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Abstract

Variational models have been widely applied to deal with various image segmentation problems,

largely because they are particularly suitable for imposing much geometric or other prior knowledge

on the solutions sought. As the images to be segmented become more complicated, for instance,

multiple phases, intensity heterogeneity, etc., these models are designed to be more cumbersome.

Motivated by this, we propose a general framework of piecewise-polynomial Mumford-Shah model,

which is considerably simple and flexible. Our model generalizes the well-known piecewise-constant

case, and is almost the simplest framework to apply piecewise polynomials to appropriately approx-

imate the original Mumford-Shah model. The proposed model is well suited to being efficiently

solved by the split Bregman iteration algorithm. Experimental results demonstrate that our model has

more desirable performance in terms of segmented accuracy, efficiency and robustness, comparing

with other variational models in addressing a number of aforementioned challenging segmentation

scenarios.
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I. INTRODUCTION

Image segmentation is one of the most important topics arisen in image processing and computer

vision. The purpose of image segmentation is to separate the image of interest into regions that

belong to different objects in certain meaningful sense. Among various techniques for solving image-

segmentation problems, the variational or partial differential equation (PDE) based models have proven

to be a category of considerably effective and influential approaches [1]–[9]. Also, many of other

effective methods are developed so far, e.g., [10]–[19], etc.

The model introduced in this work is a generalization of the piecewise-constant Mumford-Shah

model (PCMS model) [6], [7], and is also an improvement and simplification of the piecewise-smooth

Mumford-Shah model (PSMS model) [7]. We first recall these classic variational models based on

the thought of Mumford and Shah. Let us define C as a closed contour in image domain Ω ⊂ Rd,

where d = 2 or 3 and u0 : Ω → R be a given original image to be segmented. The well-known

Mumford-Shah model (MS model) for image segmentation is formulated as follows.

EMS(u,C) =

∫
Ω
|u0 − u|2dx+ µ

∫
Ω\C

|∇u|2dx+ ν|C|, (1)

where both µ and ν are the given nonnegative parameters to trade off the different terms in the total

energy, and |C| is the length of contour C, and u is the segmented image that piecewise-smoothly

approximates the considered image u0 in the distinct regions with C as their separated curve [2].

The lack of differentiability of the functional and the complication of discretization of the unknown

discontinuity set do not allow us to directly apply the standard optimization methods to obtain the

minima of (1). Therefore, one has to resort to the efficient approximation to the formulation of

Mumford-Shah functional. The interested readers can be refer to the monograph [20] and the references

therein.

The PCMS model is a reduced version of the MS model, which is almost the simplest approximation

of it [6]. Assume that the initial image u0 is segmented into two regions of approximatively piecewise-
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constant intensities, namely, u = ci inside each connected domain Ωi (i = 1, 2) with C as their

boundary. The PCMS model, also called Chan-Vese model, is formulated as the following energy

functional.

EPCMS(c1, c2, C) = λ1

∫
Ω1

|u0 − c1|2dx+ λ2

∫
Ω2

|u0 − c2|2dx+ ν|C|, (2)

where ν ≥ 0, and the values of positive parameters λ1 and λ2 are often selected to be the same in

most of the literatures (see [6], [7], [21]). Note that ci is the average intensity of u0 in domain Ωi

for given C. The model (2) performs a two-phase segmentation of u0. In practice, this model cannot

segment well the intensity- or illumination-heterogeneous images, which has been indicated in several

literatures (see [8] and references therein).

In order to overcome the difficulties in segmenting the complicated images, such as the multi-phase,

the intensity-heterogeneous in the real world, Vese and Chan proposed a multi-phase PCMS model

in level set framework, as well as the following PSMS model [7].

EPSMS(u1, u2, C) =

∫
Ω1

|u0 − u1|2dx+

∫
Ω2

|u0 − u2|2dx

+ µ

∫
Ω1

|∇u1|2dx+ µ

∫
Ω2

|∇u2|2dx+ ν|C|. (3)

For a fixed C, the third and the fourth terms of (3) can be used to smooth u1 and u2 inside the regions

Ω1 and Ω2 (i.e. piecewise-smooth optimal approximations of u0), respectively. Minimizing (3) with

respect to ui, i = 1, 2, by fixed C, one needs to solve the following Euler-Lagrange equations in each

iteration.  ui − u0 = µ∆ui, in Ωi,

∂ui

∂n = 0, on ∂Ωi,
(4)

where n is represented as the unit normal vector at the corresponding boundary. Clearly, updating ui

is much more time-consuming compared with updating ci in minimizing functional (2).

Furthermore, Li et al. presented a region-scalable fitting energy functional (RSF model) for seg-

mentation of intensity-heterogeneous images [8]. The Gaussian kernel function Gσ(x) is applied to

control the region scalability from small neighbourhoods to the whole image. In what follows the
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level set formulation of RSF model is listed.

FRSF(u1, u2, ϕ) =λ1

∫
Ω

∫
Ω
Gσ(x− y)|u0(y)− u1(x)|2H1(ϕ(y))dydx

+ λ2

∫
Ω

∫
Ω
Gσ(x− y)|u0(y)− u2(x)|2H2(ϕ(y))dydx

+ ν

∫
Ω
|∇H(ϕ)|dx+

µ

2

∫
Ω
||∇ϕ| − 1|2dx, (5)

where λ1 and λ2 are positive constants, H is represented as the Heaviside function, and H1 = H ,

H2 = 1 − H . Fixed ϕ, minimizing (5) in terms of ui, i = 1, 2, one can immediately obtain the

updating form of ui as follows.

ui(x) =
Gσ(x) ∗ (u0(x)Hi(x))

Gσ(x) ∗Hi(x)
, (6)

where ∗ denotes the convolution operator. Hence, the convolutions have to be computed in each

iteration, which largely increase the computational cost. As shown in the numerical experiments of

[8], on the other hand, the RSF model has better performance than the PSMS model and mean shift

algorithm [22] for intensity-heterogeneous image segmentation.

To update the contour C (zero level set of ϕ) for minimizing functionals in (2), (3) or (5), a very

popular approach, named level set method, can be successfully used to evolve the current contour

to desirable position [23]. Moreover, inspired by the thought—restating a non-convex minimization

as a convex optimization problem, then seeking the global minima via classical convex optimization

methods [24], Goldstein et al. proposed a particularly efficient split Bregman iteration algorithm to

resolve the optimization problem of interest [25].

For the purpose of effectively addressing the multi-phase and intensity-heterogenous image seg-

mentation problems, we propose a general framework of piecewise-polynomial Mumford-Shah model

(PPMS model). Followed the simple thought of PCMS model, our model applies the piecewise-

polynomial optimal approximation. In constructed form, the PPMS model can be regraded as a

generalization of the PCMS model from piecewise constants to piecewise polynomials, that also

contains the special case of piecewise constants. In addition, the PPMS model is also an improvement

and simplification of the existing models of interest. The level set formulation of our model can be

easily derived as those of above mentioned models. Instead of applying level set method, we are prone
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to utilize the split Bregman iteration to solve the proposed variational model, which possesses the

capability of high-efficient computation.

The outline of this paper is organized as follows. In Section II, we first propose the PPMS model.

The connections and distinctions with several existing models are elaborated in Section III. In Section

IV, the numerical computing of our model is given, followed by some experimental results in Section

V. Conclusion and proposals for future research are given in Section VI.

II. PIECEWISE-POLYNOMIAL MUMFORD-SHAH MODEL

A. Piecewise-Polynomial Based Variational Model

In this section, we propose a general framework of piecewise-polynomial based variational model

for image segmentation. In this paper, we mainly concentrate on the 2D image segmentation because

the segmentation model presented by us can be straightforwardly generalized to 3D situation. The C

separates Ω into two disjoint regions Ω1 := inside(C) and Ω2 := outside(C). For a nonnegative

integer k, we denote by Pk(Ωi) the set of polynomials of total degree k on Ωi (i = 1, 2). A general

polynomial ψ(x) ∈ Pk(Ωi), where x = (x, y), takes the following form

ψ(x) =
∑

0≤s+t≤k
cψ,stx

syt, s, t ∈ Z+,

where Z+ denotes the set of nonnegative integers. Let us define the coefficient vector of ψ(x) as

Cψ := (cψ,00, cψ,10, cψ,01, cψ,11, · · · , cψ,0k)T . It is well-known that the number of its components is
(k+1)(k+2)

2 for the polynomial in Pk(Ωi).

Now we consider the following fidelity term

E0(Cp,Cq, C) = λ1

∫
Ω1

|u0(x)− p(x)|2dx+ λ2

∫
Ω2

|u0(x)− q(x)|2dx, (7)

where λ1 and λ2 are both positive parameters, p(x) ∈ Pk(Ω1) and q(x) ∈ Pk(Ω2) are two polynomials

that approximate the image intensities on Ω1 and Ω2, respectively. Here we introduce Cp and Cq

denoting the coefficient vectors of p(x) and q(x), respectively. As in most of region- and edge-based

image segmentation models, we impose several regularization terms, like the length of the contour C,

onto above fidelity term. Therefore, we present the following variational model

EPPMS(Cp,Cq, C) = E0(Cp,Cq, C) + |C|. (8)

September 6, 2013 DRAFT



6

Moreover, if the coefficients of the fidelity term are equal, we define the variational model of interest

is isotropic, otherwise, is anisotropic. In our model, the two parameters play a vital role in addressing

considerably complex segmentation problems, such as multiple phases, intensity heterogeneity, etc.

B. Level Set Formulation and Minimization

For simplicity of computation, let us consider the level set formulation of the associated variational

model. As in level set method, the closed contour C can be denoted by the zero level set of a Lipschitz

function ϕ : Ω −→ R, such that 
C = {x ∈ Ω : ϕ(x) = 0},

Ω1 = {x ∈ Ω : ϕ(x) > 0},

Ω2 = {x ∈ Ω : ϕ(x) < 0}.

Let H̄ = 1−H . According to [23], we easily obtain the level set formulation of our model

FPPMS(Cp,Cq, ϕ) = λ1

∫
Ω
|u0(x)− p(x)|2H(ϕ)dx

+λ2

∫
Ω
|u0(x)− q(x)|2H̄(ϕ)dx

+

∫
Ω
|∇H(ϕ)|dx. (9)

Let p(x) =
∑

0≤s+t≤k cp,stx
syt and q(x) =

∑
0≤s+t≤k cq,stx

syt. Using above notations, (9) can be

rewritten as

FPPMS(Cp,Cq, ϕ) = λ1

∫
Ω
|u0 −

∑
0≤s+t≤k

cp,stx
syt|2H(ϕ)dx

+λ2

∫
Ω
|u0 −

∑
0≤s+t≤k

cq,stx
syt|2H̄(ϕ)dx

+

∫
Ω
|∇H(ϕ)|dx. (10)

To achieve the target of segmentation, we should minimize the energy functional (10) with respect

to Cp, Cq and ϕ. So we first fix ϕ, and minimize (10) with respect to Cp and Cq. The following

equations are obtained ∑
0≤s+t≤k

cp,st

∫
Ω
xs+hyt+rH(ϕ)dx =

∫
Ω
xhyru0H(ϕ)dx, (11)
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∑
0≤s+t≤k

cq,st

∫
Ω
xs+hyt+rH̄(ϕ)dx =

∫
Ω
xhyru0H̄(ϕ)dx, (12)

where 0 ≤ h + r ≤ k, h, r ∈ Z+. Finally, minimizing (10) in terms of ϕ by fixed Cp and Cq, in

what follows we obtain a nonlinear PDE

δ(ϕ)
[
λ1|u0 −

∑
0≤s+t≤k

cp,stx
syt|2 − λ2|u0 −

∑
0≤s+t≤k

cq,stx
syt|2 − div

( ∇ϕ
|∇ϕ|

)]
= 0. (13)

Let

A =



∫
ΩH(ϕ)dx

∫
Ω xH(ϕ)dx · · ·

∫
Ω y

kH(ϕ)dx∫
Ω xH(ϕ)dx

∫
Ω x

2H(ϕ)dx · · ·
∫
Ω xy

kH(ϕ)dx
...

...
. . .

...∫
Ω y

kH(ϕ)dx
∫
Ω xy

kH(ϕ)dx · · ·
∫
Ω y

2kH(ϕ)dx

 , (14)

B =



∫
Ω dx

∫
Ω xdx · · ·

∫
Ω y

kdx∫
Ω xdx

∫
Ω x

2dx · · ·
∫
Ω xy

kdx
...

...
. . .

...∫
Ω y

kdx
∫
Ω xy

kdx · · ·
∫
Ω y

2kdx

 , (15)

b =
(∫

Ω
u0H(ϕ)dx,

∫
Ω
xu0H(ϕ)dx, · · · ,

∫
Ω
yku0H(ϕ)dx

)T
, (16)

b0 =
(∫

Ω
u0dx,

∫
Ω
xu0dx, · · · ,

∫
Ω
yku0dx

)T
. (17)

Note that (11) and (12) can be respectively translated into a (k+1)(k+2)
2 × (k+1)(k+2)

2 linear system as

follows.

ACp = b, (18)

(B −A)Cq = b0 − b. (19)

Following the formulations of A, B and the property of Grim matrix, we figure out that if the measures

of Ω1 and Ω2 are nonzero, A and B − A are both positive definite, otherwise, one of them is zero

matrix. The latter case dose not segment the original image at all. In practice, hence, both (18) and

(19) are always solvable.

Furthermore, we can derive the multi-phase level set formulation of our model as that in [7]. Due

to no essential difficulty, here we omit the derivation.
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C. Theoretical Analysis

For the purpose of explaining the basic idea of our model, we first assume that the image u0 to be

segmented is distributed by two regions of piecewise-polynomial intensities, namely, two different

polynomial functions pinside(x) and qoutside(x), which naturally contains the most simple case:

piecewise-constant situation (see [6]). Let C0 be the intersecting contour of the two regions. Then we

assume that u0 = pinside(x) inside C0, and u0 = qoutside(x) outside C0. Now we just consider the

fidelity term E0(Cp,Cq, C) of our variational model (8). It is easy to find that if C = C0, then

E0(Cpinside
,Cqoutside

, C0) = min E0(Cp,Cq, C) = 0. (20)

Otherwise C ̸= C0, we immediately have E0(Cp,Cq, C) > 0. Therefore, as the contour C is right on

the intersecting contour of the two regions, the fidelity term is minimized to the desired result.

In addition, we suppose that u0 is a form of two regions of piecewise-smooth intensities or more

general case. It is obvious that

min
ψ∈Pk2 (Ωi)

∫
Ωi

|u0(x)− ψ(x)|2dx ≤ min
ψ∈Pk1 (Ωi)

∫
Ωi

|u0(x)− ψ(x)|2dx, (21)

for Pk1(Ωi) ⊂ Pk2(Ωi) as k1 < k2. Using piecewise-polynomial functions to approximate the

segmented regions of u0 is thereby more accurate than just using piecewise-constant case.

III. CONNECTIONS AND DISTINCTIONS AMONG PPMS MODEL, PCMS MODEL AND PSMS

MODEL

In this section, we show that PPMS model and PSMS model are closely connected to PCMS model.

Moreover, we explain that our model is different essentially from the piecewise-polynomial model

proposed by Vese in [21].

For ease of explantation, we recall the level set formulations of PPMS model, PCMS model and

PSMS model as follows.

September 6, 2013 DRAFT



9

PPMS model :

FPPMS(Cp,Cq, ϕ) = λ1

∫
Ω
|u0(x)− p(x)|2H(ϕ)dx

+λ2

∫
Ω
|u0(x)− q(x)|2H̄(ϕ)dx

+

∫
Ω
|∇H(ϕ)|dx. (22)

PCMS model :

FPCMS(c1, c2, ϕ) = λ1

∫
Ω
|u0(x)− c1|2H(ϕ)dx

+λ2

∫
Ω
|u0(x)− c2|2H̄(ϕ)dx

+ ν

∫
Ω
|∇H(ϕ)|dx. (23)

PSMS model :

FPSMS(u1, u2, ϕ) =

∫
Ω
|u0(x)− u1(x)|2H(ϕ)dx

+

∫
Ω
|u0(x)− u2(x)|2H̄(ϕ)dx

+µ

∫
Ω
|∇u1|2H(ϕ)dx

+µ

∫
Ω
|∇u2|2H̄(ϕ)dx

+ ν

∫
Ω
|∇H(ϕ)|dx. (24)

It is easy to see that if p(x), q(x) ∈ P0(Ωi), i = 1, 2 in (22), the PPMS model is reduced to the

PCMS model. Our model is, hence, the generalization of PCMS model. Naturally, the PCMS model

is not as efficient and flexible as our model for image segmentation, which has been demonstrated by

a simple experiment in Section V.

On the other hand, the PSMS model is to seek optimal piecewise-smooth approximation to the

original image in each separated region, that is implemented by the third and fourth terms in (24). In

[21], Vese also proposed a version of piecewise-polynomial approximations followed the formulation

of PSMS model. In particular, choosing both u1 and u2 to be polynomials, the piecewise-polynomial

September 6, 2013 DRAFT



10

form of PSMS model is obtained as follows.

F̃PSMS(Cp,Cq, ϕ) =

∫
Ω
|u0(x)− p(x)|2H(ϕ)dx

+

∫
Ω
|u0(x)− q(x)|2H̄(ϕ)dx

+µ

∫
Ω
|∇p|2H(ϕ)dx

+µ

∫
Ω
|∇q|2H̄(ϕ)dx

+ ν

∫
Ω
|∇H(ϕ)|dx, (25)

where p(x) and q(x) are both polynomials (22). Clearly, this is different essentially from our model.

If µ = 0, the PSMS model is reduced to our isotropic PPMS model. Furthermore, taking u1 and u2

to be linear polynomials, the piecewise-linear form of PSMS model is obtained which is precisely

equivalent to that in [21]. In this case, one can readily discover that the third and fourth terms of (25)

have the capability of inducing the u1 and u2 to be constants (identically, causing the coefficients of

the first-order terms to be zero). If selecting u1 and u2 to be constants, the PSMS model is directly

reduced to be the isotropic PCMS model.

IV. NUMERICAL COMPUTING

As derived in Subsection II-B, the often used level set method can be applied to solve the proposed

piecewise-polynomial based variational model. We briefly list the algorithm as follows.

Algorithm 1. Level Set Method for Our PPMS Model

Step 1. Given an initial contour C0, 0 < α≪ 1 and an integer N0 > 0. Accordingly, ϕ0 is given.

Compute A0 by (14). Set n := 0.

Step 2. Update Cp and Cq by (18) and (19), respectively:

Cn
p = A−1

n b, (26)

Cn
q = (B −An)

−1(b0 − b). (27)

Then pn and qn are obtained.
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Step 3. Update ϕ:

∂ϕn+1

∂t
= δϵ(ϕ

n)
[
div

( ∇ϕn

|∇ϕn|

)
− λ1|u0 −

∑
0≤s+t≤k

cnp,stx
syt|2

+ λ2|u0 −
∑

0≤s+t≤k
cnq,stx

syt|2
]
, (28)

where δϵ is a smooth approximation of Dirac delta function δ. Compute rn = ∥ϕn+1−ϕn∥2.

If rn < α or n+ 1 > N0, stop the iteration, otherwise go to the next step.

Step 4. Set n := n+ 1, update An by (14), return to Step 2.

The above algorithm is one of the most basis methods to solve various variational models, which

is, however, regarded as a little slow method comparing with the state-of-the-art ones in practice. In

order to use the higher efficient approach, we first give the following theorem.

Theorem IV.1: For any given fixed p(x) ∈ Pk(Ω1), q(x) ∈ Pk(Ω2), a global minimizer for

F(Cp,Cq, ·) can be obtained by solving the following convex optimization problem

min
0≤ϕ≤1

{∫
Ω
|∇ϕ|dx+

∫
Ω
(λ1|u0(x)− p(x)|2 − λ2|u0(x)− q(x)|2)ϕdx

}
, (29)

and setting Ω1 = {x ∈ Ω : ϕ(x) ≥ α} for a.e. α ∈ [0, 1].

Proof: The proof of this theorem can be easily obtained following the proof trick of the Theorem

2 in [24]. Therefore, here we omit the details for no essential difference of them.

According to Theorem IV.1, we can replace the minimization of F(Cp,Cq, ·) by the convex

optimization problem (29). The split Bregman iteration algorithm can be, hence, applied to resolve

the convex optimization [25], [26]. For completeness, in what follows we introduce this method. For

ease of description, let

g = λ1|u0(x)− p(x)|2 − λ2|u0(x)− q(x)|2.

Then the minimization problem (29) can be rewritten as

min
0≤ϕ≤1

J(ϕ), (30)

where

J(ϕ) =

∫
Ω
|∇ϕ|dx+

∫
Ω
gϕdx.
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Rather than considering the minimization problem (30), we shall treat another optimization problem

as follows.

min
0≤ϕ≤1,d

{
∥d∥1 +

∫
Ω
gϕdx

}
, s.t. d = ∇ϕ. (31)

The Bregman iteration method can be efficiently used to solve above optimization problem.

(ϕn+1,dn+1) = arg min
0≤ϕ≤1,d

{
∥d∥1 +

∫
Ω
gϕdx+

β

2
∥d−∇ϕ− bn∥22

}
, (32)

bn+1 = bn +∇ϕn+1 − dn+1. (33)

In order to resolve (32), we first fix d = dn, then obtain the first-order optimality condition with

respect to ϕ as follows.

∆ϕ =
g

β
+ div(dn − bn), 0 < ϕ < 1, in Ω. (34)

We apply central difference and backward difference to discrete the Laplace operator and divergence

operator respectively. The Gauss-Seidel iteration is used to solve the associated linear system [27].

We obtain the following update for ϕn+1 in component form.

ϕn+1
i,j = min{max{ωn+1

i,j , 1}, 0}, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, (35)

where Nx ×Ny denotes the size of the original image in pixel grid, and

ωn+1
i,j =

1

4
(ϕni−1,j + ϕni+1,j + ϕni,j−1 + ϕni,j+1 −

gni,j
β

− ρni,j),

gni,j = (λ1|u0 − pn|2 − λ2|u0 − qn|2)i,j ,

ρni,j = dnx,i,j − dnx,i−1,j + dny,i,j − dny,i,j−1 + bnx,i−1,j − bnx,i,j + bny,i,j−1 − bny,i,j .

Noting that updating variables on ∂Ω, we can use period boundary condition. Next, fixing ϕ = ϕn+1,

we have the update for dn+1 by shrinkage formula as follows.

dn+1 = shrinkage(bn +∇ϕn+1,
1

β
), (36)

where

shrinkage(x, λ) =
x

|x|
max{|x| − λ, 0}.

We summarize the split Bregman iteration algorithm for our PPMS model as follows.
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Algorithm 2. Split Bregman Iteration for Our PPMS Model

Step 1. Given an initial contour C0, b0, 0 < α ≪ 1 and an integer N0 > 0. Correspondingly, ϕ0

is given. Compute A0 by (14). Set n := 0.

Step 2. Update Cp and Cq as (26) and (27), respectively.

Step 3. Update ϕ by (35), and compute rn = ∥ϕn+1 − ϕn∥2. If rn < α or n + 1 > N0, stop the

iteration, otherwise, update d and b by (36) and (33) respectively, then go to the next step.

Step 4. Set n := n+ 1, update An by (14), return to Step 2.

As shown in Algorithm 2, the computation for solving convolution or PDE is not required at all. It

is easy to figure out that the computational complexity using split Bregman iteration for our model is

much less than that for RSF model, and is much fewer than that applying level set method for PSMS

model, respectively.

V. EXPERIMENTAL RESULTS

In this section, we present several numerical experiments using synthetic and real images to illustrate

that our proposed model can produce desirable performance for image segmentation, especially for

the images with characteristics of multiple phases (> 2) or intensity heterogeneity. In practice, we

can restrict the proposed PPMS model to be two-phase and piecewise-linear, namely, p(x), q(x) ∈

P1(Ωi), i = 1, 2, respectively. We apply the aforementioned split Bregman iteration method to solve

our PPMS model. The algorithm is programmed in C language and all the implementations ran on

a laptop of Lenovo W530 with Intel Core i7-3720QM 2.60GHz CPU, Fedora 18 OS and GCC 4.7.2

compiler, and no any parallel computing was involved. The compared models are also solved by

the split Bregman iteration algorithm. All of the involved parameters are almost chosen optimally to

present the best performance of the considered models.

In Fig. 1, we first show the our model can effectively detect multiple levels (> 2) of distinc-

t intensities from different initial contours using two synthetic images. The selection of related

parameters is shown in Table 1. We compare our anisotropic model with the well-known two-

phase PCMS model and our isotropic PPMS model. It is obvious that the above two models both

cannot address well the segmentation of multi-phase images as shown in Fig. 1. Instead, the desired
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contours are all automatically detected by our anisotropic PPMS model. Hence, by choosing different

values of parameters λ1 and λ2, just applying two-phase and piecewise-linear case of our model can

successfully detect multi-phase objects, no matter how we choose the initial contour. Hence, our model

is relatively more robust than PCMS model. Although the four-phase PCMS model can produce the

same performance as our model, as demonstrated in [7], the computational cost for solving that model

is a bit more than that of ours. This is due to the fact that two related energy functionals should be

minimized simultaneously for four-phase PCMS model.

Fig 1. Segmentation of the synthetic images with multiple phases (= 4) of distinct intensities. The sizes of the images are both 128×128.

The initial contours and the original images (column 1). The final results of two-phase PCMS model (column 2), isotropic PPMS model

(column 3) and anisotropic PPMS model (column 4).

In Fig. 2, we show how our model can effectively detect the objects in complicated scenes or

intensity-heterogeneous backgrounds. As RSF model has been demonstrated to be more effective than
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TABLE 1

THE SELECTION OF PARAMETERS FOR IMAGE SEGMENTATION BY OUR MODEL AND THE PCMS MODEL IN FIG. 1.

FROM TOP TO BOTTOM AND LEFT TO RIGHT OF FIG. 1, THE NUMBER OF THE ROWS AND THE COLUMNS IS FROM ROW 1

TO ROW 4 AND COLUMN 1 TO COLUMN 4, RESPECTIVELY.

Column 2 Column 3 Column 4

λ1 λ2 β λ1 λ2 β λ1 λ2 β

Row 1 7.5 10 5 1/0.001 1/0.001 5 1/0.04 1/0.001 5

Row 2 5 10 5 1/0.008 1/0.008 0.2 1/0.04 1/0.008 0.2

Row 3 10 20 2 1/0.0005 1/0.0005 5 1/0.05 1/0.005 5

Row 4 15 10 5 1/0.005 1/0.005 5 1/0.0.05 1/0.005 5

PCMS model, PSMS model and mean shift method for the segmentation of intensity-inhomogeneous

images [8], now we mainly compare our model with RSF model. Omitting the last term of RSF

model, we use split Bregman method to resolve the reduced version as that in [28]. It is worth to

noting that ignoring the last term of RSF model is reasonable. Because the level set method being not

applied to resolve the RSF model means that the level set initialization needs not to be conducted.

In the computational procedure of RSF model, we fix the scale parameter σ = 3. The image sizes

are indicated in Table 2. The selection of the parameters is presented in Table 3. As shown in Fig.

2, from segmented accuracy point of view, our anisotropic model is superior to our isotropic model,

and our model has the advantage over RSF model.

Comparing the computational procedures, it is obvious that our model is much simpler and more

efficient than RSF model. This is because that the convolutions need to be computed in each iteration

for solving RSF model. The least demanded iteration numbers for our model and RSF model to

successfully segment the two images are given in column Iter. ♯1 and column Iter. ♯2 of Table 2,

respectively. The CPU times in seconds for these segmentations in Fig. 2 are also listed in Table 2.

This comparison shows that our model is indeed superior to RSF model in aspect of computational

efficiency.

In practice, the medical images are often with intensity heterogeneity due to several objective

limitations of current imaging techniques. In this case, we further demonstrate that our model can
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Fig 2. Segmentation of the real images with intensity heterogeneity. The initial contours and the original images (column 1). The final

results of RSF model (column 2), isotropic PPMS model (column 3), and anisotropic PPMS model (column 4).

TABLE 2

THE SIZES OF THE IMAGES, THE LEAST DEMANDED ITERATION NUMBERS, THE CPU TIMES IN SECONDS FOR IMAGE

SEGMENTATION BY OUR MODEL AND THE RSF MODEL IN FIG. 2. THE ITER. ♯1 AND ITER. ♯2 DENOTE THE LEAST

DEMANDED ITERATION NUMBERS FOR OUR MODEL AND RSF MODEL, RESPECTIVELY. FROM TOP TO BOTTOM OF FIG.

2, THE NUMBER OF THE IMAGES IS FROM 1 TO 2.

Size Iter. ♯1 Our model Iter. ♯2 RSF model

Image 1 481× 321 50 3.27 50 43.55

Image 2 127× 96 40 0.2 40 2.77

yield desirable performance on the medical image segmentation in Fig. 3. By applying the same

initial contours and the original images, the segmentation results of RSF model and our isotropic

PPMS model for the first and the second images are similar to those of our anisotropic PPMS model.

For the third to fifth images, however, RSF model produces a lot of unwanted or error segmentations,

and our isotropic PPMS model yields several inaccurate contours. Moreover, the performance of the

later is much better than that of the former. It is clear that our anisotropic PPMS model is much more

flexible and precise than the compared two models to segment the intensity-heterogeneous images.

We choose the related parameters to be almost optimal, which are shown in Table 5.

In addition, the least demanded iteration numbers for our model and RSF model to successfully
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TABLE 3

THE SELECTION OF PARAMETERS FOR IMAGE SEGMENTATION BY OUR MODEL AND THE RSF MODEL IN FIG. 2. FROM

TOP TO BOTTOM AND LEFT TO RIGHT OF FIG. 2, THE NUMBER OF THE ROWS AND THE COLUMNS IS FROM ROW 1 TO

ROW 2 AND COLUMN 1 TO COLUMN 4, RESPECTIVELY.

Column 2 Column 3 Column 4

λ1 λ2 ν/2552 β λ1 λ2 β λ1 λ2 β

Row 1 1 1 0.001 1000 1/0.04 1/0.04 2.5 1/0.06 1/0.045 5.5

Row 2 1 1 0.005 2000 1/0.075 1/0.075 12.5 1/0.03 1/0.045 0.1

segment the five images are listed in column Iter. ♯1 and column Iter. ♯2 of Table 4, respectively. The

CPU times in seconds for these segmentations in Fig. 3 are also presented. In terms of computational

efficiency, this comparison shows that our model is far more rapidly than RSF model.

TABLE 4

THE SIZES OF THE IMAGES, THE LEAST DEMANDED ITERATION NUMBERS, THE CPU TIMES IN SECONDS FOR IMAGE

SEGMENTATION BY OUR MODEL AND THE RSF MODEL IN FIG. 3. THE ITER. ♯1 AND ITER. ♯2 DENOTE THE LEAST

DEMANDED ITERATION NUMBERS FOR OUR MODEL AND RSF MODEL, RESPECTIVELY. FROM TOP TO BOTTOM OF FIG.

3, THE NUMBER OF THE IMAGES IS FROM 1 TO 5.

Size Iter. ♯1 Our model Iter. ♯2 RSF model

Image 1 111× 110 10 0.05 49 3.36

Image 2 103× 131 28 0.15 73 5.56

Image 3 119× 78 50 0.19 50 2.62

Image 4 180× 107 50 0.4 50 8.81

Image 5 169× 207 10 0.15 48 15.52

Finally, we would like to discuss the selection of the almost optimal parameters for our model

in this work. Selecting the optimal parameters for variational models is almost ubiquitous, which is

of significant importance in practice. Here we have no nice theoretical guideline to choose them.

However, we propose a heuristic method: (1) Given an initial λ0 and θ0, let λ1 = λ2 = λ0 and

θ = θ0; (2) If the current result is not satisfactory, fixed one parameter λ0 or θ0, tune another one
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TABLE 5

THE SELECTION OF PARAMETERS FOR IMAGE SEGMENTATION BY OUR MODEL AND THE PCMS MODEL IN FIG. 3.

FROM TOP TO BOTTOM AND LEFT TO RIGHT OF FIG. 3, THE NUMBER OF THE ROWS AND THE COLUMNS IS FROM ROW 1

TO ROW 5 AND COLUMN 1 TO COLUMN 4, RESPECTIVELY.

Column 2 Column 3 Column 4

λ1 λ2 ν/2552 β λ1 λ2 β λ1 λ2 β

Row 1 1.1 1 0.001 300 1/0.005 1/0.005 1.5 1/0.005 1/0.005 1.5

Row 2 1 1 0.008 80 1/0.005 1/0.005 5.5 1/0.005 1/0.005 5.5

Row 3 1 2 0.0015 1080 1/0.04 1/0.04 20 1/0.025 1/0.046 20

Row 4 1.6 1 0.0013 3000 1/0.006 1/0.006 5 1/0.022 1/0.005 5

Row 5 1 1.15 0.0025 1400 1/0.005 1/0.005 5 1/0.0014 1/0.005 5

to obtain an improved result. Then we get two better parameters λ1 and θ1; (3) If the improved

result is not acceptable yet, we try to change one of λ1 and λ2. If the result of λ1 > λ2 becomes

bad, we immediately let λ1 < λ2. Then we obtain a better performance with parameters λ2, λ3 and

θ1; (4) If necessary, we could make a proportionate change on the values of λ2 and λ3 to get the

optimal parameters. In practice, we need not to execute the entire steps of above method. As analyzed

the results of selecting parameters of Fig. 1–3, we can figure out that the optimal parameters are

almost within several focusing intervals. Since it is relatively easy to select the approximating optimal

parameters for our model.

VI. CONCLUSION AND FUTURE WORK

We have introduced a new piecewise-polynomial Mumford-Shah model for image segmentation.

Our model contains the classic Chan-Vese model, and is almost the simplest framework to apply

piecewise polynomials to appropriately approximate the original Mumford-Shah model. Particularly,

in piecewise-linear and two-phase case, the proposed model is capable of producing accurate contours

to segment the synthetic and real images with multiple phases or intensity heterogeneity. In addition,

instead of the conventional level set method, the split Bregman iteration algorithm is well suited

to efficiently resolving the proposed model. The large-scale images can be, therefore, considerably
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fast segmented by our model. Experimental results have shown that the proposed model has more

desirable performance in terms of segmented accuracy, efficiency and robustness than several classic

variational segmentation models. The general framework has much improved the performances and

greatly simplified formulations of the models designed to address above challenging segmentation

problems.

It is worth noting that the parameters λ1 and λ2 in our model play a key role in accurately seg-

menting the complicated images. Based on the numerical experiments, we speculate that a theoretical

relationship between them may exist. In future work, we will explore the intrinsic connections between

the parameters λ1, λ2 and the properties of the original images and the initial contours, which is of

greatly practical significance for designing automatically segmentation software. In this article, we

just apply the piecewise-linear case to implement the experiments. So how about the higher order

situation? Future work, therefore, also includes the investigation on selecting the appropriate degrees

of the used piecewise polynomials.
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Fig 3. Segmentation of the medical images with intensity heterogeneity. The initial contours and the original images (column 1). The

final results of RSF model (column 2), isotropic PPMS model (column3), and anisotropic PPMS model (column 4).
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