator − 1

2
∂2
x, which is

a compactly supported function. Indeed, the Euler-Lagrange
equation corresponding to Eq. [6] is

−∂2
xψ1 +

1

µ
sign(ψ1) = λψ1. [7]

If we further assume that ψ1 is symmetric around x = L/2,
the solution of [6] is

ψ1 =

{ 1

λµ
[1 + cos(

√
λ(x− L/2))] if |x− L/2| ≤ l,

0 if l ≤ |x− L/2| ≤ L,
[8]

where l = π/
√
λ and λ = (3π)2/5µ−4/5. Here ψ1 has com-

pact support [L/2− l, L/2 + l] if µ is small enough satisfying

l = π/
√
λ < L. Note that ψ1 = ∂xψ1 = 0 and ∂2

xψ1 has a
jump of −µ−1 at the boundary x = l of the support of ψ1,
which are all consistent with Eq. [7]. From this simple 1D
example, it is clear that L1 regularization can naturally trun-
cate solutions to the variational problem given by Eq. [6].
Moreover, we also observe that the smaller µ will provide a
smaller region of compact support. Figure 2 shows ψ1 for
different values of µ.
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Fig. 2. Theoretical ψ1 in the 1D free electron model (Eq. [6 ]) for different

values of µ.
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The 1D solution Eq. [8] can be generalized to dimension
d > 1, as

ψ1 =

{ 1

λµ
(1− U−1

0 U(
√
λ|x− x0|)) if |x− x0| ≤ l,

0 if l ≤ |x− x0| ≤ L,
[9]

in which x0 is the center of the cube [0, L]d and U(y) = U(r =
|y|) (for y ∈ Rd) is the solution of ∆U = −U , i.e.,

r2∂2
rU + (d− 1)r∂rU + r2U = 0, [10]

and U0 = U(r0), l = r0/
√
λ, λ = (µU1)2/(d+2). Here

r0 is the smallest (nonegative) solution of ∂rU(r) = 0 and
U1 =

∫
|y|<r0

(1 − U−1
0 U(|y|))2dy in which y is in Rd. For

d = 2, U(r) = J0(r) is the 0-th Bessel function of the first
kind, and for d = 3, U(r) = sinc(r) = sin(r)/r.

Generalization to nonzero potential. The simple free-electron
example inspires us to consider L1 regularization of the wave
functions proposed in Eq. [4] for a general Schrödinger oper-

ator Ĥ = − 1
2
∆ + V (x) defined on Ω ⊂ Rd.

Def inition 1. We call ΨN = {ψ1, · · · , ψN} defined in the vari-
ational model (Eq. [4]) the first N compressed modes (CMs)

of the Schrödinger operator Ĥ.
By analogy with the localized Wannier functions described

in the introduction, we expect that the CMs have compact
support and can be expressed as orthonormal combinations of
the eigenmodes of the original Schrödinger operator. In other
words, let ΦM = {φ1, · · · , φM} be the first M eigenfunctions

of Ĥ satisfying

ĤΦM = ΦMdiag(λ1, · · · , λM ) &

∫
Ω

φjφkdx = δij . [11]

We formulate the following conjecture to describe the com-
pleteness of the CMs.
Conjecture 1. Given N ≥ M , consider the N × N matrix

〈ΨT
N , ĤΨN 〉 with the (j, k)− th entry defined by

∫
Ω
ψjHψkdx

and let (σ1, · · · , σM ) be its first M eigenvalues; then

lim
µ→∞

M∑
j=1

(σj − λj)2 = 0 and lim
N→∞

M∑
j=1

(σj − λj)2 = 0. [12]

Numerical algorithms
To numerically compute the proposed CMs, we consider the
system on a domain D = [0, L]d ⊂ Rd with periodic boundary
conditions, and discretize the domain D with n equally spaced
nodes in each direction. Then the variational formula Eq. [4]
for the first N -CMs can be reformulated and discretized as
follows:

ΨN = min
Ψ∈Rn×N

1

µ
|Ψ|+ Tr〈ΨT ĤΨ〉 s.t. ΨTΨ = I, [13]

in which |Ψ| is the `1 norm of the matrix Ψ.
We solve this optimization problem by splitting orthog-

onality constraint (SOC) using the algorithm proposed in
Ref. [13]. By introducing auxiliary variables Q = Ψ and
P = Ψ, the above problem Eq. [6] is equivalent to the fol-
lowing constrained problem:

min
Ψ,P,Q

1

µ
|Q|+ Tr〈ΨT ĤΨ〉 s.t. Q = Ψ, P = Ψ, PTP = I, [14]

which can be solved by the SOC algorithm based on split
Bregman iteration (Refs. [14, 15, 16]).

Algorithm 1. Initialize Ψ0
N = P 0 = Q0, b0 = B0 = 0.

while “not converged” do

1. Ψk
N = arg min

Ψ
Tr〈ΨT ĤΨ〉+

λ

2
‖Ψ−Qk−1 + bk−1‖2F +

r

2
‖Ψ− P k−1 +Bk−1‖2F

2. Qk = arg min
Q

1

µ
|Q|+ λ

2
‖Ψk

N −Q+ bk−1‖2F

3. P k = arg min
P

r

2
‖Ψk

N − P +Bk−1‖2F s.t. PTP = I

4. bk = bk−1 + Ψk
N −Qk

5. Bk = Bk−1 + Ψk
N − P k

Solutions to the minimization subproblems 1-3 can be ex-
pressed as follows:(

2Ĥ + λ+ r
)

Ψk
N = r(P k−1 −Bk−1) + λ(Qk−1 − bk−1),

[15]

Qk = Shrink(Ψk
N + bk−1, 1/(λµ)), [16]

P k = (Ψk
N +Bk−1)UΛ−1/2ST , [17]

where UΛST = svd
(
(Ψk +Bk−1)T (Ψk +Bk−1)

)
and the

“Shrink” (or soft-threshholding) operator is defined as
Shrink(u, δ) = sgn(u) max(0, |u| − δ). Since the matrix

2Ĥ + λ + r in Eq. [15] is sparse and positive definite, in
practice a few iterations of either Gauss-Seidel or conjugate
gradient are sufficient to achieve good convergence. Thus, Eq.
[15] and [16] can be solved very efficiently with long oper-
ation counts linearly dependent on N . The only time con-
suming part in our algorithm is Eq. [17], which involves an
SVD factorization and can be straightforwardly solved with
an O(N3) algorithm. For a moderate size of N , the proposed
algorithm can solve the problem efficiently.

For a large number of modes N , a possible approach to
accelerating the computation is to use GPU-based parallel
processing to perform the SVD factorization in Eq. [17].
Here, we propose another method to speed up the 3-rd step
of the proposed algorithm, which takes advantage of the spe-
cial structure of the solution. We find that each of the result-
ing functions ψ1, · · · , ψN has compact support, so that the
support of each ψi overlaps with only a finite number of its
neighbors. This allows us to replace to the full orthogonal-
ity constraint ΨTΨ = I by a system of banded orthogonality
constraints.∫

ψjψkdx = δjk,

{
j = 1, · · · , N.

k = j, j ± 1, . . . j ± p [18]

where p is the band width. Thus, the O(N3) algorithm for
SVD factorization in Eq. [17] can be replaced by N factoriza-
tions of 2p×2p matrices, which is an algorithm with 8p3O(N)
long operations.

Numerical results
We illustrate our scheme for two representative cases. The
first is the free electron model, which approximates the behav-
ior of valence electrons in a metallic solid with weak atomic
pseudopotentials; the potential function in the Schrödinger
operator is simply set to zero. Since the allowed energy
spectrum of free electrons is continuous in the limit of infi-
nite system size, the conventional Wannier functions decay
as an inverse power law. The second case is that of a pe-
riodic one-dimensional crystal, of which the famous Kronig–
Penney (KP) model (Ref. [17]) is the most widely used ex-
ample. The KP model describes the states of independent
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Fig. 4. Computation results of CMs with different values of µ. The first column: the first 5 CMs of the 1D free-electron model. The second column: the first 5 CMs of the

1D Kronig-Penny model.

electrons in a one-dimensional crystal, where the potential
function V (x) consists of a periodic array of rectangular po-
tential wells. For simplicity, in our experiments we replace the
rectangular wells with inverted gaussians so that the poten-

tial is given by V (x) = −V0

∑Nel
j=1 exp

[
− (x−xj)2

2δ2

]
. We choose

Nel = 5, V0 = 1, δ = 3 and xj = 10j in our discussion be-
low and, in spite of the different potential, continue to refer
to this case as the 1D KP model. This model exhibits two
low-energy bands separated by finite gaps from the rest of the
(continuous) eigenvalue spectrum, and the Wannier functions
corresponding to these bands are exponentially localized.

In our experiments, we choose Ω = [0, 50] and discretize
Ω with 128 equally spaced nodes. The proposed variational
model Eq. [4] is solved using algorithm 1, where parameters
are chosen as λ = µN/20 and r = µN/5. We report the com-
putational results of the first 5 CMs of the 1D free-electron
model (the first column) and the 1D KP model (the second
column) in Figure 4, where we use 5 different colors to dif-
ferentiate these CMs. To compare all results more clearly, we
use the same initial input for different values of µ in the free-
electron model and the 1D KP model. We flip the CMs if
necessary such that most values of CMs on their support are
positive, since sign ambiguities do not affect minimal values of
the objective function in Eq. [4]. For comparison, Figure 3
plots the first 5 eigenfunctions of the Schrödinger operator
used in the free-electron model and KP model. It is clear
that all these eigenfunctions are spatially extended without
any compact support. However, as we can observe from Fig-
ure 4, the proposed variational model does provide a series of
compactly supported functions. Furthermore, all numerical
results in Figure 4 clearly show the dependence of the size of

compact support on µ, as suggested by general considerations
based on the variational formula Eq. [4]. In other words,
the model with smaller µ will create CMs with smaller com-
pact support, and the model with larger µ will create CMs
with larger compact support. In addition, we find that the re-
sulting compressed modes are not interacting for small µ (the
first row of Figure 4). By increasing µ to a moderate value,
the modes start to interact each other via a small amount of
overlap (the second row of Figure 4). Significant overlap can
be observed using a big value of µ (the third row of Figure 4).
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Fig. 3. The first 5 egienfunctions of the Schrödinger operator Ĥ in the free-

electron model (top) and the KP model (bottom).
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Fig. 5. Comparisons of the first 50 eigenvalues of the 1D free electron model (the first row) and the 1D Kronig-Penney model (the second row).
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Fig. 6. Relative eigenvalue error of the 1D free-electron model (red dots) and 1D

KP model (blue circles). Top: relation of the relative error via different values of µ
for fixed M = N = 50. Bottom: relation of the relative error via different values

of N for fixed µ = 10 and M = 50.

We further test Conjecture 1 (Eq. [12]) numerically, i.e.,
unitary transformation of the derived compactly supported

compressed modes can represented the eigenmodes of the
Schrödinger operator. We compare the first M eigenvalues
(σ1, · · · , σM ) of the matrix 〈ΨT

NHΨN 〉 obtained by the 1D
KP model and 1D free-electron model with the first M eigen-
values (λ1, · · · , λM ) of the corresponding Schrödinger oper-
ators. Figure 5 illustrates the comparisons with a relative
small value µ = 10, when the CMs are highly localized. We
can clearly see that {σi} gradually converges to {λi} with
increasing number N of CMs. In addition, we also plot the
relative error E =

∑M
i=1(σi−λi)2/

∑M
i=1(λi)

2 in Figure 4. As
we speculated in conjecture 1, the relative error will converge
to zero as µ→∞ for fixed M = N = 50, which is illustrated
in the top panel of Figure 4. The relative error will also con-
verge to zero as N →∞ for fixed µ = 10 and M = 50, which
is illustrated in the bottom panel of Figure 4.

Moreover, the proposed model and numerical algorithm
also work on domains in high dimensional space. As an ex-
ample, Figure. 7 shows computational results of the first 25
CMs of the free-electron case on a 2D domain [0, 10]2 with
µ = 30. All the above discussions of 1D model are also true
for 2D cases. In addition, our approach can also be naturally
extended to irregular domains, manifolds as well as graphs,
which will be investigated in our future work.

In conclusion, the above numerical experiments validate
the conjecture that the proposed CMs provide a series of com-
pactly supported orthonormal functions, which approximately
span the low-energy eigenspace of the Schrödinger operator
(i.e., the space of linear combinations of its first few lowest
eigenmodes).
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Discussions and Conclusions
In conclusion, we have presented a method for producing com-
pressed modes (i.e., modes that are sparse and spatially local-
ized with a compact support) for the Laplace operator plus a
potential V , using a variational principle with an L1 penal-
ization term that promotes sparsity. The trade-off between
the degree of localization and the accuracy of the variational
energy is controlled by one numerical parameter, µ, without
the need for physical intuition-informed spatial cutoffs. The
SOC algorithm of Ref. [13] has been used to numerically con-
struct these modes. Our tests indicate that the CMs can be
used as an efficient, systematically improvable orthonormal
basis to represent the low-energy eigenfunctions, energy spec-
trum of the Schrödinger operator. Due to the fact the CMs
are compactly supported, the computational effort of total en-
ergy calculations increases linearly with the number of modes
N , overcoming the O(N3) orthogonalization bottleneck lim-
iting the performance of methods that work by finding the
eigenfunctions of the Schrd̈inger operator.

In addition, note that the discretized variational principle
in Eq. [13] is related to sparse principal component analysis
(SPCA) (Ref. [18, 19]). SPCA, however, does not involve
an underlying continuum variational principle and the sparse
principal components are not localized, since the component
number does not correspond to a continuum variable.

These results are only the beginning. We expect that CM-
related techniques will be useful in a variety of applications
in solid state physics, chemistry, materials science, and other
fields. Future studies could explore the following directions:

1. Use CMs to develop spatially localized basis sets that span
the eigenspace of a differential operator, for instance, the
Laplace operator, generalizing the concept of plane waves
to an orthogonal real-space basis with multi-resolution ca-
pabilities. More details will be discussed in Ref. [20].

2. Use the CMs to construct an accelerated (i.e., O(N)) sim-
ulation method for density-functional theory (DFT) elec-
tronic structure calculations.

3. Construct CMs for a variety of potentials and develop CMs
as the modes for a Galerkin method for PDEs, such as
Maxwell’s equations.

4. Generalize CMs for use in PDEs (such as heat type equa-
tions) that come from the gradient descent of a variational
principle.

5. Extend CMs to higher dimensions and different geometries,
including the Laplace-Beltrami equation on a manifold and
a discrete Laplacian on a network.

Finally, we plan to perform an investigation of the formal
properties of CMs to rigorously analyze their existence and
completeness, including the conjecture 1 (Eq. [12]) that was
hypothesized and numerically tested here.

Fig. 7. The first 25 CMs of freel-electron case on a 2D domain [0, 10]2 with

µ = 30. Each CM is color-coded by its height function.
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