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Abstract

A discrete conformality for polyhedral metrics on surfaces is introduced in this paper which gen-
eralizes earlier work on the subject. It is shown that each polyhedral metric on a surface is discrete
conformal to a constant curvature polyhedral metric which is unique up to scaling. Furthermore, the
constant curvature metric can be found using a discrete Yamabe flow with surgery.

1 Introduction

1.1 Statement of results

The Poincare-Koebe uniformization theorem for Riemann surfaces is a pillar in the last century mathematics.
It states that given any Riemannian metric on a connected surface, there exists a complete constant curvature
Riemannian metric conformal to the given one. Furthermore, the complete metric of curvature -1 is unique
unless the underlying Riemann surface is biholomorphic to the Riemann sphere, a torus, or the punctured
plane. The uniformizztion theorem has a wide range of applications within and outside mathematics. There
have been much work on establishing various discrete versions of the uniformization theorem for discrete
or polyhedral surfaces. A key step in discretization is to define the concept of discrete conformality. The
most prominent one is probably Thurston’s circle packing theory. The purpose of this paper is to intro-
duce a discrete conformality for polyhedral metrics and discrete Riemann surfaces and establish a discrete
uniformization theorem within the category of polyhedral metrics (PL metrics) on compact surfaces.

Polyhedral surfaces are ubiquitous in computer graphics and many fields of sciences nowadays. Or-
ganizing polyhedral surfaces according to their conformal classes is a very useful and important principle.
However, to decide if two polyhedral surfaces are conformal in the classical (Riemannian) sense is highly
non-trivial and time consuming. The discrete conformality introduced in this paper overcomes this compu-
tational difficulty.

Given a closed surfaceS and a finite non-empty setV ⊂ S, we call (S, V ) a marked surface. The
objects of our investigation arepolyhedral metrics(or simply PL metrics) on surfaces. By definition, a PL
metric on(S, V ) is a flat cone metric onS whose cone points are inV . For instance, the boundary of a
tetrahedron in the 3-space is a PL metric on the 2-sphere with 4 cone points. The norms of holomorphic
quadratic differentials on Riemann surfaces are other examples of PL metrics. Thediscrete curvatureof
a PL metric on(S, V ) is the function onV sending a vertexv ∈ V to 2π less the cone angle atv. A
triangulationT of S with vertex setV is called atriangulationof (S, V ). Each PL metricd on (S, V ) has a
Delaunay triangulationT (d) of (S, V ) so that each triangle inT (d) is Euclidean and the sum of two angles
facing each edge is at mostπ.

Definition 1.1 (Discrete conformality and discrete Riemann surface) Two PL metricsd, d′ on (S, V ) are
discrete conformal if there exist sequences of PL metricsd1 = d, ..., dm = d′ on (S, V ) and triangulations
T1, ..., Tm of (S, V ) satisfying

(a) eachTi is Delaunay indi,
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(b) if Ti = Ti+1, there exists a functionu : V → R, called a conformal factor, so that ife is an edge in
Ti with end pointsv andv′, then the lengthsldi+1

(e) andldi
(e) of e in di anddi+1 are related by

ldi+1
(e) = ldi

(e)eu(v)+u(v′), (1)

(c) if Ti 6= Ti+1, then(S, di) is isometric to(S, di+1) by an isometry homotopic to the identity in(S, V ).
The discrete conformal class of a PL metric is called a discrete Riemann surface.
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Figure 1: discrete conformal change of PL metrics, all triangulations are Delaunay

Theorem 1.2 Suppose(S, V ) is a closed connected marked surface andd is any PL metric on(S, V ). Then
for any K∗ : V → (−∞, 2π) with

∑
v∈V K∗(v) = 2πχ(S), there exists a PL metricd′, unique up to

scaling, on(S, V ) so thatd′ is discrete conformal tod and the discrete curvature ofd′ is K∗. Further-
more, the discrete Yamabe flow with surgery associated to curvatureK∗ with initial valued converges tod′

exponentially fast.

For the constant functionK∗ = 2πχ(S)/|V | in theorem 1.2, we obtain a constant curvature PL metric
d′, unique up to scaling, discrete conformal tod. This is a discrete version of the uniformization theorem.
Theorem 1.2 also holds for compact marked surfaces with non-empty boundary. In that case, we double the
surface to obtain a closed surface. We omit the details.

The prototype of definition 1.1 comes from the work of Roček and Williams in physics [19] and [16].
The drawback of the definition in [19] and [16] is that it depends on the choice of triangulations. A convex
variational principle associated to the discrete conformality was established in [16].

It is highly desirable to have a quantitative estimate of the difference between discrete conformality and
classical conformality. See [12] for an estimate of this type.

There are many proofs of the Poincare-Koebe uniformization theorem. The proof most closely related
to our work is Hamilton’s Ricci flow. The Ricci flow proof of the uniformization theorem for closed sur-
faces was achieved by a combination of the work of [13], [7], and [6]. In the discrete case, the situation is
much more complicated due to the combinatorics. To prove theorem 1.2, we use Penner’s decorated Teichu-
muller theory [18], the work of Bobenko-Pinkall-Springborn [4] relating PL metrics to Penner’s theory and
a variational principle developed in [16].

Hamilton’s Ricci flow is a flow in the space of all Riemannian metrics on a manifold. In the discrete
setting, the discrete Yamabe flow with surgery is aC1-smooth flow on the finite dimensional Teichmüller
space of flat cone metrics on a closed marked surface(S, V ).
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A theorem of Troyanov [23] states that the same result of theorem 1.2 holds if discrete conformality
is replaced by the classical Riemannian conformality. The major difference between Troyanov’s work and
theorem 1.2 is that in our case, we discretize the metric and conformality so that a metric is represented
as a edge length vector inRN and discrete conformality can be decided algorithmically from edge length
vector. Theorem 1.2 is also related to the work of Kazdan and Warner [14] and [15] on prescribing Gaussian
curvature. It is possible that theorem 1.2 implies the existence part of Troyanov’s theorem and Kazdan-
Warner’s theorem for closed surfaces by approximation.

The similar theorem for hyperbolic cone metrics on(S, V ) has been proved in [11]. In this case, two
hyperbolic cone metricsd, d′ on (S, V ) arediscrete conformalif there exist sequences of hyperbolic cone
metricsd1 = d, ..., dm = d′ on (S, V ) and triangulationsT1, ..., Tm of (S, V ) satisfying (a) eachTi is
Delaunay indi, and (b) ifTi = Ti+1, there exists a functionu : V → R so that ife is an edge inTi with end
pointsv andv′, then the lengthsldi+1

(e) andldi
(e) of e in di anddi+1 are related by

sinh(
ldi+1

(e)
2

) = sinh(
ldi

(e)
2

)eu(v)+u(v′), (2)

and (c) ifTi 6= Ti+1, then(S, di) is isometric to(S, di+1) by an isometry homotopic to the identity in(S, V ).
The condition (2) was first introduced in [4].

Theorem 1.3 Suppose(S, V ) is a closed connected marked surface andd is any hyperbolic cone metric
on (S, V ). Then for anyK∗ : V → (−∞, 2π) with

∑
v∈V K∗(v) > 2πχ(S), there exists a unique

hyperbolic cone metricd′ on (S, V ) so thatd′ is discrete conformal tod and the discrete curvature ofd′

is K∗. Furthermore, the discrete Yamabe flow with surgery associated to curvatureK∗ with initial valued
converges tod′ exponentially fast. In particular, ifχ(S) < 0 andK∗ = 0, each hyperbolic cone metric on
(S, V ) is discrete conformal to a unique hyperbolic metric onS.

1.2 Notations and conventions

Triangulations to be used in the paper are defined as follows. Take a finite disjoint union of Euclidean
triangles and identify edges in pairs by homeomorphisms. The quotient space is a compact surface together
with a triangulationT whose simplices are the quotients of the simplices in the disjoint union. LetV =
V (T ) andE = E(T ) be the sets of vertices and edges inT . If e is an edge inT adjacent to two distinct
trianglest, t′, then thediagonal switchonT ate replacese by the other diagonal in the quadrilateralt ∪e t′

and produces a new triangulationT ′ on (S, V ). A PL metricd on (S, V ) is obtained as isometric gluing of
Euclidean triangles along edges so that the set of cone points is inV . Given a PL metricd and a triangulation
T on(S, V ), if each triangle inT (in d metric) is isometric to a Euclidean triangle, we sayT is geometricin
d. If T is a triangulation of(S, V ) isotopic to a geometric triangulationT ′ in a PL metricd, then thelength
of an edgee ∈ E(T ) (or angleof a triangle at a vertex inT ) is defined to be the length of the corresponding
geodesic edgee′ ∈ E(T ′) (respectively angle of the corresponding triangle inT ′) measured in metricd.
The interior of a surfaceX is denoted byint(X). If X is a finite set,|X| denotes its cardinality andRX

denotes the vector space{f : X → R}. All surfaces are assumed to be connected.

1.3 Acknowledgement
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2 Teichmüller space of PL metrics and Delaunay conditions

Suppose(S, V ) is a marked connected surface. The discrete curvatureK : V → (−∞, 2π) of a PL metric
d on S satisfies the Gauss-Bonnet formula that

∑
v∈V K(v) = 2πχ(S). Therefore, ifχ(S − V ) ≥ 0, i.e.,
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(S, V ) = (S2, {v1, ..., vn}) with n ≤ 2, the Gauss-Bonnet identity implies there is no PL metric on(S, V ).
From now on, we will always assume that the Euler characteristicχ(S − V ) < 0. Most of the results in this
section are well known. We omit details.

2.1 Teichmüller space of PL metrics and its length coordinates

Two PL metricsd, d′ on (S, V ) are calledequivalentif there is an isometryh : (S, V, d) → (S, V, d′) so
thath is isotopic to the identity map on(S, V ). TheTeichm̈uller space of all PL metricson Σ, denoted by
Tpl(S, V ), is the set of all equivalence classes of PL metrics on(S, V ), i.e.,

Tpl = Tpl(S, V ) = {d| d is a PL metric on(S, V )}/isometry ∼= id.

A result of Troyanov [23] shows thatTpl(S, V ) is homeomorphic toR−3χ(S−V ). Below, we will use a
natural collection of charts onTpl which makes it a real analytic manifold. SupposeT is a triangulation of
(S, V ) with set of edgesE = E(T ). Let

RE(T )
∆ = {x ∈ RE

>0|x(ei) + x(ej) > x(ek), if there is a trianglet in T with edgesei, ej , ek}

be the convex polytope inRE . For eachx ∈ RE(T )
∆ , one constructs a PL metricdx on (S, V ) by replacing

each trianglet of edgesei, ej , ek by a Euclidean triangle of edge lengthsx(ei), x(ej), x(ek) and gluing them
by isometries along the corresponding edges. This construction produces an injective map

ΦT : RE(T )
∆ → Tpl(S, V )

sendingx to [dx]. The imageP (T ) := ΦT (RE(T )
∆ ) is the space of all PL metrics[d] on (S, V ) for whichT

is isotopic to a geometric triangulation ind. We callx the length coordinateof dx and[dx] = ΦT (x) with
respect toT . If u : V → R is a discrete conformal factor andx ∈ RE

>0, then the discrete conformal change
u∗x of x is u∗x(vv′) = x(vv′)eu(v)+u(v′) for all edgesvv′ ∈ E(T ). This is the prototype of (1) introduced
in [19] and [16].

In generalP (T ) 6= Tpl(S, V ). Indeed, letd be the metric double of an obtuse trianglet along its
boundary andT be the natural triangulation whose edges are edges oft. LetT ′ be the triangulation obtained
by the diagonal switch at the shortest edge oft. ThenT ′ is not isotopic to any geometric triangulation ind.

Since each PL metric on(S, V ) admits a geometric triangulation (for instance its Delaunay triangula-
tion), we see thatTpl(S, V ) = ∪T P (T ) where the union is over all triangulations of(S, V ). The space
Tpl(S, V ) is a real analytic manifold with coordinate charts{(P (T ),Φ−1

T )|T triangulations of(S, V )}. To
see transition functionsΦ−1

T ΦT ′ are real analytic, note that any two triangulations of(S, V ) are related by
a sequence of diagonal switches. Therefore, it suffices to show the result forT andT ′ which are related
by a diagonal switch along an edgee. In this case, the transition functionΦ−1

T ΦT ′ sends(x0, x1, ...., xm)
to (f(x0, ..., xm), x1, ..., xm) wherex0 is the length ofe andf is the length of the diagonal switched edge.
See figure 2. Lett, t′ be the triangles adjacent toe so that the lengths of edges oft, t′ are{x0, x1, x2} and
{x0, x3, x4}. Using the cosine law, we see thatf is a real analytic function ofx0, ..., x4. In the case that the
quadrilateralt ∪e t′ is inscribed to a circle, we have the famous Ptolemy identityx0f = x1x3 + x2x4.

2.2 Delaunay triangulations

Given a PL metricd on (S, V ), its Voronoi decompositionis the collection of 2-cells{R(v)|v ∈ V } where
R(v) = {x ∈ S|d(x, v) ≤ d(x, v′) for all v′ ∈ V }. Its dual is called aDelaunay tessellationC(d) of
(S, V, d) ([2], [5]). It is a cell decomposition of(S, V, d) with verticesV and two verticesv, v′ are jointed
by an edge if and only ifR(v)∩R(v′) is 1-dimensional. ADelaunay triangulationT (d) of (S, V ) in metric
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Figure 2: diagonal switch and lengths of quadrilaterals

d is a geometric triangulation of the Delaunay tessellationC(d) by further triangulating all non-triangular
2-dimensional cells (without introducing extra vertices). For a generic PL metricd, C(d) is a Delaunay
triangulation ofd.

Lemma 2.1 (See [5], [2]) Each PL metricd on (S, V ) has a Delaunay triangulation. IfT and T ′ are
Delaunay triangulations ofd, then there exists a sequence of Delaunay triangulationsT1 = T , T2, ...,
Tk = T ′ of d so thatTi+1 is obtained fromTi by a diagonal switch.

Definition 2.2 (Delaunay cell) For a triangulationT of (S, V ), the associated Delaunay cell inTpl(S, V )
is defined by

Dpl(T ) = {[d] ∈ Tpl(S, V )| T is isotopic to a Delaunay triangulation ofd}.

Note thatDpl(T ) ⊂ P (T ) and is non-empty. Indeed the PL metric so that the length of each edge is 1
is in Dpl(T ). Assume thatT is geometric ind. One can characterize PL metrics[d] ∈ Dpl(T ) in terms of
the length coordinatex = Φ−1

T ([d]) as follows. By definitionT is Delaunay ind if and only if

α + α′ ≤ π, i.e., cos(α) + cos(α′) ≥ 0, for each edgee ∈ E(T ) (3)

whereα, α′ are the two angles facinge. See figure 2. Lett andt′ be the triangles adjacent toe ande, e1, e2

be edges oft ande, e3, e4 be the edge oft′. Note thatt′ = t is allowed. Suppose the length ofe (in d) is x0

and the length ofei is xi, i = 1, ..., 4. By the cosine law, Delaunay condition (3) is the same as

x2
1 + x2

2 − x2
0

2x1x2
+

x2
3 + x2

4 − x2
0

2x3x4
≥ 0, for all edgese ∈ E(T ). (4)

Inequality (4) shows thatDpl(T ) ⊂ Tpl is bounded by a finite set of real analytic subvarieties. It turns
out{Dpl(T )|T } forms a real analytic cell decomposition ofTpl.

Let us recall the basics of real analytic cell decompositions of a real analytic manifoldMn. A subspace
C ⊂ M is areal analytic cellif there is a real analytic diffeomorphismh defined in an open neighborhood
U of C into Rn so thath(C) is a convex polytope inRn. A faceC ′ of C is a subset so thath(C ′) is a face of
the polytopeh(C). A real analytic cell decompositionof M is a locally finite collection of n-dimensional
real analytic cells{Ci|i ∈ J} so thatM = ∪i∈JCi andCi1 ∩ ... ∩ Cik is a face ofCij for all choices of
indices.

A theorem of Rivin [21] shows thatDpl(T ) is a real analytic cell of dimension−3χ(S − V ). Indeed,
one takes the open neighborhood ofDpl(T ) to beP (T ) and fixese1 ∈ E. Defineh to be the real analytic
map sendingx to (φ0(x), x(e1)) whereφ0(x)(e) = α+α′ whereα andα′ are angles facinge. Rivin proved
thath is a real analytic diffeomorphism into an open subset of a codimension-1 affine subspace ofRE × R
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so thath(Dpl(T )) is a convex polytope and faces ofDpl(T ) are subsets defined byα + α′ = π for some
collection of edgese. By [2], [5], if W = Dpl(T1)∩ ....Dpl(Tk) 6= ∅, thenW is a face ofDpl(Ti) for eachi.
Indeed,W is the face ofDpl(Ti) defined by the set of equalities:α + α′ = π for all edgese /∈ ∩k

j=1E(Tj).
The discussion above shows that we have a real analytic cell decomposition of the Teichmüller space by

{Dpl(T )|T } invariant under the action of the mapping class group,

Tpl(S, V ) = ∪[T ]Dpl(T ) (5)

where the union is over all isotopy classes[T ] of triangulations of(S, V ).

3 Penner’s work on decorated Teichm̈uller spaces

One of the main tools used in our proof is the decorated Teichmüller space theory developed by R. Penner
[18]. We will recall the theory and prove a few new results in this section. For details, see [18] or [10].

3.1 Decorated triangles

Let H2 be the 2-dimensional hyperbolic plane. Anideal triangleis a hyperbolic triangle inH2 with three
verticesv1, v2, v3 at the sphere at infinity ofH2. Any two ideal triangles are isometric. Adecorated ideal
triangle τ is an ideal triangle so that each vertexvi is assigned a horoballHi centered atvi. Let ei be the
complete geodesic edge ofτ opposite to the vertexvi. The innerangleai of τ is the length of the portion
of the horocycle∂Hi betweenej andek, {i, j, k} = {1, 2, 3}. The length li ∈ R of the edgeei in τ is
the signed distance betweenHj andHk (j, k 6= i). To be more precise, ifHj ∩ Hk = ∅, thenli > 0 is
the distance betweenHk andHj . If Hj ∩ Hk 6= ∅, then−li is the distance between two end points of
∂(ei ∩Hj ∩Hk). Penner callsLi = eli/2 theλ-lengthof ei.

a1

a3

a2

l3

l2
l1

li > 0

Hj

Hk

Hj

Hk

li < 0

Figure 3: decorated ideal triangles and their edge lengths

It is known that for anyl1, l2, l3 ∈ R, there exists a unique decorated ideal triangle of edge lengths
l1, l2, l3. The relationship between the lengthsli and anglesaj ’s is the following cosine lawproved by
Penner:

ai = e
1
2
(li−lj−lk) =

Li

LjLk
, ln(ai) + ln(aj) = −lk, {i, j, k} = {1, 2, 3}. (6)

Let S be a closed connected surface andV = {v1, ..., vn} ⊂ S andΣ = S − V . We assumen ≥ 1
andχ(Σ) < 0. Following Penner, adecorated hyperbolic metricon Σ is a complete finite area hyperbolic
metricd onΣ together with a horoballHi centered at the i-th cusp atvi for eachi. We can also parameterize
it as(d, w) wherew = (w1, ..., wn) ∈ Rn

>0 with wi being the length of the horocycle∂Hi. Two decorated
hyperbolic metrics onΣ areequivalentif there is an isometryh between them so thath is homotopic to
the identity andh preserves the horoballs. The space of all equivalence classes of decorated hyperbolic
metrics onΣ is defined to be thedecorated Teichm̈uller spaceTD(Σ). If we useT (Σ) to denote the usual
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Teichm̈uller space of complete hyperbolic metrics of finite area onΣ, then there is a natural homeomorphism
from TD(Σ) to T (Σ)×Rn

>0 by sending[(d, w)] to ([d], w). The projectionTD(Σ) → T (Σ) sending[(d,w)]
to [d] records the underlying hyperbolic metric.

Now supposeT is a triangulation of(S, V ) with E = E(T ). Then Penner introduced a homeomorphism
map ΨT : RE

>0 → TD(Σ) called λ-length coordinate as follows. For eachx ∈ RE
>0, i.e., x : E →

R>0, ΨT (x) is the equivalence class of the decorated hyperbolic metric(d, w) on Σ obtained as follows.
If t is a triangle inT with three edgesei, ej , ek, one replacest by the decorated ideal triangle of edge
lengths2 ln x(ei), 2 ln x(ej) and2 ln x(ek) and glues these decorated ideal triangles isometrically along the
corresponding edges preserving decoration. One obtains a decorated hyperbolic metric(d,w) on Σ. The
horoballs are the gluing of the corresponding portions of horoballs associated to ideal triangles. In particular,
wi is the sum of all angles of the decorated ideal triangles atvi. Penner proved, using his Ptolemy identity,
that Ψ−1

T ΨT ′ is real analytic for any two triangulationsT andT ′. Here Ptolemy identity for decorated
ideal quadrilaterals states thatAA′ + BB′ = CC ′ whereA,A′, B, B′ are theλ-lengths of the edges of a
quadrilateral andC,C ′ are theλ-lengths of the diagonals. See figure 4. In particular,{ΨT |T } forms real
analytic charts forTD(Σ).

The following lemma is well know. We omit the proof.

Lemma 3.1 SupposeC is an embedded horocycle of lengthwi centered at a cusp in a complete hyperbolic
surface andC ′ is another embedded horocycle of smaller lengthw′

i centered at the same cusp. Then the
wi = w′

ie
t wheret = d(C,C ′) is the distance betweenC andC ′.

By the lemma and definition, ifΨT (x) = [(d,w)] then for anyk > 0, ΨT (kx) = [(d, 1
kw)]. Thus, for

any (d,w), by choosingk large, one may assume the associated horoballs are disjoint and embedded in
(d,w/k).

3.2 Delaunay triangulations

Given a decorated hyperbolic metric(d,w) on Σ, there is a naturalDelaunay triangulationT associated
to (d, w). The geometric definition ofT goes as follows. First assume that the associated horoballs
H1(w), ...,Hn(w) are embedded and disjoint inΣ. Consider the Voronoi cell decomposition of the compact
surfaceXw = Σ − ∪n

i=1int(Hi(w)) so that the 2-cellRi(w) associated tovi is {x ∈ Xw|d(x, ∂Hi(w)) ≤
d(x, ∂Hj(w)), all j}. An orthogeodesicin Xw is a geodesic from∂Xw to ∂Xw perpendicular to∂Xw. The
dual of the Voronoi decomposition is a decompositionC(d, w) of X by a collection of disjoint embedded
orthogeodesics arcs{s′} constructed as follows. Ifs ⊂ Ri(w) ∩Rj(w) is a geodesic segment, take a point
p ∈ S and consider the two shortest geodesicsbi andbj in Ri(w) andRj(w) respectively fromp to ∂Hi(w)
and∂Hj(w). The shortest orthogeodesics′ in Xw homotopic tob−1

i ∗ bj is an arc inD(d) dual tos. A De-
launay triangulation ofXw is a further decomposition ofC(d,w) by decomposing all non-hexagonal 2-cells
by orthogeodesic. Since each orthogeodesic extends to a complete geodesic from cusp to cusp, one obtains
a Delaunay triangulationT (d,w) of the decorated metric(d, w) on Σ by extension. For a generic metric
(d,w), a Delaunay triangulation is the dual to the Voronoi decomposition. By the definition of Voronoi cells
and lemma 3.1, Delaunay triangulations of(d, w) and(d,w/k) are the same whenk > 1. Due to this, for
a general decorated metric(d,w), we define a Delaunay triangulation of(d, w) to be that of(d,w/k) for k
large.

For a given triangulationT of (S, V ), let D(T ) be the set of all equivalence classes of decorated hyper-
bolic metrics(d, w) in TD(Σ) so thatT is isotopic to a Delaunay triangulation of(d, w). Penner proved the
following important theorem in [18]. Details on the real analytic diffeomorphism part of the decomposition
can be found in [10].
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Theorem 3.2 (Penner) The decorated Teichmüller spaceTD(Σ) has a real analytic cell decomposition by
{D(T )|T } and

TD(Σ) = ∪[T ]D(T )

where the union is over all isotopy classes of triangulations. The decomposition is invariant under the action
of the mapping class group.

3.3 Finite set of Delaunay triangulations

We thank B. Springborn for informing us the following result was known before and was a theorem of
Akiyoshi [1]. However, our proof is different and short. For completeness, we present our proof in the
appendix. The theorem holds for decorated finite volume hyperbolic manifolds of any dimension.

Theorem 3.3 (Akiyoshi) For any finite area complete hyperbolic metricd onΣ, there are only finitely many
isotopy classes of triangulationsT so that([d]×Rn

>0)∩D(T ) 6= ∅. In particular, there exist triangulations
T1, ...,Tk so that for anyw ∈ Rn

>0, any Delaunay triangulation(d, w) is isotopic to one ofTi.

4 Euclidean polyhedral metrics and decorated hyperbolic metrics

The relationship between edge length coordinate of PL metrics with that ofλ-length was first noticed in [4].
Fix a triangulationT of (S, V ), we have two coordinate mapsΦ−1

T : P (T ) → RE(T ) andΨT : RE(T ) →
TD(S, V ). Consider the injective mapAT : P (T ) → TD(Σ) defined byΨT ◦ Φ−1

T .

Theorem 4.1 AT |Dpl(T ) is a real analytic diffeomorphism fromDpl(T ) ontoD(T ).

Proof To see thatAT mapsDpl(T ) bijectively ontoD(T ), it suffices to show thatΦ−1
T (Dpl(T )) =

Ψ−1
T (D(T )).

Recall that the characterization of a PL metricd which is Delaunay inT in terms ofx = Φ−1
T (d) is as

follows. Take an edgee ∈ E(T ) and lett andt′ be the triangles adjacent toe so thate, e1, e2 are edges of
t ande, e3, e4 are the edge oft′. Supposeα, α′ are the angles (measured ind) in t andt′ facinge. Then the
Delaunay condition is equivalent to

α + α′ ≤ π, i.e., cos(α) + cos(α′) ≥ 0, for all edgese ∈ E(T ). (7)

Suppose the length ofe (in d) is x0 and the length ofei is xi, i = 1, ..., 4. By the cosine law, Delaunay
condition (7) is the same as

x2
1 + x2

2 − x2
0

2x1x2
+

x2
3 + x2

4 − x2
0

2x3x4
≥ 0, for all edgese ∈ E(T ). (8)

This shows that

Φ−1
T (Dpl(T )) = {x ∈ RE

>0| (8) holds for each edgee, and (9) holds for each triangle}

where
x(ei) + x(ej) > x(ek), ei, ej , ek form edges of a triangle inT . (9)

Lemma 4.2 Supposex : E(T ) → R>0 so that (8) holds for all edges. Then (9) holds for all triangles.

8



Proof Suppose otherwise, there existsx ∈ RE
>0 so that (8) holds but there is a triangle with edgesei, ej , ek

so that
x(ei) ≥ x(ej) + x(ek). (10)

In this case, we sayei is a ”bad” edge. Lete be a ”bad” edge of the largestx value, i.e.,x(e) = max{x(ei)|
(10) holds}. Let t, t′ be the triangles adjacent toe and the edges oft andt′ be{e, e1, e2} and{e, e3, e4}.
Note thatt′ = t is allowed if e is adjacent to one triangle. Letx0 = x(e), xi = x(ei) for i = 1, 2, 3, 4.
Without loss of generality we may assume that

x1 + x2 ≤ x0. (11)

Sincee is a ”bad” edge of the largestx value, we havex3 < x0 + x4 andx4 < x0 + x3, i.e.,

|x3 − x4| < x0. (12)

On the other hand, inequality (8) holds forx0, x1, ..., x4, i.e.,

x2
0 − x2

1 − x2
2

2x1x2
≤ x2

3 + x2
4 − x2

0

2x3x4
. (13)

Inequality (11) says the left-hand-side of (13) is at least 1 and inequality (12) says the right-hand-side
of (13) is strictly less than 1. This is a contradiction.�

The spaceΨ−1
T (D(T )) can be characterized as follows. Suppose theλ-length of(d′, w) ∈ D(T ) is

x = Ψ−1
T (d′, w). For each edgee in (S, T , d′), let a, a′ be the two angles facinge andb, b′, c, c′ be the

angles adjacent to the edgee. Then(d′, w) is Delaunay inT if and only if for each edgee ∈ E(T ) (see [18]
or [10]),

a + a′ ≤ b + b′ + c + c′. (14)

Let t andt′ be the triangle adjacent toe ande, e1, e2 be edges oft ande, e3, e4 be the edges oft′. Let
theλ-length ofe bex0 and theλ-length ofei bexi. Then using the cosine law (6), one sees that (14) is
equivalent to

x2
0

x1x2
+

x2
0

x3x4
≤ x1

x2
+

x2

x1
+

x3

x4
+

x4

x3
, for eache ∈ E(T ). (15)

Inequality (15) is equivalent to

0 ≤ x2
1 + x2

2 − x2
0

2x1x2
+

x2
3 + x2

4 − x2
0

2x3x4
, for eache ∈ E(T ). (16)

Therefore,
Ψ−1
T (D(T )) = {x ∈ RE

>0| (16) holds at each edgee ∈ E(T )}.

However, inequality (16) is the same as (8). This showsΦ−1
T (Dpl(T )) ⊂ Ψ−1

T (D(T )). On the other
hand, lemma 4.2 implies thatΦ−1

T (Dpl(T )) = Ψ−1
T (D(T )).

Finally, since bothΦT andΨT are real analytic diffeomorphisms andAT = ΨT ◦ Φ−1
T andA−1

T =
ΦT ◦Ψ−1

T , we see thatAT is a real analytic diffeomorphism.�
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4.1 Globally defined map, diagonal switch and Ptolemy relation

Theorem 4.3 SupposeT andT ′ are two triangulations of(S, V ) so thatDpl(T ) ∩Dpl(T ′) 6= ∅. Then

AT |Dpl(T )∩Dpl(T ′) = AT ′ |Dpl(T )∩Dpl(T ′). (17)

In particular, the gluing of theseAT |Dpl(T ) mappings produces a homeomorphismA = ∪T AT |Dpl(T ) :
Tpl(S, V ) → TD(S−V ) such thatA([d]) andA([d′]) have the same underlying hyperbolic structure if and
only if d andd′ are discrete conformal.

Proof Suppose[d] ∈ Dpl(T ) ∩ Dpl(T ′), i.e.,T andT ′ are both Delaunay in the PL metricd. Then it is
known that there exists a sequence of triangulationsT1 = T , T2, ..., Tk = T ′ on (S, V ) so that eachTi is
Delaunay ind andTi+1 is obtained fromTi by a diagonal switch. In particular,AT ([d]) = AT ′([d]) follows
from ATi([d]) = ATi+1([d]) for i = 1, 2, ..., k − 1. Thus, it suffices to showAT ([d]) = AT ′([d]) whenT ′

is obtained fromT by a diagonal switch along an edgee. In this case the transition functionsΦ−1
T ΦT ′ and

Ψ−1
T ΨT ′ are the diagonal switch formulas. Penner proved an amazing result that theλ-lengths satisfy the

Ptolemy identity for decorated ideal quadrilaterals. See [18] and figure 4. This result, translated into the
language of length coordinates, says thatΦ−1

T ΦT ′(x) = Ψ−1
T ΨT ′(x) for x ∈ Φ−1

T (Dpl(T )∩Dpl(T ′)). This
is the same as (17). Taking the inverse, we obtain

A−1
T |D(T )∩D(T ′) = A−1

T ′ |D(T )∩D(T ′). (18)

Lemma 4.4 (a) Dpl(T ) ∩Dpl(T ′) 6= ∅ if and only ifD(T ) ∩D(T ′) 6= ∅.
(b) The gluing mapA = ∪T AT |Dpl(T ) : Tpl → TD is a homeomorphism invariant under the action of

the mapping class group.

Proof By (17) and (18), the mapsA = ∪T AT |Dpl(T ) : Tpl → TD andB = ∪T A−1
T |D(T ) : TD → Tpl are

well defined and continuous. SinceA(Dpl(T ) ∩ Dpl(T ′)) ⊂ D(T ) ∩ D(T ′) andB(D(T ) ∩ D(T ′)) ⊂
Dpl(T ) ∩Dpl(T ′), part (a) follows. To see part (b), sinceTD = ∪T D(T ), the mapA is onto. To seeA is
injective, supposex1 ∈ Dpl(T1), x2 ∈ Dpl(T2) so thatA(x1) = A(x2) ∈ D(T1) ∩D(T2). Apply (18) to
A−1
T1
|,A−1

T2
| on the setD(T1) ∩D(T2) at the pointA(x1), we conclude thatx1 = x2. This shows thatA is

a bijection with inverseB. Since bothA andB are continuous,A is a homeomorphism.�

Now if d andd′ are two discrete conformally equivalent PL metrics, thenA([d]) andA([d′]) are of
the form (p, w) and (p, w′) due to the definition ofΨ−1

T ΦT . On the other hand, if two PL metricsd, d′

satisfy thatA([d]) andA([d′]) are of the form(p, w) and(p, w′), consider a generic smooth pathγ(t) =
(p, w(t)), t ∈ [0, 1], in TD(Σ) from (p, w) to (p, w′) so thatγ(t) intersects the cellsD(T )’s transversely.
This implies thatγ passes through a finite set of cellsD(Ti) andTj andTj+1 are related by a diagonal
switch. Let t0 = 0 < ... < tm = 1 be a partition of[0, 1] so thatγ([ti, ti+1]) ⊂ D(Ti). Saydi is
the PL metric so thatA([di]) = γ(ti) ∈ D(Ti) ∩ D(Ti+1), d1 = d anddm = d′. Then by definition,
the sequences{d1, ..., dm} and the associated Delaunay triangulations{T1, ..., Tm} satisfy the definition of
discrete conformality ford, d′. �

Theorem 4.5 The homeomorphismA : Tpl(S, V ) → TD(S − V ) is aC1 diffeomorphism.

Proof It suffices to show that for a point[d] ∈ Dpl(T ) ∩ Dpl(T ′), the derivativesDAT [d]) andDAT ′([d])
are the same. Since bothT andT ′ are Delaunay ind and are related by a sequence of Delaunay triangu-
lations (ind) T1 = T , T2, ..., Tk = T ′, DAT ([d]) = DAT ′([d]) follows from DATi([d]) = DATi+1([d])
for i = 1, 2, ..., k − 1. Therefore, it suffices to showDAT ([d]) = DAT ′([d]) whenT andT ′ are related
by a diagonal switch at an edgee. In the coordinatesΦT andΨT , the fact thatDAT ([d]) = DAT ′([d]) is
equivalent to the following smoothness question on the diagonal lengths.
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Lemma 4.6 SupposeQ is a convex Euclidean quadrilateral whose four edges are of lengthsx, y, z, w and
the length of a diagonal isa. See figure 4. SupposeA(x, y, z, w, a) is the length of the other diagonal and
B(x, y, z, w, a) = xz+yw

a . If a point (x, y, z, w, a) satisfiesA(x, y, z, w, a) = B(x, y, z, w, a), i.e., Q is
inscribed in a circle, thenDA(x, y, z, w, a) = DB(x, y, z, w, a) whereDA is the derivative ofA.

x

y

w

z

a

A
α′

β′

α

β

B

A′

B′

A C ′
C

AA′ +BB′ = CC ′aA = xz + yw

Figure 4: Euclidean and hyperbolic Ptolemy

Proof The roles ofx, y, z, w are symmetric with respect toa. Hence it suffices to show that∂A
∂a = ∂B

∂a and
∂A
∂x = ∂B

∂x at these points. First, we have∂B
∂x = z

a and ∂B
∂a = −B

a .
Now letα, α′, β, β′ be the angles formed by the pairs of edges{y, a}, {a, x}, {a, z} and{a,w}. By the

cosine law, we have
A2 = y2 + z2 − 2yz cos(α + β).

Take partialx derivative of it. We obtain

2A
∂A

∂x
= 2yz sin(α + β)

∂α

∂x
.

But it is well known (see for instance [17]) that in the triangle of lengthsx, y, a,

∂α

∂x
=

x

ay sin(α)
. (19)

Therefore,
∂A

∂x
=

xz sin(α + β)
aA sin(α)

.

Now at the point whereA(x, y, z, w, a) = B(x, y, z, w, a), the quadrilateral is inscribed to the circle. There-
fore, sin(α+β)

sin(α) = A
x . By putting these together, we see that∂A

∂x = xzA
aAx = z

a = ∂B
∂x .

Next, we calculate∂A
∂a . By the formula above, we obtain2A∂A

∂a = 2yz sin(α + β)(∂α
∂a + ∂β

∂a ). Now by

the derivative cosine law ([8]), we have∂α
∂a = −∂α

∂x cos(α′) which in turn is− x cos(α′)
ay sin(α) by (19). Similarly,

we have∂β
∂a = −w cos(β′)

az sin(β) . Putting these together, we obtain,

∂A

∂a
= −yz sin(α + β)

aA
(
x cos(α′)
y sin(α)

+
w cos(β′)
z sin(β)

).

Now sinceA = B, the quadrilateral is inscribed in a circle, therefore,sin(α+β)
sin(α) = A

x and sin(α+β)
sin(β) = A

w .

Therefore,∂A
∂a = − 1

a(z cos(α′) + y cos(β′)) = −A
a = −B

a = ∂B
∂a where the identityA = z cos(α′) +

y cos(β′) comes from the triangle of lengthsy, z, A and the fact thatQ is inscribed in a circle.�
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5 A proof of the main theorem

Using the mapA : Tpl(S, V ) → TD(Σ), we see that for a given PL metricd on(S, V ), the set{[d′]|d′ is discrete
conformal tod} is C1-diffeomorphic to{p} × Rn

>0 ⊂ TD(S − V ) for somep ∈ T (Σ). Therefore,
the discrete uniformization theorem is equivalent to a statement about the discrete curvature map defined
on {p} × Rn

>0 ⊂ TD(S − V ). Let us make a change of variables fromw = (w1, ..., wn) ∈ Rn
>0 to

u = (u1, ..., un) ∈ Rn whereui = ln(wi). We writew = w(u). For a givenp ∈ T (Σ), define the curvature
mapF : Rn → (−∞, 2π)n by

F(u) = KA−1(p,w(u)) (20)

whereKd is the discrete curvature. The map satisfies the property thatF(u + k(1, 1, ..., 1)) = F(u) and
F(u) lies in the planeGB = {x ∈ Rn|

∑n
i=1 xi = 2πχ(S)} defined by the Gauss-Bonnet identity. Let

P = {u ∈ Rn|
∑n

i=1 ui = 0} andQ = GB ∩ (−∞, 2π)n. Then the restrictionF := F|P : P → Q. The
discrete uniformization theorem is equivalent to say thatF : P → Q is a bijection. We will show thatF is
a homeomorphism in this section.

We will prove thatF : P → Q is injective in §5.2 using a variational principle developed in [16].
Assuming injectivity, we show thatF : P → Q is onto in§5.1.

5.1 The mapF is onto

Assuming thatF is injective, we proveF is onto in this section. Since bothP andQ are connected manifolds
of dimensionn− 1 andF is injective and continuous, it follows thatF (P ) is open inQ. To show thatF is
onto, it suffices to prove thatF (P ) is closed inQ.

To this end, take a sequence{u(m)} in P which leaves every compact set inP . We will show that
{F (u(m))} leaves each compact set inQ. By taking subsequences, we may assume that for each index

i = 1, 2, ..., n, the limit limm u
(m)
i = ti exists in[−∞,∞]. Furthermore, since the space{p} × P is in

the union of a finite set of Delaunay cellsD(T ), we may assume, after taking another subsequence, that
the corresponding PL metricsdm = A−1(p, w(u(m))) are Delaunay in one triangulationT . We will do our
calculation in the length coordinateΦT below.

Due to the normalization that
∑

i u
(m)
i = 0 andu(m) does not converge to any vector inP , there exists

ti = ∞ andtj = −∞. Let us label verticesv ∈ V by blackandwhiteas follows. The vertexvi is black if
and only ifti = −∞ and all other vertices are white.

Lemma 5.1 (a) There does not exist a triangleτ ∈ T with exactly two white vertices.
(b) If ∆v1v2v3 is a triangle inT with exactly one white vertex atv1, then the inner angle of the triangle

at v1 converges to0 asm →∞ in the metricsdm.

Proof To see (a), suppose otherwise, using theΦT length coordinate, we see the given assumption is equiv-

alent to following. There exists a Euclidean triangle of lengthsaie
u
(m)
j +u

(m)
k , {i, j, k} = {1, 2, 3}, where

limm u
(m)
i > −∞ for i = 2, 3 andlimm u

(m)
1 = −∞. By the triangle inequality, we have

a2e
u
(m)
1 +u

(m)
3 + a3e

u
(m)
1 +u

(m)
2 > a1e

u
(m)
2 +u

(m)
3

This is the same as
a2e

−u
(m)
2 + a3e

−u
(m)
3 > a1e

−u
(m)
1 .

However, by the assumption, the right-hand-side tends to∞ and the left-hand-side is bounded. The contra-
diction shows that (a) holds.
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To see (b), we use the same notation as in the proof of (a). Let the lengthl
(m)
i of the edgevjvk in metric

dm beaie
u
(m)
j +u

(m)
k , {i, j, k} = {1, 2, 3}. Let αi := αi(m) be the inner angle atvi. Note that the triangle

is similar to the triangle of lengthsaie
−u

(m)
i andlimm aie

−u
(m)
i is∞ wheni = 2, 3 and is finite fori = 1.

Therefore, the angleα1 tends to 0.�

We now finish the proof ofF (P ) = Q as follows. Since the surfaceS is connected, there exists an edge
e whose end pointsv, v1 have different colors. Assumev is white andv1 is black. Letv1, ..., vk be the set of
all vertices adjacent tov so thatv, vi, vi+1 form vertices of a triangle and letvk+1 = v1. Now apply above
lemma to triangle∆vv1v2 with v white andv1 black, we conclude thatv2 must be black. Repeating this
to ∆vv2v3 with v white andv2 black, we concludev3 is black. Inductively, we conclude that allvi’s, for
i = 1, 2, ..., k, are black. By part (b) of the above lemma, we conclude that the curvature ofdm atv tends to
2π. This shows thatF (u(m)) tends to infinity ofQ. ThereforeF (P ) = Q.

5.2 Injectivity of F

The proof uses a variational principle developed in [16]. Recall that the mapF : Rn → Rn is the discrete
curvature mapKA−1(p,w(u)) given by (20). SinceA is a C1 diffeomorphism and the discrete curvature
K : Tpl(S, V ) → RV is real analytic, hence the mapF is C1 smooth. LetTi, i = 1, ..., k, be the set of all
triangulations so that({p} × Rn) ∩D(Ti) 6= ∅ and{p} × Rn ⊂ ∪k

i=1D(Ti).

Lemma 5.2 Let φ : Rn → {p} × Rn beφ(x) = (p, x) andUi = φ−1(({p} × Rn) ∩ D(Ti)) ⊂ Rn and
J = {i| int(Ui) 6= ∅}. ThenRn = ∪i∈JUi andUi is real analytic diffeomorphic to a convex polytope in
Rn.

Proof By definition, both{p} × Rn andD(Ti) are closed and semi algebraic inTD(Σ). ThereforeUi is
closed and semi-algebraic. Now by definition,X := ∪i∈JUi is a closed subset ofRn sinceUi is closed. If
X 6= Rn, then the complementRn−X is a non-empty open set which is a finite union of real algebraic sets
of dimension less thann. This is impossible.

Finally, we will show that for any triangulationT of (S, V ) and p ∈ T (Σ), the intersectionU =
φ−1(({p} × Rn) ∩ D(T )) is real analytically diffeomorphic to a convex polytope in a Euclidean space.
In fact Ψ−1

T (U) ⊂ RE(T ) is real analytically diffeomorphic to a convex polytope. To this end, letb =
Ψ−1
T (p, (1, 1, ...., 1)). By definition,Ψ−1

T (U) is give by

{x ∈ RE(T )
>0 |∃λ ∈ RV

>0, x(e) = b(e)λ(v1)λ(v2), ∂e = {v1, v2}, Delaunay condition (15) holds forx}.

We claim that the Delaunay condition (15) consists of linear inequalities in the variableδ : V → R>0 where
δ(v) = λ(v)−2. Indeed, suppose the two triangles adjacent to the edgee = (v1, v2) have verticesv1, v2, v3

andv1, v2, v4 as shown in figure 2. Letxij (respectivelybij) be the value ofx (respectivelyb) at the edge
joining vi, vj , andλi = λ(vi). By definition, xij = bijλiλj . The Delaunay condition (15) at the edge
e = (v1v2) says that

x2
12

x31x32
+

x2
12

x41x42
≤ x31

x32
+

x32

x31
+

x41

x42
+

x42

x41
(21)

It is the same as, usingxij = bijλiλj ,

c3
λ1λ2

λ2
3

+ c4
λ1λ2

λ2
4

≤ c1
λ2

λ1
+ c2

λ1

λ2
,

whereci is some constant depending only onbjk’s. Dividing above inequality byλ1λ2 and usingδi = λ−2
i ,

we obtain
c3δ3 + c4δ4 ≤ c1δ1 + c2δ2 (22)
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at each edgee ∈ E(T ). This shows forb fixed, the set of all possible values ofδ form a convex polytopeQ
defined by (22) at all edges andδ(v) > 0 at allv ∈ V . On the other hand, by definition, the map fromQ to

Ψ−1
T (U) sendingδ to x = x(δ) given byx(vv′) = b(vv′)√

δ(v)δ(v′)
is a real analytic diffeomorphism. Thus the

result follows.�

Write F = (F1, ..., Fn) which isC1 smooth. By theorems 1.2 and 2.1 of [16], one sees that (a)Fj |Uh
is

real analytic so that∂Fi
∂uj

= ∂Fj

∂ui
in Uh for all h ∈ J and (b) the Hessian matrix[∂Fi

∂uj
] is positive semi-definition

on eachUh so that its kernel consists of vectorsλ(1, 1, ..., 1). Therefore, the 1-formη =
∑

i Fi(u)dui is a
C1 smooth 1-form onRn so thatdη = 0 on eachUh, h ∈ J . This implies thatdη = 0 in Rn. Hence the
integralW (u) =

∫ u
0 η is a well definedC2 smooth function onRn so that its Hessian matrix is positive semi-

definition. Therefore,W is convex inRn so that its gradient5W = F. Furthermore, since the kernel of the
Hessian ofW consists of diagonal vectorsλ(1, 1, ..., 1) at each point inUh, h ∈ J andRn = ∪h∈JUh, the
Hessian of the functionW |P is positive definite. HenceW |P is strictly convex. Now we use the following
well known lemma,

Lemma 5.3 If W : Ω → R is aC1-smooth strictly convex function on an open convex setΩ ⊂ Rm, then its
gradient5W : Ω → Rm is an embedding.

Apply the lemma toW |P and use5(W |P ) = F , we conclude thatF : P → Q is injective.
The discrete Yamabe flow with surgery is the gradient flow of the strictly convex functionW (u) −∑n

i=1 K∗
i ui which has a unique minimal point inP . In the formal notation, the flow takes the formdui(t)

dt =
Ki −K∗

i andu(0) = 0. The exponential convergence of the flow was established in theorem 1.4 of [16].

6 A Conjecture

We conjecture that the number of surgery operations used in the discrete Yamabe flow to find the target PL
metric is finite, i.e., along the integral curve of the gradient flow of the functionW (u) −

∑n
i=1 K∗

i ui, only
finitely many diagonal switches occur. This is supported by our numerical experiments.

There should be a related theory of discrete conformal maps associated to the discrete Riemann surfaces
introduced in this paper. See [22] for the corresponding discrete conformal maps for circle packing.
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Appendix: A proof of Akiyoshi’s theorem

For completeness, we present our proof in this appendix. The theorem and the proof hold for decorated
finite volume hyperbolic manifolds of any dimension. We state the 2-dimensional case for simplicity.

Theorem 6.1 (Akiyoshi [1]) For a finite area complete hyperbolic metricd onΣ, there exist triangulations
T1, ...,Tk so that for anyw ∈ Rn

>0, any Delaunay triangulation of(d,w) is isotopicTi, i ∈ {1, 2, ..., k}.

Proof We begin by study the shortest geodesics in a complete finite area hyperbolic surface(Σ, d). Recall
the Shimizu lemma [3] which implies that ifw ∈ (0, 1)n, then the associated horoballsHi(w) in the
decorated metric(d,w) are embedded and pairwise disjoint. Let us assume without loss of generality that
w ∈ (0, 1)n. A geodesicα from cuspvi to vj in (Σ, d) is called ashortest geodesicfrom vi to vj if there
exists aw ∈ (0, 1)n so thatα ∩ Xw is a shortest path among all homotopically non-trivial paths inXw

joining ∂Hi(w) to ∂Hj(w). The shortest property implies thatα ∩Xw is an orthogeodesic. Furthermore,
by lemma 3.1, ifα is a shortest geodesic, then for anyw′ ∈ (0, 1)n, α ∩Xw′ is again a shortest geodesic in
Xw′ from ∂Hi(w′) to ∂Hj(w′), i.e., being a shortest geodesic fromvi to vj is independent of the choice of
decorations. Indeed, for any geodesicβ from cuspvi to vj , we have

l(β ∩Xw′) = l(β ∩Xw)− ln(w′
i)− ln(w′

j) + ln(wi) + ln(wj) (23)

Lemma 6.2 Suppose(Σ, d) is a finite area complete hyperbolic surface. Then
(a) there are only finitely many shortest geodesics fromvi to vj .
(b) there isδij = δij(Σ, d) > 0 so that ifα is a shortest geodesic fromvi to vj andβ is another geodesic

fromvi to vj with |l(β ∩Xw)− l(α ∩Xw)| ≤ δij , thenβ is a shortest geodesic.
(c) givenvi, if α is a shortest orthogeodesic geodesics among all orthogeodesics inXw from ∂Hi to

∂Xw, thenα∗, the complete geodesic containingα, is an edge of the decorated metric(d,w) and the mid-
point ofα is in Rj(w).

Proof The first part follows from the simple fact that on any compact surfaceXw, for any constantC, there
are only finitely many orthogeodesics of length at mostC. Part (b) follows from (a) and equality (23).
Part (c) follows from the definition of Voronoi cells and its dual. Note that in general, ifβ is a shortest
orthogeodesic inXw between∂Hi(w) and∂Hj(w), β∗ may not be an edge in any Delaunay triangulation
of (d, w). �

Now we prove the theorem by contradiction. Suppose otherwise, there exists a sequence of decorated
metrics(d, w(m)) wherew(m) = (w(m)

1 , ..., w
(m)
n ) ∈ Rn so that the associated Delaunay triangulations

Tm = T (d,w(m)) are pairwise distinct in(Σ, d). After normalizingw(m) by scaling, relabel the vertices
v1, ..., vn and taking subsequences, we may assume

(i) w
(m)
1 = max{w(m)

i |i = 1, 2, ..., n} = 1/2;

(ii) for eachi = 1, 2, ..., n, the limit limm w
(m)
i = ti ∈ [0, 1/2] exists;

(iii) t1, ..., tk > 0 andtk+1 = ... = tn = 0.
For simplicity, we useEij(T ) to denote the subset of all edges ofT joining vi to vj . We will derive a

contradiction by showing that∪mEij(Tm) is a finite set.
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Lemma 6.3 There exists a constantC > 0 so that for alli, j ≤ k, and alle ∈ Eij(Tm), the length

l(e ∩Xw(m)) ≤ C.

In particular,∪mEij(Tm) is a finite set.

Proof For anyδ ∈ (0, 1/2), let u(m)(δ) = (w(m)
1 , ..., w

(m)
k , δ, ..., δ) ∈ Rn. Fix a δ, sincelimm w

(m)
j = 0

for j > k, for m large, each pointx ∈ Xu(m)(δ) is in some Voronoi cellRi(w(m)) for somei ≤ k.
Therefore, there is a smallδ > 0 so that for alli, j = 1, 2, ..., k, all largem, and all e ∈ Eij(Tm),
e∩Xw(m) ⊂ Xu(m)(δ). By the assumption thatt1, ..., tk > 0 and by choosingδ smaller thanmin{t1, ..., tk},
we see that the surfaceXu(m)(δ) is a subset of the compact surfaceX(δ,...,δ). Therefore, there is a constant
C > 0 so thatdiam(Xu(m)(δ)) ≤ C/2 for all m. Note if e ∈ E(T (d, w)) is an edge, then the length of the
orthogeodesice ∩Xw in metricd satisfies,

l(e ∩Xw) ≤ 2diam(Xw), (24)

wherediam(Y ) is the diameter of a metric spaceY . Indeed,l(e∩Xw) ≤ diam(Ri(w))+diam(Rj(w)) ≤
2diam(Xw). This shows, by (24), that

l(e ∩Xw(m)) ≤ l(e ∩Xu(m)(δ)) ≤ 2diam(Xu(m)(δ)) ≤ C.

Finally, since for any constantC, there are only finitely many orthogeodesics inX(δ,...,δ) of lengths at
mostC, it follows that∪mEij(Tm) is finite. �

Now for m large, each point inXu(m)(1/2) is in ∪k
i=1Ri(w(m)). Therefore for largem, if i, j > k, then

Eij(Tm) = ∅ since an edgee ∈ Eij(Tm) must intersectXu(m)(1/2). Hence ifEjh(Tm) 6= ∅, thenh ≤ k.

Lemma 6.4 There isn0 so that ifm ≥ n0, j > k ande ∈ Eij(Tm), thene is a shortest geodesic fromvi to
vj . In particular for j > k andi ≤ k, the set∪mEij(Tm) is finite.

Proof We need to study the Voronoi cellRj(w(m)). Sincelimm w
(m)
j = 0 andti > 0, for largem, the

Voronoi cellRj(w(m)) ⊂ Hj(u(m)(1/2)). Let∂0Rj(w(m)) be the piecewise geodesic boundary component
∂Rj(w(m))− ∂Hj(w(m)).
Claim for any two edgesam, bm in ∂0Rj(w(m)),

lim
m
|dist(am,Hj(w(m)))− dist(bm,Hj(w(m)))| = 0. (25)

Assuming the claim, we finish the proof of the lemma as follows. Letεm be a shortest orthogeodesic
in Xw from ∂Hj(w(m)) to ∂Xw ande′m = ε∗m be the complete geodesic containingεm. Then by lemma
6.2,e′m ∈ ∪n

i=1Eij(Tm). Let the dual ofe′m be the edgeam of ∂0Rj(w(m)). For any edgeem ∈ Eij(w(m))
dual to an edgebm of ∂0Rj(w(m)), we havel(em ∩ Xw(m)) = 2dist(bm,Hj(w(m))) by the definition of
Delaunay. Therefore by (25)

lim
m
|l(em ∩Xw(m))− l(e′m ∩Xw(m))| = 0.

By lemma 6.2, sincee′m is a shortest geodesic,em is also a shortest geodesic form large.
To see the clam (25), recall that a simple geodesic loop on(Σ, d) is a smooth mapα : [0, 1] → Σ

so thatα(0) = α(1), α|(0,1) is a geodesic andα|[0,1) is injective. Now for eachi ≤ k and form large,
the equidistance curveαi,j(m) betweenHi(w(m)) andHj(w(m)) is a simple geodesic loop in the cusp

region Hj(sm(1, 1, ..., 1)) where limm sm = 0. This is due to the fact thatw(m)
j → 0 and w

(m)
i →

ti > 0. It is well known that ifα is a simple geodesic loop in a cusp regionHj(w), then the length of
α is less thanwj . Therefore,l(αi,j(m)) ≤ sm and limm l(αi,j(m)) = 0. By definition, the boundary
∂0Rj(w(m)) ⊂ ∪iαi,j(m). If am, bm are two edges∂0Rj(w(m), then by definition|dist(am,Hj(w(m)))−
dist(bm,Hj(w(m)))| ≤

∑k
i=1 l(αi,j(m)). Therefore (25) follows fromlimm l(αi,j(m)) = 0 . �
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