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Abstract

A discrete conformality for polyhedral metrics on surfaces is introduced in this paper which gen-
eralizes earlier work on the subject. It is shown that each polyhedral metric on a surface is discrete
conformal to a constant curvature polyhedral metric which is unique up to scaling. Furthermore, the
constant curvature metric can be found using a discrete Yamabe flow with surgery.

1 Introduction

1.1 Statement of results

The Poincare-Koebe uniformization theorem for Riemann surfaces is a pillar in the last century mathematics.
It states that given any Riemannian metric on a connected surface, there exists a complete constant curvature
Riemannian metric conformal to the given one. Furthermore, the complete metric of curvature -1 is unique
unless the underlying Riemann surface is biholomorphic to the Riemann sphere, a torus, or the punctured
plane. The uniformizztion theorem has a wide range of applications within and outside mathematics. There
have been much work on establishing various discrete versions of the uniformization theorem for discrete
or polyhedral surfaces. A key step in discretization is to define the concept of discrete conformality. The
most prominent one is probably Thurston’s circle packing theory. The purpose of this paper is to intro-
duce a discrete conformality for polyhedral metrics and discrete Riemann surfaces and establish a discrete
uniformization theorem within the category of polyhedral metrics (PL metrics) on compact surfaces.

Polyhedral surfaces are ubiquitous in computer graphics and many fields of sciences nowadays. Or-
ganizing polyhedral surfaces according to their conformal classes is a very useful and important principle.
However, to decide if two polyhedral surfaces are conformal in the classical (Riemannian) sense is highly
non-trivial and time consuming. The discrete conformality introduced in this paper overcomes this compu-
tational difficulty.

Given a closed surfacé and a finite non-empty sét C S, we call (S, V) a marked surface The
objects of our investigation afmlyhedral metricgor simply PL metrics) on surfaces. By definition, a PL
metric on(S, V) is a flat cone metric oi% whose cone points are ii. For instance, the boundary of a
tetrahedron in the 3-space is a PL metric on the 2-sphere with 4 cone points. The norms of holomorphic
guadratic differentials on Riemann surfaces are other examples of PL metricaisthete curvatureof
a PL metric on(S, V') is the function onV sending a vertex € V to 2 less the cone angle at A
triangulationZ of S with vertex sef” is called atriangulationof (S, V). Each PL metriel on (S, V') has a
Delaunay triangulatior? (d) of (.S, V') so that each triangle i (d) is Euclidean and the sum of two angles
facing each edge is at most

Definition 1.1 (Discrete conformality and discrete Riemann surface) Two PL mettiéson (S, V') are
discrete conformal if there exist sequences of PL mettics d, ..., d,, = d’ on (S, V') and triangulations
T, ..., T, of (S, V) satisfying

(a) each?; is Delaunay ind;,



(b) if 7; = T;.11, there exists a function : V' — R, called a conformal factor, so that ifis an edge in

7; with end point andv’, then the lengthg;, ., (e) andig, (e) of e in d; andd; ;, are related by

ld71+1 (6) = ldi (e)eu(v)+u(y/) ) (1)

(c) if 7; # 7,41, then(S, d;) is isometric to( S, d;+1) by an isometry homotopic to the identity(ifi, V).
The discrete conformal class of a PL metric is called a discrete Riemann surface.
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Figure 1: discrete conformal change of PL metrics, all triangulations are Delaunay

Theorem 1.2 SupposésS, V) is a closed connected marked surface drslany PL metric or{.S, V'). Then
forany K* : V. — (—o0,2m) with 3\, K*(v) = 27x(S), there exists a PL metrid’, unique up to
scaling, on(S, V) so thatd’ is discrete conformal tal and the discrete curvature af is K*. Further-

more, the discrete Yamabe flow with surgery associated to curvatumeith initial value d converges ta’

exponentially fast.

For the constant functiok™ = 27 x(S)/|V| in theorem 1.2, we obtain a constant curvature PL metric
d’, unique up to scaling, discrete conformal#oThis is a discrete version of the uniformization theorem.
Theorem 1.2 also holds for compact marked surfaces with non-empty boundary. In that case, we double the
surface to obtain a closed surface. We omit the details.

The prototype of definition 1.1 comes from the work ofd@k and Williams in physics [19] and [16].

The drawback of the definition in [19] and [16] is that it depends on the choice of triangulations. A convex
variational principle associated to the discrete conformality was established in [16].

It is highly desirable to have a quantitative estimate of the difference between discrete conformality and
classical conformality. See [12] for an estimate of this type.

There are many proofs of the Poincare-Koebe uniformization theorem. The proof most closely related
to our work is Hamilton’s Ricci flow. The Ricci flow proof of the uniformization theorem for closed sur-
faces was achieved by a combination of the work of [13], [7], and [6]. In the discrete case, the situation is
much more complicated due to the combinatorics. To prove theorem 1.2, we use Penner’s decorated Teichu-
muller theory [18], the work of Bobenko-Pinkall-Springborn [4] relating PL metrics to Penner’s theory and
a variational principle developed in [16].

Hamilton’s Ricci flow is a flow in the space of all Riemannian metrics on a manifold. In the discrete
setting, the discrete Yamabe flow with surgery i§"asmooth flow on the finite dimensional Teichiter
space of flat cone metrics on a closed marked surfac¥).



A theorem of Troyanov [23] states that the same result of theorem 1.2 holds if discrete conformality
is replaced by the classical Riemannian conformality. The major difference between Troyanov’s work and
theorem 1.2 is that in our case, we discretize the metric and conformality so that a metric is represented
as a edge length vector I®" and discrete conformality can be decided algorithmically from edge length
vector. Theorem 1.2 is also related to the work of Kazdan and Warner [14] and [15] on prescribing Gaussian
curvature. It is possible that theorem 1.2 implies the existence part of Troyanov’s theorem and Kazdan-
Warner's theorem for closed surfaces by approximation.

The similar theorem for hyperbolic cone metrics (@) V') has been proved in [11]. In this case, two
hyperbolic cone metricg, d’ on (S, V') arediscrete conformaif there exist sequences of hyperbolic cone
metricsd; = d,...,d,, = d' on (S,V) and triangulations, ..., 7,,, of (S,V) satisfying (a) eacly; is
Delaunay ind;, and (b) ifZ; = T;11, there exists a function : V' — R so that ife is an edge ir¥; with end
pointsv andv’, then the lengthg;, ., (e) andly, (e) of e in d; andd;,, are related by

lg, . /

sinh(d”g(e)) = sinh(ldlz(e) Jerv)Fulv) (2)
and (c) if7; # 7,11, then(S, d;) is isometric to(S, d;+1) by an isometry homotopic to the identity (i, V).
The condition (2) was first introduced in [4].

Theorem 1.3 Suppos€ S, V) is a closed connected marked surface ahid any hyperbolic cone metric
on (S,V). Then for anyK* : V. — (—o0,2m) with }° _,, K*(v) > 2mx(S5), there exists a unique
hyperbolic cone metrid’ on (S, V') so thatd’ is discrete conformal ta and the discrete curvature aof

is K*. Furthermore, the discrete Yamabe flow with surgery associated to curv&tuweith initial value d
converges tal’ exponentially fast. In particular, if (S) < 0 and K* = 0, each hyperbolic cone metric on
(S,V) is discrete conformal to a unique hyperbolic metric®n

1.2 Notations and conventions

Triangulations to be used in the paper are defined as follows. Take a finite disjoint union of Euclidean
triangles and identify edges in pairs by homeomorphisms. The quotient space is a compact surface together
with a triangulation 7 whose simplices are the quotients of the simplices in the disjoint union)/ Let
V(T)andE = E(T) be the sets of vertices and edgedinlf e is an edge ir/ adjacent to two distinct
trianglest, ¢, then thediagonal switchon 7 ate replaces: by the other diagonal in the quadrilatetal, ¢/

and produces a new triangulati@r on (S, V). A PL metricd on (S, V) is obtained as isometric gluing of
Euclidean triangles along edges so that the set of cone point¥is@iven a PL metriel and a triangulation

7T on(S,V),ifeachtriangle irZ (in d metric) is isometric to a Euclidean triangle, we Says geometrian

d. If 7 is a triangulation of S, V') isotopic to a geometric triangulatidf’ in a PL metricd, then thdength

of an edge: € E(7) (orangleof a triangle at a vertex iff) is defined to be the length of the corresponding
geodesic edge’ € E(7') (respectively angle of the corresponding triangleZi) measured in metrid.

The interior of a surfacé is denoted byint(X). If X is a finite set|X| denotes its cardinality an@*
denotes the vector spa¢¢ : X — R}. All surfaces are assumed to be connected.
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2 Teichmiller space of PL metrics and Delaunay conditions

Suppos€ S, V) is a marked connected surface. The discrete curvdturd” — (—oo, 27) of a PL metric
d on S satisfies the Gauss-Bonnet formula thaf_,, K (v) = 2wx(S5). Therefore, ifx(S — V) > 0, i.e.,
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(S, V) = (5%, {v1,...,0,}) with n < 2, the Gauss-Bonnet identity implies there is no PL metri¢.8i/).
From now on, we will always assume that the Euler charactengtic— V') < 0. Most of the results in this
section are well known. We omit details.

2.1 Teichmiller space of PL metrics and its length coordinates

Two PL metricsd, d’ on (S,V) are calledequivalentf there is an isometry. : (S,V,d) — (S,V,d) so
thath is isotopic to the identity map ofS, V). The Teichnilller space of all PL metricen ¥, denoted by
Tu(S,V), is the set of all equivalence classes of PL metricgair), i.e.,

T

v =Tp(S, V) ={d| dis a PL metric on(S, V') } /isometry = id.

A result of Troyanov [23] shows thdi, (S, V') is homeomorphic t®R —3x(5—V) Below, we will use a
natural collection of charts dfi,, which makes it a real analytic manifold. SuppdSés a triangulation of
(S, V) with set of edges’ = E(7). Let

Rim = {x € RY|z(e;) + x(e;) > z(ex), if there is a triangle in 7 with edgese;, e;, ey, }

be the convex polytope iR”. For eachr Rim, one constructs a PL metrit; on (S, V') by replacing
each triangle of edges;, e;, e, by a Euclidean triangle of edge length@; ), z(e;), z(ex) and gluing them
by isometries along the corresponding edges. This construction produces an injective map

o7 :RET) - 1(8, V)

sendinge to [d,]. The imageP(7) := @T(RZ(T)) is the space of all PL metridd] on (S, V') for which 7

is isotopic to a geometric triangulation éh We callx thelength coordinatef d, and[d,]| = ®7(x) with
respecttdl . If u : V — R s a discrete conformal factor ande RZ, then the discrete conformal change
uwxz of zisuxz(v') = z(vv)e ™) for all edgesv’ € E(T). This is the prototype of (1) introduced
in [19] and [16].

In generalP(T) # T,(S,V). Indeed, letd be the metric double of an obtuse trianglalong its
boundary and” be the natural triangulation whose edges are edged.eft 7’ be the triangulation obtained
by the diagonal switch at the shortest edge.afhen7” is not isotopic to any geometric triangulationdn

Since each PL metric ofS, V') admits a geometric triangulation (for instance its Delaunay triangula-
tion), we see thaf},(S, V) = U7 P(7) where the union is over all triangulations @, V). The space
T,.(S, V) is a real analytic manifold with coordinate chafts?(7), ®;')|7 triangulations of S, V)}. To
see transition function@}ltip are real analytic, note that any two triangulationg 8fV") are related by
a sequence of diagonal switches. Therefore, it suffices to show the resfiltdnd 7’ which are related
by a diagonal switch along an edgeln this case, the transition functi@h}lcbyf sends(xg, 1, ..., Tm)
to (f(xo, ..., xm), x1, ..., Tm) Wherexg is the length ok and f is the length of the diagonal switched edge.
See figure 2. Let,t’ be the triangles adjacent toso that the lengths of edgesiot’ are{z, z1, 22} and
{zo, z3,z4}. Using the cosine law, we see thais a real analytic function ofy, ..., z4. In the case that the
quadrilaterak U, ¢’ is inscribed to a circle, we have the famous Ptolemy ideniityf = z1x3 + zox4.

2.2 Delaunay triangulations

Given a PL metriai on (S, V'), its Voronoi decompositiois the collection of 2-cell§ R(v)|v € V'} where
R(v) = {x € S|d(z,v) < d(z,v") for all v' € V}. Its dual is called @elaunay tessellatiod(d) of
(S,V,d) ([2], [5]). Itis a cell decomposition ofS, V, d) with verticesV and two vertices, v are jointed
by an edge if and only iR(v) N R(v") is 1-dimensional. Delaunay triangulatior? (d) of (S, V') in metric
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Figure 2: diagonal switch and lengths of quadrilaterals

d is a geometric triangulation of the Delaunay tessellati¢a) by further triangulating all non-triangular
2-dimensional cells (without introducing extra vertices). For a generic PL métid¢d) is a Delaunay
triangulation ofd.

Lemma 2.1 (See [5], [2]) Each PL metrial on (S, V) has a Delaunay triangulation. ¥ and 7’ are
Delaunay triangulations ofl, then there exists a sequence of Delaunay triangulatibns= 7, 75, ...,
7, = T’ of d so thatT},  is obtained froniZ; by a diagonal switch.

Definition 2.2 (Delaunay cell) For a triangulatiory” of (S, V'), the associated Delaunay cell ), (.S, V)
is defined by

Dy (T) = {[d] € T(S,V)| T isisotopic to a Delaunay triangulation af}.

Note thatD,;(7) C P(7) and is non-empty. Indeed the PL metric so that the length of each edge is 1
is in D, (7). Assume that’” is geometric ind. One can characterize PL metrie$ € D,,(7) in terms of
the length coordinate = &' ([d]) as follows. By definitior?” is Delaunay ind if and only if

a+ad <m e, cos(a)+cos(a’) >0, foreachedge € E(T) (3)

whereq, o/ are the two angles facing See figure 2. Let andt’ be the triangles adjacent ¢éaande, e, e2
be edges of ande, e3, ¢4 be the edge of . Note that’ = ¢ is allowed. Suppose the length®fin d) is
and the length oé; is z;, : = 1, ..., 4. By the cosine law, Delaunay condition (3) is the same as
2 2 2 2 2 2
AT TBTILTTY S for all edges € E(T). @)
2x1T9 21314

Inequality (4) shows thab,,(7") C T, is bounded by a finite set of real analytic subvarieties. It turns
out{D,(7T)|7T} forms a real analytic cell decompositionsf;.

Let us recall the basics of real analytic cell decompositions of a real analytic mafifoldd subspace
C C M is areal analytic cellif there is a real analytic diffeomorphismdefined in an open neighborhood
U of C intoR" so thath(C) is a convex polytope iR". A faceC’ of C'is a subset so thafC’) is a face of
the polytopeh(C'). A real analytic cell decompositioaf M is a locally finite collection of n-dimensional
real analytic cellSC;|i € J} so thatM = U;c;C; andC;, N ... N C;, is a face ofC;; for all choices of
indices.

A theorem of Rivin [21] shows thab,,(7) is a real analytic cell of dimensior3x (S — V). Indeed,
one takes the open neighborhood/®f;(7") to be P(7') and fixese; € E. Defineh to be the real analytic
map sending: to (¢o(x), z(e1)) wheregy(z)(e) = a+ o’ wherea anda’ are angles facing. Rivin proved
thath is a real analytic diffeomorphism into an open subset of a codimension-1 affine subsdce«d®
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so thath(D,; (7)) is a convex polytope and faces b, (7) are subsets defined by+ o' = 7 for some
collection of edges. By [2], [5], if W = Dy (71)N....Dp (7)) # 0, thenW is a face ofD,,(7;) for eachi.
Indeed,IV is the face ofD,,;(7;) defined by the set of equalities:+ o’ =  for all edges: ¢ ﬂ;?:lE(Qg).

The discussion above shows that we have a real analytic cell decomposition of the (ilEckpace by
{Dp(T)|T} invariant under the action of the mapping class group,

Tpl(Sv V) = U[T]Dpl(T) (5)

where the union is over all isotopy clas$&s of triangulations of S, V).

3 Penner’s work on decorated Teichniiller spaces

One of the main tools used in our proof is the decorated Teidlemspace theory developed by R. Penner
[18]. We will recall the theory and prove a few new results in this section. For details, see [18] or [10].

3.1 Decorated triangles

Let H? be the 2-dimensional hyperbolic plane. Aleal triangleis a hyperbolic triangle if? with three
verticesvy, vo, v3 at the sphere at infinity dfi2. Any two ideal triangles are isometric. decorated ideal
triangle 7 is an ideal triangle so that each vertexs assigned a horoball; centered at;. Lete; be the
complete geodesic edge ofopposite to the vertey;. The inneranglea; of 7 is the length of the portion
of the horocycledH; betweene; andey, {i,j,k} = {1,2,3}. Thelengthl; € R of the edgee; in 7 is
the signed distance betweéfy and Hy, (j, k # ). To be more precise, if{; N H, = 0, thenl; > 0 is
the distance betweeH;, and H;. If H; N H; # 0, then—{; is the distance between two end points of
d(e; N H; N Hy). Penner caIIsL =eli /> the \-lengthof ¢;.

P @O@

Figure 3: decorated ideal triangles and their edge lengths

It is known that for anyiq,l>,l3 € R, there exists a unique decorated ideal triangle of edge lengths
l1,12,13. The relationship between the lengthsand angles:;’s is the following cosine lawproved by
Penner:

a; = ez i=li=lk) — Li , In(a;) +1In(a;) = —l, {i,j,k} ={1,2,3}. (6)
L;Ly,

Let S be a closed connected surface and= {vy,...,v,} C Sand¥ = S — V. We assume, > 1
andx(X) < 0. Following Penner, @ecorated hyperbolic metrien X is a complete finite area hyperbolic
metricd on X together with a horoball/; centered at the i-th cusp atfor eachi. We can also parameterize
itas(d,w) wherew = (wy, ..., w,) € RZ; with w; being the length of the horocycl#;. Two decorated
hyperbolic metrics orE areequwalentlf there is an isometryr between them so thdt is homotopic to
the identity andh preserves the horoballs. The space of all equivalence classes of decorated hyperbolic
metrics onX is defined to be thdecorated Teichiiller spaceTp(X). If we useT'(X) to denote the usual



Teichnilller space of complete hyperbolic metrics of finite are&pthen there is a natural homeomorphism
fromTp(X) toT'(X) x RZ, by sending(d, w)] to ([d], w). The projectiori’p(X) — T'(X) sending(d, w)]
to [d] records the underlying hyperbolic metric.

Now supposé€ is a triangulation of S, V') with £ = E(7). Then Penner introduced a homeomorphism
map ¥ : REO — Tp(X) called A-length coordinate as follows. For eaghe R’;JO, e,z : F —
R-o, ¥7(x) is the equivalence class of the decorated hyperbolic metrie) on 3 obtained as follows.
If ¢ is a triangle in7 with three edges;, e;, e;, one replaces by the decorated ideal triangle of edge
lengths2In z(e;), 2Inz(e;) and21n z(e;) and glues these decorated ideal triangles isometrically along the
corresponding edges preserving decoration. One obtains a decorated hyperboli¢dnetrion 3. The
horoballs are the gluing of the corresponding portions of horoballs associated to ideal triangles. In particular,
w; is the sum of all angles of the decorated ideal triangleg.a@®enner proved, using his Ptolemy identity,
that \I/}lllffl is real analytic for any two triangulatioriE and7’. Here Ptolemy identity for decorated
ideal quadrilaterals states thatd’ + BB’ = C'C’ where A, A’, B, B’ are the)-lengths of the edges of a
quadrilateral and’, C’ are the\-lengths of the diagonals. See figure 4. In partic{dry|7 } forms real
analytic charts fofl'p (3).

The following lemma is well know. We omit the proof.

Lemma 3.1 Suppose&’ is an embedded horocycle of lengthcentered at a cusp in a complete hyperbolic
surface and”’ is another embedded horocycle of smaller lengfhcentered at the same cusp. Then the
w; = wie' wheret = d(C, ") is the distance betweetiand C’.

By the lemma and definition, W (z) = [(d,w)] then for anyk > 0, U7 (kz) = [(d, sw)]. Thus, for
any (d,w), by choosingk large, one may assume the associated horoballs are disjoint and embedded in
(d,w/k).

3.2 Delaunay triangulations

Given a decorated hyperbolic metii¢, w) on X, there is a naturaDelaunay triangulation7 associated

to (d,w). The geometric definition of goes as follows. First assume that the associated horoballs
Hy(w), ..., H,(w) are embedded and disjointi Consider the Voronoi cell decomposition of the compact
surfaceX,, = ¥ — U?"_;int(H;(w)) so that the 2-celR;(w) associated to; is {x € X, |d(z,0H;(w)) <
d(z,0H;(w)), all j}. Anorthogeodesiin X,, is a geodesic from.X,, to 0.X,, perpendicular t&.X,,. The

dual of the Voronoi decomposition is a decomposititid, w) of X by a collection of disjoint embedded
orthogeodesics ards’} constructed as follows. ¥ C R;(w) N R;j(w) is a geodesic segment, take a point

p € S and consider the two shortest geodesjandb; in R;(w) andR;(w) respectively fronp to 0 H;(w)
anddH,(w). The shortest orthogeodesicin X,, homotopic tob; ' * b; is an arc inD(d) dual tos. A De-
launay triangulation ofX,, is a further decomposition @f(d, w) by decomposing all non-hexagonal 2-cells
by orthogeodesic. Since each orthogeodesic extends to a complete geodesic from cusp to cusp, one obtains
a Delaunay triangulatior7 (d, w) of the decorated metrigl/, w) on ¥ by extension. For a generic metric
(d,w), a Delaunay triangulation is the dual to the Voronoi decomposition. By the definition of Voronoi cells
and lemma 3.1, Delaunay triangulations(dfw) and(d, w/k) are the same wheh > 1. Due to this, for

a general decorated met(ié, w), we define a Delaunay triangulation @f, w) to be that of(d, w/k) for k

large.

For a given triangulatio™ of (S, V'), let D(7") be the set of all equivalence classes of decorated hyper-
bolic metrics(d, w) in Tp(X) so that7 is isotopic to a Delaunay triangulation @f, w). Penner proved the
following important theorem in [18]. Details on the real analytic diffeomorphism part of the decompaosition
can be found in [10].



Theorem 3.2 (Penner) The decorated Teichitter spacel’n(X) has a real analytic cell decomposition by
{D(7)|7T} and
Tp(¥) = U D(T)

where the union is over all isotopy classes of triangulations. The decomposition is invariant under the action
of the mapping class group.

3.3 Finite set of Delaunay triangulations

We thank B. Springborn for informing us the following result was known before and was a theorem of
Akiyoshi [1]. However, our proof is different and short. For completeness, we present our proof in the
appendix. The theorem holds for decorated finite volume hyperbolic manifolds of any dimension.

Theorem 3.3 (Akiyoshi) For any finite area complete hyperbolic mettion X, there are only finitely many
isotopy classes of triangulatior’s so that([d] x RZ )N D(T) # 0. In particular, there exist triangulations
T, ..., T, so that for anyw € RZ,, any Delaunay triangulationd, w) is isotopic to one of;.

4 Euclidean polyhedral metrics and decorated hyperbolic metrics

The relationship between edge length coordinate of PL metrics with thatesfgth was first noticed in [4].
Fix a triangulationZ” of (S, V'), we have two coordinate mags;" : P(7) — R¥(7) and¥7 : RE(7) —
Tp(S, V). Consider the injective maps : P(7) — Tp(X) defined by¥r o &',

Theorem 4.1 Ar|p (1) is areal analytic diffeomorphism frod,,(7") onto D(7).

Proof To see thatdr mapsD,,(7) bijectively onto D(T), it suffices to show tha®;' (D, (7)) =
w7 (D(T)).

Recall that the characterization of a PL metfishich is Delaunay ir?” in terms ofz = @}1(d) is as
follows. Take an edge € E(7) and lett andt’ be the triangles adjacent toso thate, e1, e2 are edges of
t ande, e3, e4 are the edge of . Supposey, o’ are the angles (measureddhin ¢ andt’ facinge. Then the
Delaunay condition is equivalent to

a+ad <m ie., cos(a)+cos(a’) >0, foralledges € E(T). (7)

Suppose the length ef (in d) is o and the length og; is x;, ¢ = 1,...,4. By the cosine law, Delaunay
condition (7) is the same as

x%—f—x%—x% ﬂzg—l-a:i

2
70 >0, foralledges: € E(T). (8)
2r179 2x374
This shows that
71Dy (T)) = {= € RE| (8) holds for each edge and (9) holds for each triangle

where
x(e;) +x(ej) > xz(ex), e, ej,er form edges of a triangle i . 9)

Lemma 4.2 Suppose: : E(7) — R+ so that (8) holds for all edges. Then (9) holds for all triangles.



Proof Suppose otherwise, there existe RZ, so that (8) holds but there is a triangle with edggs;, ey
so that
x(e;) > x(ej) + x(ex). (10)

In this case, we say; is a "bad” edge. Let be a "bad” edge of the largestvalue, i.e.;z(e) = max{z(e;)|
(10) holdg. Lett, t' be the triangles adjacent toand the edges afandt’ be {e, e1, ex} and{e, es, e4}.
Note thatt’ = ¢ is allowed ife is adjacent to one triangle. Let = x(e), z; = z(e;) fori = 1,2,3,4.
Without loss of generality we may assume that

x1 + 22 < x0. (11)
Sincee is a "bad” edge of the largestvalue, we have:s < xg + x4 andxy < xg + x3, i.€.,

|23 — 4] < 20- (12)

On the other hand, inequality (8) holds faf, 1, ..., 24, i.€.,

2 2 2 2 2 2
J:O—xl—:c2<a:3+1:4—x0 (13)
2x1T9 - 21314

Inequality (11) says the left-hand-side of (13) is at least 1 and inequality (12) says the right-hand-side
of (13) is strictly less than 1. This is a contradictian.

The spacel ' (D(T)) can be characterized as follows. SupposeXfength of (d',w) € D(T) is

T = \IJ}l(d’,w). For each edge in (S,7,d'), leta,d’ be the two angles facingandb, V', ¢, ¢’ be the

angles adjacent to the edgeThen(d’, w) is Delaunay i7" if and only if for each edge € FE(7) (see [18]
or [10]),

a+ad <b+b +c+d. (14)

Lett andt’ be the triangle adjacent toande, e1, e; be edges of ande, e3, e4 be the edges of. Let
the A-length ofe be zy and theA-length ofe; be z;. Then using the cosine law (6), one sees that (14) is

equivalent to
2 2
x x x x T X
0 20 T 2 B L for eache € B(T). (15)
TiTy  X3T4 T2 T1 T4 X3

Inequality (15) is equivalent to

x%—kx%—x% x%—kazi—x%

0<
2r179 2x374

, foreache € E(T). (16)

Therefore,
U(D(T)) = {z € RE;| (16) holds at each edgec E(T)}.

However, inequality (16) is the same as (8). This sh@ys (D, (7)) ¢ V;'(D(7)). On the other
hand, lemma 4.2 implies thét;' (D, (7)) = ¥ (D(7)).

Finally, since both®s and ¥ are real analytic diffeomorphisms anty = U7 o &' and A =
dro \ll}l, we see thatl 7 is a real analytic diffeomorphisni



4.1 Globally defined map, diagonal switch and Ptolemy relation
Theorem 4.3 Supposé& and 7" are two triangulations of S, V') so thatD,;(7) N D, (7") # 0. Then

AT|p(T)nDu(T) = AT/ DYy(T)NDY (T - (17

In particular, the gluing of these&T\Dpl(T) mappings produces a homeomorphidm= UTAT\DPZ(T) :
Tp(S,V) — Tp(S —V) such thatd([d]) and A([d']) have the same underlying hyperbolic structure if and
only if d andd’ are discrete conformal.

Proof Suppos€d] € D, (7) N Dy(T'), i.e., 7 and7’ are both Delaunay in the PL metidc Then it is

known that there exists a sequence of triangulatibns- 7,75, ...,T, = 7’ on (S, V) so that eacly; is
Delaunay ind and7;; is obtained front; by a diagonal switch. In particulad 7 ([d]) = Az ([d]) follows

from A, ([d]) = Az, ([d]) fori = 1,2,...,k — 1. Thus, it suffices to showd([d]) = Az ([d]) whenT’

is obtained front/” by a diagonal switch along an edgeln this case the transition functio@s}ltbfl and
\11}1\117/ are the diagonal switch formulas. Penner proved an amazing result theddéhgths satisfy the
Ptolemy identity for decorated ideal quadrilaterals. See [18] and figure 4. This result, translated into the
language of length coordinates, says tat &7/ () = V' Wr () for z € &7 (D (7) N Dy (T7)). This

is the same as (17). Taking the inverse, we obtain

AZ  p(npry = A7 pemnp)- (18)

Lemma 4.4 (a) Dy (7T) N Dy (T') # D ifand only it D(7) N D(77) # 0.
(b) The gluing mapA = Uz Ar|p, (1) : Ty — Tp is @ homeomorphism invariant under the action of
the mapping class group.

Proof By (17) and (18), the mapA = UTAT|DM(T) : Ty — Tp andB = UTA}IID(T) : Tp — Ty are
well defined and continuous. Sinée(D,,;(7) N Dy (7T")) € D(T)N D(7T') andB(D(7) N D(T")) C
Dy (T) N Dy (77), part (a) follows. To see part (b), sin@g = U7 D(7), the mapA is onto. To se&\ is
injective, suppose € Dy (71),z2 € Dy(72) so thatA(z1) = A(zz) € D(71) N D(73). Apply (18) to
A7'[,A7'| onthe setD(7;) N D(Tz) at the pointA(z1), we conclude that; = z,. This shows thaf\ is
a bijection with invers@. Since bothA andB are continuousA is a homeomorphisni]

Now if d andd’ are two discrete conformally equivalent PL metrics, thefid]) and A([d']) are of
the form (p, w) and (p, w’) due to the definition oﬂ/;1<1>7. On the other hand, if two PL metrics d’
satisfy thatA ([d]) and A([d']) are of the form(p, w) and(p,w’), consider a generic smooth patft) =
(p,w(t)),t € [0,1], in Tp(X) from (p, w) to (p,w’) so thaty(t) intersects the cell®(7)’s transversely.
This implies thaty passes through a finite set of cell§7;) and7; and 7, are related by a diagonal
switch. Letty = 0 < ... < t,, = 1 be a partition of[0, 1] so thaty([t;,t;+1]) € D(7;). Sayd; is
the PL metric so thaA([d;]) = ~v(t;) € D(7;) N D(Z;41), di = d andd,, = d’. Then by definition,
the sequencefl;, ..., d,, } and the associated Delaunay triangulati¢®s ..., 7,,,} satisfy the definition of
discrete conformality fod, d’. O

Theorem 4.5 The homeomorphisih : 7,,(S, V) — Tp(S — V) isaC! diffeomorphism.

Proof It suffices to show that for a poifid] € D,;(7) N D, (7"), the derivativedD A7 [d]) andD A7 ([d))

are the same. Since bofhand7"’ are Delaunay inl and are related by a sequence of Delaunay triangu-
lations (ind) 7, = 7, T, ..., 7, = T', DA7([d]) = DAz([d]) follows from DA, ([d]) = DAz, ([d])

fori = 1,2,....,k — 1. Therefore, it suffices to shoW A ([d]) = DAz ([d]) when7 and7’ are related

by a diagonal switch at an edge In the coordinate®s and U7, the fact thatD A7 ([d]) = DA7([d]) is
equivalent to the following smoothness question on the diagonal lengths.
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Lemma 4.6 Suppos€) is a convex Euclidean quadrilateral whose four edges are of lengtiasz, w and
the length of a diagonal ig. See figure 4. Suppos¥z, y, z, w, a) is the length of the other diagonal and
B(z,y,z,w,a) = m% If a point (z,y, z, w, a) satisfiesA(z,y, z,w,a) = B(z,y,z,w,a), i.e.,Q is
inscribed in a circle, the A(z, y, z,w,a) = DB(z,y, z,w,a) whereD A is the derivative ofd.

aA = xz+ yw AA"+ BB =CC’

Figure 4: Euclidean and hyperbolic Ptolemy

Proof The roles ofr, y, z, w are symmetric with respect to Hence it suffices to show th%t;—‘ = %—’j and
94 — 9B at these points. First, we ha¢ = z and%E = —Z.
Now leta, o/, 3, 3’ be the angles formed by the pairs of ed§esa}, {a, 2}, {a, 2} and{a, w}. By the
cosine law, we have
A% =92 4+ 22 — 2z cos(a + ).
Take partial: derivative of it. We obtain

0A ) Oa
ZA% = 2yzsin(a + ﬂ)%
But it is well known (see for instance [17]) that in the triangle of lengthg, a,

foJe" T
or  ay sin() (19)
Therefore,
0A  zzsin(a+ )
dr  aA sin(a)
Now at the point wherel(z, y, z, w,a) = B(z, y, z,w, a), the quadrilateral is inscribed to the circle. There-
fore, Snleth) _ A gy putting these together, we see thgt= 224 — = — 95,

? sin(a) aAx ~ a
Next, we calculatdd. By the formula above, we obtald %4 = 2yzsin(a + 8)(22 + 27). Now by
the derivative cosine law ([8]), we ha#® = —92 cos(a/) which in turn Isf,f;‘;fﬁ?;)) by (19). Similarly,
we haveg—g = —Z’jﬁé? . Putting these together, we obtain,
0A _ yzsin(a+p) (:L'cos(o/) n wcos(ﬁ’))
da aA ysin(a) zsin(B3) *

Now sinceA = B, the quadrilateral is inscribed in a circle, therefo?bél(&%)m = f and Si;(n‘z;g)ﬁ) = %.

Therefore, %2 = —1(zcos(a/) + ycos(3)) = —24 = —8 = 95 where the identityA = 2 cos(e) +

- a

y cos(3") comes from the triangle of lengthsz, A and the fact thaf) is inscribed in a circleld
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5 A proof of the main theorem

Using the mapA : 7,,,(S, V) — Tp(X), we see that for a given PL metdon (S, V), the sef{[d']|d’ is discrete
conformal tod} is C'!-diffeomorphic to{p} x R%, C Tp(S — V) for somep € T(X). Therefore,
the discrete uniformization theorem is equivalent to a statement about the discrete curvature map defined
on {p} x R%, C Tp(S — V). Let us make a change of variables fram= (wy,...,w,) € RZ, to
u = (uq,...,un) € R" whereu; = In(w;). We writew = w(u). For a giverp € T'(X), define the curvature
mapF : R" — (—o0,27)" by

F(u) = KA-1(pw(u)) (20)

where K; is the discrete curvature. The map satisfies the propertyfthat+ £(1,1,...,1)) = F(u) and
F(u) lies in the planeGB = {z € R"|Y ", z; = 2nx(S)} defined by the Gauss-Bonnet identity. Let
P={ueR"Y " u =0}andQ = GB N (—o0,2n)". Then the restrictiod” := F|p : P — Q. The
discrete uniformization theorem is equivalent to say thatP — @ is a bijection. We will show thaf" is
a homeomorphism in this section.

We will prove thatF' : P — @ is injective in§5.2 using a variational principle developed in [16].
Assuming injectivity, we show that : P — @ is onto in§5.1.

5.1 The mapF is onto

Assuming thaf' is injective, we prove- is onto in this section. Since bothand( are connected manifolds
of dimensionn — 1 and F' is injective and continuous, it follows that( P) is open in@. To show thatF' is
onto, it suffices to prove thdt(P) is closed inQ.

To this end, take a sequen¢e™} in P which leaves every compact setin We will show that
{F(u(™)} leaves each compact set@ By taking subsequences, we may assume that for each index
i = 1,2,...,n, the limit lim,, uim) = t; exists in[—o0, co]. Furthermore, since the spag} x P is in
the union of a finite set of Delaunay cell3(7), we may assume, after taking another subsequence, that
the corresponding PL metries, = A~ (p, w(u(™))) are Delaunay in one triangulatiah. We will do our
calculation in the length coordinafie; below.

Due to the normalization that, u§m> = 0 andu(™ does not converge to any vectori) there exists
t; = oo andt; = —oo. Let us label vertices € V' by blackandwhiteas follows. The vertex; is black if
and only ift; = —oo and all other vertices are white.

Lemma 5.1 (a) There does not exist a triangtec 7 with exactly two white vertices.
(b) If Avqyvqus is atriangle in7 with exactly one white vertex at, then the inner angle of the triangle
at v; converges t® asm — oo in the metricsd,,.

Proof To see (a), suppose otherwise, using®elength coordinate, we see the given assumption is equiv-
) . . . (m) ., (m)
alent to following. There exists a Euclidean triangle of lengthgs %, {i,5,k} = {1,2,3}, where

lim,,, u§m> > —oo for i = 2,3 andlim,, u§m> = —oo. By the triangle inequality, we have
azeugm)+“;m> + a3€“gm)+uém > a1eu<2m)+“i(3m)
This is the same as
™ o ™
aze 2 +aze 3 >ae 1

However, by the assumption, the right-hand-side tends &nd the left-hand-side is bounded. The contra-
diction shows that (a) holds.
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To see (b) we use the same notation as in the proof of (a). Let the Iéﬁ@tﬂf the edgev;v;, in metric
dy, bea;e" ™ i, 4,k = {1,2,3}. Leta; := a;(m) be the inner angle at;,. Note that the triangle

(m (m) . . ..
is similar to the triangle of lengthg,e " : andlim,, a;e™% : is oo wheni = 2,3 and is finite for; = 1.
Therefore, the angle; tends to 0[]

We now finish the proof of'(P) = @ as follows. Since the surfaceis connected, there exists an edge
e whose end points, v; have different colors. Assumeis white andv; is black. Letvq, ..., v;, be the set of
all vertices adjacent to so thatv, v;, v;4+1 form vertices of a triangle and lej..; = v;. Now apply above
lemma to triangleAvwv;vo With v white andv; black, we conclude that, must be black. Repeating this
to Avwevg With v white andw, black, we concludes is black. Inductively, we conclude that all’s, for
i1=1,2,..., k, are black. By part (b) of the above lemma, we conclude that the curvatdyg aifv tends to
27. This shows that'(u(™)) tends to infinity ofQ. ThereforeF (P) = Q.

5.2 Injectivity of F

The proof uses a variational principle developed in [16]. Recall that theFnaR™ — R™ is the discrete
curvature mapKa -1, () given by (20). SinceA is aC"' diffeomorphism and the discrete curvature
K : T,(S,V) — RY is real analytic, hence the mapis C' smooth. LetZ;, i = 1, ..., k, be the set of all
triangulations so that{p} x R") N D(T;) # 0 and{p} x R* C UF_, D(T;).

Lemma5.2 Leto : R® — {p} x R* be¢(x) = (p,x) andU; = ¢~ *(({p} x R") N D(7;)) C R™ and
J = {i] int(U;) # 0}. ThenR"™ = U,;c;U; andU; is real analytic diffeomorphic to a convex polytope in
R™.

Proof By definition, both{p} x R™ and D(7;) are closed and semi algebraicTin(3). ThereforelU; is
closed and semi-algebraic. Now by definition,:= U;c sU; is a closed subset @™ sinceU; is closed. If
X # R", then the compleme®™ — X is a non-empty open set which is a finite union of real algebraic sets
of dimension less than. This is impossible.
Finally, we will show that for any triangulatio” of (S,V) andp € T(X), the intersectiol/ =

“L(({p} x R™) N D(T)) is real analytically diffeomorphic to a convex polytope in a Euclidean space.
In fact U1 (U) ¢ RP(7) is real analytically diffeomorphic to a convex polytope. To this endplet
v (p, (1, 1,...., 1)). By definition, W' (U) is give by

{z € R BA € RV, z(e) = b(e)A(v1)\(va), de = {v1, v}, Delaunay condition (15) holds far}.

We claim that the Delaunay condition (15) consists of linear inequalities in the vafialife— R~y where

§(v) = M(v)~2. Indeed, suppose the two triangles adjacent to the edgév;, vo) have vertices, vo, v3

andwvy, v, v4 as shown in figure 2. Let;; (respectivelyp;;) be the value of: (respectivelyp) at the edge

joining v;, v, and\; = A(v;). By definition, z;; = b;;A;A;. The Delaunay condition (15) at the edge

e = (v1v2) says that

) - e (21)
31732 T41742 $32 T31 T42 T41

It is the same as, using; = b;; \;\j,

)\1/\2 /\1)\2 )\2 )\1
S tany <at
A3 N

wherec; is some constant depending only @p’s. Dividing above inequality by A2 and usingj; = A;Q,
we obtain

C3

€303 + 404 < €101 + 202 (22)
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at each edge € E(7). This shows fob fixed, the set of all possible values ®form a convex polytop€)
defined by (22) at all edges an¢v) > 0 at allv € V. On the other hand, by definition, the map fréto

U1 (U) sendings to x = x(5) given byz(vv') = ;’((”7;’6/2,) is a real analytic diffeomorphism. Thus the

result follows.[d

Write F = (F, ..., F,,) which isC' smooth. By theorems 1.2 and 2.1 of [16], one sees thaf(a), is
real analytic so thagu% = g—g in Uy, forall h € J and (b) the Hessian matrig%] is positive semi-definition
on eachl/j, so that its kernel consists of vectoxél, 1, ..., 1). Therefore, the 1-formy = ", Fj(u)du; is a
C' smooth 1-form orR™ so thatdny = 0 on eachl;,, h € J. This implies thaily = 0 in R™. Hence the
integraliV (u) = fO“ nis awell defined>? smooth function ofiR”™ so that its Hessian matrix is positive semi-
definition. Thereforell is convex inR™ so that its gradiertyIW = F. Furthermore, since the kernel of the
Hessian ofi¥ consists of diagonal vectorg1, 1, ..., 1) at each point iUy, h € J andR" = U Uy, the
Hessian of the functiofl’| p is positive definite. Henc®/|p is strictly convex. Now we use the following
well known lemma,

Lemma5.3 If W : Q — Ris aC'-smooth strictly convex function on an open convexisetR™, then its
gradientsy W : 2 — R™ is an embedding.

Apply the lemma tdV |p and usey (W |p) = F, we conclude that' : P — @ is injective.

The discrete Yamabe flow with surgery is the gradient flow of the strictly convex funttiom) —
>, Ku; which has a unique minimal point iR. In the formal notation, the flow takes the fo d't(t) =
K; — K} andu(0) = 0. The exponential convergence of the flow was established in theorem 1.4 of [16].

6 A Conjecture

We conjecture that the number of surgery operations used in the discrete Yamabe flow to find the target PL
metric is finite, i.e., along the integral curve of the gradient flow of the fundtitu) — > | Ku;, only
finitely many diagonal switches occur. This is supported by our numerical experiments.

There should be a related theory of discrete conformal maps associated to the discrete Riemann surfaces
introduced in this paper. See [22] for the corresponding discrete conformal maps for circle packing.
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Appendix: A proof of Akiyoshi's theorem

For completeness, we present our proof in this appendix. The theorem and the proof hold for decorated
finite volume hyperbolic manifolds of any dimension. We state the 2-dimensional case for simplicity.

Theorem 6.1 (Akiyoshi [1]) For a finite area complete hyperbolic metidon X, there exist triangulations
T, ..., Ty, so that for anyw € R, any Delaunay triangulation ofd, w) is isotopicZ;, i € {1,2, ..., k}.

Proof We begin by study the shortest geodesics in a complete finite area hyperbolic $drfdceRecall

the Shimizu lemma [3] which implies that it € (0,1)", then the associated horobaltg(w) in the
decorated metri¢d, w) are embedded and pairwise disjoint. Let us assume without loss of generality that
w € (0,1)". A geodesiax from cuspy; to v; in (X, d) is called ashortest geodesitom v; to v; if there

exists aw € (0,1)" so thata N X,, is a shortest path among all homotopically non-trivial pathin
joining 0H;(w) to 0H;(w). The shortest property implies thatn X, is an orthogeodesic. Furthermore,

by lemma 3.1, if is a shortest geodesic, then for anyc (0,1)", a N X+ is again a shortest geodesic in
X,y from 0H;(w') to 0H;(w'), i.e., being a shortest geodesic frefto v; is independent of the choice of
decorations. Indeed, for any geodesifrom cuspv; to v;, we have

1(BN Xyw) =1(BNXy) — In(w;) — In(w}) + In(w;) + In(w;) (23)

Lemma 6.2 Supposé€X, d) is a finite area complete hyperbolic surface. Then

(a) there are only finitely many shortest geodesics fopto v;.

(b) there iss;; = 6;;(X, d) > 0 so that ife is a shortest geodesic fromto v; and 3 is another geodesic
fromv; to v; with [[(8 N X,,) — (e N Xy)| < di5, theng is a shortest geodesic.

(c) givenw;, if « is a shortest orthogeodesic geodesics among all orthogeodesiXs, iftom 0 H; to
0Xw, thena™, the complete geodesic containingis an edge of the decorated met(i¢, w) and the mid-
point ofais in R;(w).

Proof The first part follows from the simple fact that on any compact surfagefor any constant’, there
are only finitely many orthogeodesics of length at m@st Part (b) follows from (a) and equality (23).
Part (c) follows from the definition of Voronoi cells and its dual. Note that in generdl,i#f a shortest
orthogeodesic inX,, betweervH;(w) andoH;(w), #* may not be an edge in any Delaunay triangulation
of (d,w). O

Now we prove the theorem by contradiction. Suppose otherwise, there exists a sequence of decorated
metrics (d, w™) wherew™ = (wi™ . w{™) € R" so that the associated Delaunay triangulations
T = T(d,w™) are pairwise distinct if%, d). After normalizingw™ by scaling, relabel the vertices
v, ..., Uy, @and taking subsequences, we may assume

() wi™ = max{w™}i =1,2,...,n} = 1/2;

(ii) for eachi = 1,2, ..., n, the limitlim,, w™ = t; € [0,1/2] exists;

(iii) t1,....tx > 0andtgyy = ... = t, = 0.

For simplicity, we useF;;(7) to denote the subset of all edgesZofoining v; to v;. We will derive a
contradiction by showing that,, E;;(7,,) is a finite set.
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Lemma 6.3 There exists a constant > 0 so that for alli, j < k, and alle € E;;(7,,), the length
lleNX,m) < C.

In particular, U, E;;(7,,) is a finite set.

Proof For anys € (0,1/2), letu™(8) = (w{™, ..., w{™s,...,6) € R". Fix as, sincelim,y, w§m) =0
for j > k, for m large, each point: € X)) is in some Voronoi cellR;(w™)) for somei < k.
Therefore, there is a small > 0 so that for alli,j = 1,2,...,k, all largem, and alle € E;;(7,,),
eNXym C Xy (5)- BY the assumption that, ..., ¢, > 0 and by choosing smaller thannin{¢1, ..., tx },
we see that the surface, (. () is a subset of the compact surfakes 5. Therefore, there is a constant
C > 0so thatdiam (X ) 5) < C/2forall m. Note ife € E(7 (d, w)) is an edge, then the length of the

orthogeodesie N X, in metricd satisfies,
lleNXy) < 2diam(Xy), (24)

wherediam(Y') is the diameter of a metric spake Indeed/(eNX,,) < diam(R;(w))+diam(R;(w)) <
2diam(X,,). This shows, by (24), that

lleNnX, m) <len Xu(m)((;)) < Qdiam(Xu(m)(5)) < C.

Finally, since for any constarit, there are only finitely many orthogeodesicsiyy . ;) of lengths at
mostC, it follows thatU,, £;; (7, ) is finite. O

Now for m large, each point irXu<m)<1/2) is in UleRi(w(m))- Therefore for largen, if i, j > k, then
Eij(Tr,) = 0 since an edge € E;;(7,,) must intersec, ) ;o). Hence ifE;,(7n) # 0, thenh < k.

Lemma 6.4 There isng so that ifm > ng, j > k ande € E;;(7,,), thene is a shortest geodesic from to
vj. In particular for j > k andi < k, the setJ,, E;;(7,,) is finite.

Proof We need to study the Voronoi celt; (w(™). Sincelim,, wj(.m) = 0 andt; > 0, for largem, the
Voronoi cell R;(w(™)) ¢ H;(u™(1/2)). LetdyR;(w™)) be the piecewise geodesic boundary component
OR;(w(™) — OH;(w(™).
Claim for any two edgesg,,,, by, in 9o R; (w(™),

lim |dist(am, Hj (w'™)) = dist(by,, Hj(w™))| = 0. (25)

Assuming the claim, we finish the proof of the lemma as follows. d.ebe a shortest orthogeodesic
in X, from 6Hj(w(m)) to 0X,, ande],, = €, be the complete geodesic containing. Then by lemma
6.2,¢l, € U, F;;(7,,). Let the dual ok, be the edge.,, of dyR;(w(™). For any edge,, € E;;(w(™)
dual to an edgé,, of 9y R;(w'™), we havel(e,, N X)) = 2dist(bn, H;(w™)) by the definition of
Delaunay. Therefore by (25)

linrln [L(em N Xym)) — L(eh, N X ymm)| = 0.

By lemma 6.2, since/,, is a shortest geodesig,, is also a shortest geodesic farlarge.

To see the clam (25), recall that a simple geodesic loo>arl) is a smooth magpy : [0,1] — X
so thata(0) = a(1), a1y is a geodesic and/|)y ;) is injective. Now for eachi < k and form large,
the equidistance curve; ;(m) betweenH;(w™)) and H;(w(™)) is a simple geodesic loop in the cusp
region H;(sm(1,1,...,1)) wherelim,, s,, = 0. This is due to the fact thav!™ — 0 andw!™ —

t; > 0. Itis well known that if is a simple geodesic loop in a cusp regiip(w), then the length of
« is less tharw;. Therefore,l(«; j(m)) < s, andlim,, {(a; ;(m)) = 0. By definition, the boundary
AR (w™) C Uia; j(m). If am, by, are two edgedy R, (w™, then by definition|dist(ay,, H;(w™)) —
dist(by, Hj(w™))| < S°F_ 1(u ;(m)). Therefore (25) follows fronbim,, /(e j(m)) = 0 . O
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