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Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for
surfaces with arbitrary topology. According to the celebrated uniformization theorem, all Riemann
surfaces can be classified as elliptic, parabolic or hyperbolic. Our algorithm is able to work on all
these cases by first constructing an initial map onto an appropriate domain, such as sphere, or a
polygon in the plane R2 or the hyperbolic disk D, and then morphing the diffeomorphism based on
the highly efficient discrete Beltrami flow algorithm. For high genus surfaces, both the final mapping
and and the target domain is unknown, which presents a challenge in general. The novelty in our
method lies in the iterative change of generators on the uniformization domain, which indicates a
change of geometry of the target domain to match the geometry of the original surface. Numerical
results are presented to show the efficiency and accuracy (in terms of distortion) of our methods as
well as comparison to other state of the art algorithms.
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1. Introduction. Surface uniformization is an important mathematical tool for
geometric study and understanding of surfaces. By mapping surfaces conformally onto
a canonical domain, we have a natural correspondence between surfaces of the same
topology class. Therefore, it is widely used in applications such as surface process-
ing, texture mapping, medical imaging, shape analysis and surface classification and
comparison. Many of these applications rely on surface uniformization as an essential
tool for understanding the geometry of surfaces. Therefore, it is important to have
efficient computational tools for constructing surface uniformizations in practice.

A number of approaches have been proposed for surface uniformization based
on different but equivalent mathematical characterization of surface uniformization.
For examples, one class of approaches compute surface uniformizations by solving
a system of linear equations. The uniformization problem is first formulated as an
equivalent optimization problem, such as the minimization of harmonic energy. Then
a linear system is constructed for solving the optimization problem, usually by finite
element method. However, such methods can only work on a small class of surfaces,
such as simply connected open surfaces surfaces where such a reformulation exists.
Therefore, they are efficient but do not work for general multiply connected domains
with arbitrary topology. For these surfaces, such as those simply connected surfaces,
one can use a gradient descent approach to minimize the harmonic energy. However,
as we will show, methods based on harmonic energy may not be very accurate and
hence cause large angular distortions.

An alternative approach is based on Ricci flow, which aims to adjust the conformal
factor of a surface map such that the surfaces metric evolves according to Ricci flow
to flatten the surface. As the surface is flattened to make its Gaussian curvature as
close to 0 as possible, the surface map becomes the desired surface uniformization.
It is known that Ricci flow is the gradient flow that minimizes a convex energy for
Euclidean and hyperbolic domains. With the energy being convex, Newton’s method
can be effectively used to minimize the energy, and it can be shown that Ricci flow
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methods converge exponentially fast. However, on spherical domains, the energy is
non-convex and singularities may occur, which have to be removed by some surface
surgeries. Despite the fact, Ricci flow based methods are considered very efficient and
work for surfaces with general topologies.

In this paper we propose a new approach based on quasiconformal geometry that
allows the use of general energy functionals in terms of the Beltrami differential, which
describes non-conformal distortions of surface maps. Our formulation is more general
and flexible while simple to understand and implement. A simple least squares energy
functional of the Beltrami differential can be used to compute surface uniformizations
that result in minimal distortions comparable to that by Ricci flow based methods.

A sketch of our approach is as follows. We first compute an initial map from
M onto the parametrization target domain, which is a sphere for genus 0 surfaces, a
rectangle for genus 1 surfaces, and a polygon in the hyperbolic disk for high genus
surfaces. The initial map is computed through Tutte mapping, which guarantees
one-to-one and onto for a simply connected open surface. With the initial map, we
adjust the parametrization using the discrete Beltrami flow algorithm, which com-
putes a vector field that adjusts the parametrization to minimize the L2-norm of the
Beltrami differential. However, one difficulty for computing uniformization for high
genus surface lies at the fact that both the final mapping and the target domain which
are coupled needs to be determined by the flow. In our approach we design a flow
that keeps the consistency of corresponding points under the change of generators
for high genus surfaces. With this technique, we can adjust the diffeomorphism and
the generators, which determine the target domain, at the same time to achieve the
correct conformal structure for surfaces with genus g ≥ 1. This technique is useful for
keeping proper conformal structures of high genus surface parametrizations, and can
be directly applied to other high genus surface mapping applications, such as surface
registrations.

2. Previous Work. Surface uniformization is an essential tool for various ap-
plications of surface processing, including brain mapping [2, 5], texture mapping
[4, 8, 15], shape analysis [18] and surface classification [3] and comparison [11].

Several different computational methods for surface uniformization were intro-
duced recently, most of which are after 2000 as computational power improved. Lévy
et al. [8] proposed to generate texture atlas by computing conformal maps in the least
squares sense. The technique can also be applied to surface uniformization for sim-
ply connected open surfaces. Gu et al. [2] proposed computing genus zero conformal
maps by minimizing the harmonic energy functional using gradient descent. Jin et
al. [7] proposed computing global conformal structures of surfaces by computing the
holomorphic 1-forms for surfaces of genus g ≥ 1. Open surfaces are modeled as closed
surfaces by a double covering. Later, Jin et al. [6] proposed using discrete surface
Ricci flow for the uniformization of surfaces with arbitrary topology. The method
was improved upon the work of Chow et al. [1], which connected Ricci flows on dis-
crete surfaces with those on continuous surfaces, but used a slower gradient descent
approach.

The approach of this paper is to take another view on the uniformization prob-
lem for discrete surfaces. Since it is not possible to compute uniformizations for dis-
crete surfaces which are exactly conformal, it is more practical to consider maps with
bounded conformal distortions and be able to control the desired amount of distor-
tions. Therefore, the theory of quasiconformal maps is closely related to our method.
It was a natural extension of the development of conformal maps for discrete surfaces.
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Using the method of Beltrami holomorphic flow, Lui et al. [13] proposed to repre-
sent and adjust surface registrations using Beltrami coefficients. The method uses an
integral flow formula and is restricted to simply connected surfaces. By making use
of auxiliary metrics, Zeng et al. [17] extended the method of discrete surface Ricci
flow to general quasiconformal maps for arbitrary topologies. The computation of
quasiconformal maps was studied by Mastin et al. [14], where a weak formulation
was used to solve Beltrami equations for special class of domains with slits. Using a
linear discretization for the Beltrami equation, Lui et al. [12] proposed an efficient Bel-
trami representation for applications in texture mapping and video compression. By
deriving simple formulas for quasiconformal maps fixing 4 points, Lipman et al. [10]
computed plane deformations with minimal distortions and applied the method on the
adjustment of planar maps. The idea of quasiconformal maps can also be described
as maps with a bounded distortion, and was used by Lipman [9] for finding maps
from triangular meshes onto the plane with desirable properties. Recently, Wong and
Zhao [16] proposed a discrete Beltrami flow directly between two arbitrary surfaces.
The flow is designed in term of a vector field corresponding to the adjustment to the
intrinsic Beltrami differential defined in a local conformal coordinate. Using a least
squares approach, the method can compute quasiconformal homeomorphisms that
minimize energies in terms of Beltrami differentials between two arbitrary surfaces
and can incorporate other constraints, such as correspondences and curve/boundary
conditions, in the formulation.

3. Theoretical Background. In this section, we give an overview of the techni-
cal background of our surface uniformization algorithms. To work on general surfaces
with arbitrary topology, we first introduce surface classification results from the Rie-
mann uniformization theorem. This enables us to work on a canonical domain such
as the sphere, the Euclidean plane or the hyperbolic disk. Then we introduce how
quasiconformal maps between surfaces can be represented by Beltrami differentials on
these domains. This allows us to describe distortions in surface maps. Using the Bel-
trami differential as our representation, we consider how the change of it is related to
the vector field we use to adjust surface maps. Precisely, we introduce the method of
Beltrami flows to compute such vector fields. Finally, to work on high genus surfaces,
we derive the consistent conditions the Beltrami flows have to satisfy while adjusting
the surface maps.

3.1. Closed Surfaces and Their Uniformizations. The Riemann uniformiza-
tion theorem states that every closed smooth surface can be conformally mapped onto
exact one of the unit sphere, the Euclidean plane or the hyperbolic disk, after a quo-
tient operation by a discrete subgroup acting on the uniformizing space for the latter
2 cases. For the case of simply connected closed surfaces, they can always be confor-
mally mapped onto the unit sphere without any quotient operation. The process of
finding such conformal maps is called surface uniformization. To precisely define the
notations we use for cases requiring quotient operations, we describe these cases in
detail in the next 2 subsections.

3.2. Uniformization for Genus One Surfaces. According to the uniformiza-
tion theorem, every genus one closed surface M can be mapped conformally onto
R2/T , where T is a discrete additive subgroup of R2 generated by 2 generators. With-
out loss of generality, we may assume the generators to be (1, 0) and (a, b). M can be
mapped conformally onto a fundamental domain Ω with 4 corners identified. Denote
by p1, p2, p3 and p4 the corners of the fundamental domain. With the generators,
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Fig. 3.1. The fundamental polygon for a genus two surface. Each pair of corresponding sides
is labeled with the same number of arrows. The actions of the generators of its Fuchsian group are
shown by the dotted arrows.

p1 = (0, 0), p2 = (1, 0), p3 = (1 + a, b) and p4 = (a, b). Let A1, B2, A2 and B1 be the
boundaries of Ω from p1 to p2, p2 to p3, p3 to p4 and p4 to p1 respectively. By the
generator relations, we have A2 = A1 + a + b

√
−1, and B2 = B1 + 1. Therefore, to

reach the correct generators in our algorithms, these relations must be satisfied as Ω is
deformed under the Beltrami flow, with respect to the changing generator (a(t), b(t)).

3.3. Uniformization for High Genus Surfaces. According to the uniformiza-
tion theorem, every high genus surface M with genus greater than or equal to 2 admits
a uniformization onto the hyperbolic space. Mathematically, there exists a discrete
subgroup G ⊂ PSL(2,R), called the Fuchsian group, such that there is a conformal
diffeomorphism φ : M → D/G, where D is the hyperbolic unit disk. Precisely, the
Fuchsian group is a discrete subgroup of the group PSL(2,R), which acts on the hy-
perbolic disk by fractional linear transformations, also called Möbius transformations.

To correctly adjust a diffeomorphism from a surface onto D/G, one needs to
continuously morph the generators of G such that the corresponding boundaries
remain consistent. For a genus g surface, it is possible to realize D/G as a fun-
damental polygon in D with 4g sides. Denote by p1, p2, . . . , p4g the vertices of
the fundamental polygon. One can find generator a1, . . . , ag, b1, . . . , bg such that
a1(p4) = p1, a1(p3) = p2, b1(p2) = p5, b1(p3) = p4, . . . , ag(p4g) = p4g−3, ag(p4g−1) =
p4g−2, bg(p4g−2) = p1, bg(p4g−1) = p4g. Then the generators automatically satisfy the
relation

a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = id. (3.1)

Therefore the Fuchsian group G is generated by these generators:

G = 〈a1, . . . , ag, b1, . . . , bg〉. (3.2)

A figure of the fundamental polygon for a genus two surface is shown in Figure 3.1
with the generators of its Fuchsian group and corresponding sides labeled.

The key issue for constructing the uniformization for high genus surfaces is that
both the target domain, i.e., the fundamental polygon, and the conformal map be-
tween the surface and the fundamental polygon need to be constructed. That means
the generators and hence the fundamental domain have to be adjusted together with
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the diffeomorphisms between the surface and fundamental domain during the flow.
In particular one needs to keep the lengths equal for the 2g pairs of corresponding
sides and preserve the angle sum of the fundamental domain to 2π. In discussing
our algorithms, we will illustrate these constraints in detail and show that they can
be enforced by modifying the Beltrami flow. Before explaining our method for this
more complicated case, we first describe the geometry of the hyperbolic disk and its
transformations in the next subsection.

3.4. Geometry of the Hyperbolic Disk. The hyperbolic disk D, also known
as the Poincaré disk, can be constructed by equipping the unit disk in the complex
plane with the following metric:

ds2 =
dz dz

(1− zz)2
. (3.3)

With the above metric, the hyperbolic distance from a point p ∈ D to the origin is

distH(z) = tan−1(|z|), (3.4)

where H denotes hyperbolic. It can be shown that all isometries of the hyperbolic
upper half plane H are of the form

φ(z) =
az + b

cz + d
, (3.5)

where a, b, c, d are real numbers and ad − bc 6= 0. Therefore the group PSL(2,R)
acts on H by Möbius transformations. For the hyperbolic disk, the isometries take
the form

w = eφ
√
−1 z − a

1− az
, (3.6)

where φ ∈ R and a ∈ D. This will be the form we use to describe the parameters of
our generators. The group of Möbius transformations of this form is isomorphic to
PSL(2,R).

3.5. Beltrami Coefficients and Beltrami Differentials. With the theory
on surfaces and their uniformization, it is important to have a mathematical tool to
describe the distortions of surface maps, which allows us to measure how far away we
are from the uniformizing map. For this purpose, we naturally consider the theory of
quasiconformal maps, which is a direct generalization of conformal maps.

Consider first a complex-valued function f defined on the complex plane. Assume
f is C1. f can also be considered as a complex-valued function defined on the (x, y)-
plane R2. We define its Beltrami coefficient at z to be

µ(z) =
fz(z)

fz(z)
, (3.7)

where fz and fz are complex derivatives of f defined as

∂f

∂z
=

1

2

(
∂f

∂x
+
√
−1

∂f

∂y

)
(3.8)

and

∂f

∂z
=

1

2

(
∂f

∂x
−
√
−1

∂f

∂y

)
. (3.9)
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Locally f maps a small disk centered at z to an ellipse centered at f(z), with the

dilation K(z) given by 1+|µ(z)|
1−|µ(z)| . If there is no non-conformal distortion at z, then

µ(z) = 0 and K(z) = 1. Therefore the Beltrami coefficient is a quantity that measures
local non-conformal distortions of surface maps.

To generalize the notion of Beltrami coefficients to arbitrary Riemann surfaces,
where a global conformal parametrization may not exist, we can represent the local
non-conformal distortions of a surface map by the Beltrami differential

µ(z)
dz

dz
, (3.10)

where µ(z) is the Beltrami coefficient of the surface map represented using a local
conformal parametrization z. In 4.1, we will describe the discrete Beltrami flow
algorithm, which allows us to adjust the Beltrami differentials of surface maps using
vector fields.

3.6. Tutte Embedding. To map a cut open graph onto a planer domain, we
apply the well known Tutte embedding, which asserts that for any 3-connected graph
G = 〈V,E, F 〉 representing a triangular mesh, suppose its boundary ∂G is embedded
in the plane as a (not necessarily strictly) convex polygon, then the following systems
of linear equations can be solved for the x and y coordinates of the embedding of G:∑

vj∈N(vi)

1

|N(vi)|
xj = xi, i = 1, . . . , |V | − |∂G|, (3.11)

∑
vj∈N(vi)

1

|N(vi)|
yj = yi, i = 1, . . . , |V | − |∂G|, (3.12)

where {v1, . . . , v|V |−|∂G|} are all the interior points of G. A graph is called 3-connected
if it remains connected after the removal of any 2 vertices and their incident edges.
This is true for most triangular meshes in general. By the theorem, we can get an
embedding of the graph onto the convex planer domain by solving the above systems
of linear equations.

4. Numerical Algorithms. In this section, we describe the numerical algo-
rithms we use for surface uniformization, which are based on the various theories on
surfaces, their classifications and the distortions of the maps between them. With the
results from these theories, our algorithms are able to work on general surfaces with
arbitrary topology.

4.1. A Brief Introduction of the Discrete Beltrami Flow Algorithm. In
this subsection, we briefly describe the discrete Beltrami flow algorithm we use for
uniformization. First we consider a map from and to the complex plane C. After
that, we briefly discuss how the method is generalized to arbitrary surfaces.

Consider a domain Ω ∈ C2. The aim of the Beltrami flow algorithm is to find
a quasiconformal map f from Ω to some domain Σ which optimizes some energy
E(µ), where µ : C→ C is the Beltrami coefficient of the map. The domain Σ can be
fixed or unknown itself depending on the application. In both cases, the algorithm
seeks a flow V : C → C such that by flowing f using V , i.e., adjust the map f to
gt(z) = f(z) + tV (z) with some appropriate time step t, the energy is decreased.

Suppose the current Beltrami coefficient is µ, and there is a direction ν : Ω → C
such that E(µ+ ν) < E(µ), we want to compute V such that the Beltrami coefficient
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of gt(z) = f + tV is approximately µ + tν for small t. It is shown [16] that V , also
called the Beltrami flow, satisfies

∂V

∂z
=

(
ν

1− |µ|2
1

θ

)
◦ (f)−1, (4.1)

where θ = p
p and p = ∂

∂z f(z). By solving V using the method of least squares, a flow

is obtained for adjusting f . This is the method developed in [16] for constructing
quasiconformal maps between two arbitrary surfaces. For an energy functional E of
µ, we can set ν to be the gradient decent direction for example, and compute the
flow V giving the required adjustment in µ. On discrete surfaces, the least square
energy can be written as a sum of squares of discrete derivatives computed on every
triangle. This method is called the discrete Beltrami flow algorithm, and was used to
produce results for simply connected closed surfaces in this paper. The square of the
L2-norm of the Beltrami differential was used as the energy functional in this paper
and produced excellent results. Other energy functionals of µ can be used as well,
which is one of the advantages of our algorithms.

4.2. Initialization by Tutte Embedding for Genus One Surfaces. To
construct an initial map from a genus one surface M onto the fundamental domain
[0, 1] × [0, 1] ∈ R2 with initial generators (1, 0), (0, 1) ∈ R2, we first select a point p
from the vertices of the triangular mesh of M , to be mapped to the 4 corners of the
fundamental domain. We pick 2 homotopically different loops with p as endpoints on
the mesh to represent the homological basis of the first homology group of the mesh,
which will be mapped onto the 2 pairs of opposite sides respectively. These loops can
be picked by hand or can be constructed by some graph searching algorithms. After
cutting up the mesh along these loops, we obtain a graph representation of the cut
open mesh, which is open and simply connected. Using Tutte embedding, we can
easily map M onto [0, 1] × [0, 1] with 2 pairs of sides identified for consistency. This
completes our initialization for genus one surfaces.

4.3. Discrete Beltrami Flow for Genus One Surfaces. Suppose we have a
parametrization from a genus one surface M onto a fundamental domain Ω ∈ R2, with
generators 1 and (a, b) in R2 as discussed in 4.2. Suppose ∂Ω = A1 ∪ B2 ∪ A2 ∪ B1,
where A2 = A1 + a + b

√
−1 and B2 = B1 + 1. We want to flow this domain in R2

so that the generator (a(t), b(t)) is changing as a function of time and A1, A2 move
consistently with respect to this change of generator, i.e.,

A2 = A1 + a(t) + b(t)
√
−1. (4.2)

Figure 4.1 illustrates the cuts on the torus and how the cut open torus is mapped
onto a fundamental domain with the correspondence described.

For each point p1 on A1 and its corresponding point p2 on A2, by (4.2), we have
the relation

p2(t) = p1(t) + a(t) + b(t)
√
−1. (4.3)

Therefore, on A1 and A2, we have the following condition for the flow V :

V (p2) = V (p1) +
d

dt
a(t) +

d

dt
b(t)
√
−1. (4.4)

On B1 and B2, since the generator (1, 0) is not changing, we have

q2(t) = q1(t) + 1 (4.5)
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Fig. 4.1. The cuts on a torus and how the cut open torus is mapped onto a fundamental domain.
(a) shows a torus with 2 cuts made along 2 homotopically different loops at their intersection. (b)
shows how the cut open torus is then mapped onto a fundamental domain. The corresponding sides
on the torus and the fundamental domain are marked with the same number of arrows.

for all q1 on B1 and its corresponding point q2 on B2. Therefore, on B1 and B2, we
have

V (q2) = V (q1). (4.6)

To adjust the diffeomorphism according to a given Beltrami coefficient ν, we
minimize the following energy functional∫

Ω

∣∣∣∣ ∂∂z V (z)− ν(z)

∣∣∣∣2 dx dy (4.7)

with the above constraints (4.4) and (4.6) along the boundaries strictly imposed as
boundary conditions for V .

We summarize the algorithm for genus one surfaces in Algorithm 1 and leave the
discussion about the optimal time step to Subsection 4.6.

Algorithm 1 Compute the uniformization for a genus one surface

Require: A genus one surface represented by a triangular mesh M = {P,E, F}; Pick
a vertex p ∈ P to be mapped to the 4 corners of the fundamental domain; Pick 2
loops L1, L2 through p representing the homological basis of M formed by points
in P and edges in E;
Using Tutte embedding, compute a map φ from the open surface cut by L1 and L2

onto [0, 1]× [0, 1] with φ−1([0, 1]×0) = L1, φ−1([0, 1]×1) = L1, φ−1(0× [0, 1]) = L2

and φ−1(1× [0, 1]) = L2;
Set tolerance TOL;
Set generators (a, b) = (0, 1);
repeat

Compute the the least squares flow V in (4.7) with constraints (4.4) and (4.6);
Set φnew(z) := φ(z) + tV (φ(z)), where t is an optimally chosen time step;
Set (a, b) = φnew(0, 1);
Set φ to φnew;

until maxz∈P t · |V (z)| < TOL.

4.4. Initialization by Tutte Embedding for High Genus Surfaces. For
a high genus surface M with genus greater than 1, we can also construct an initial
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map from M onto the fundamental polygon in D. However, since the geodesics in D
are not straight lines in Euclidean sense, the fundamental polygon is not convex in
Euclidean sense under the Poincaré model. To solve this problem, we note that the
geodesics are straight lines in Euclidean sense under the Beltrami-Klein model of the
hyperbolic disk, and the coordinates in these models are related by

s =
2u

1 + u · u
. (4.8)

Therefore we can first embed M onto the fundamental polygon under the Beltrami-
Klein model, which is convex in Euclidean sense, then map the resulting initialization
back to the Poincaré model.

Similar to the initialization of genus one surfaces, we first pick a point p from the
vertices of the triangular mesh of M , to be mapped to the corners of the fundamental
polygon. Then we select 2g homotopically different loops with p as endpoints on
the mesh that represent the homological basis of the first homology group of the
mesh. Once the loops are chosen, the mesh can be cut along these loops to obtain a
simply connected open surface. Then Tutte embedding can be used to map M onto
the fundamental polygon under the Beltrami-Klein model. Finally, we transform the
coordinates of the image of M to get its image under the Poincaré model by the
formula

u =
s

1 +
√

1− s · s
. (4.9)

This completes the initialization for high genus surfaces.
As an example, in Figure 4.2, we illustrate the cuts of a genus 2 surface and how

the cut open surface is mapped onto a fundamental polygon using the initialization
described.

4.5. Discrete Beltrami Flow for High Genus Surfaces. Consider points
p1(t), p2(t) on ∂D, which correspond to each other by a Möbius transformation ψt,
which is also changing with the flow. To move p1 and p2 consistently in each iteration,
we derive the linear constraints that the velocities of the points and the change of pa-
rameters of the Möbius transformation have to satisfy. Suppose p1(t) = (x1(t), y1(t))
and p2(t) = (x2(t), y2(t)), and let ψt be defined by

ψt(z) = eiφ(t) z − a(t)

1− a(t)z
, (4.10)

we have the relation

ψt(p1(t)) = p2(t), (4.11)

or

eiφ(t) p1(t)− a(t)

1− a(t)p1(t)
= p2(t), (4.12)

By differentiating the above equation, one gets the linear relation of changes among
p1(t), p2(t) and the parameters φ(t) and a(t),

ṗ2 = ψ̇t(p1) = p2iφ̇+
eiφ + p2a

1− ap1
ṗ1 −

eiφ

1− ap1
ȧ+

p1p2

1− ap1
ȧ. (4.13)
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Fig. 4.2. The cuts on a genus 2 surface and how the cut open surface is mapped onto a
fundamental polygon. (a) shows a genus 2 surface with 4 cuts made along 4 homotopically different
loops at their intersection. (b) shows how the cut open surface is then mapped onto a fundamental
polygon. With such polygon, we immediate obtain the generators a1, a2, b1 and b2 of the Fuchsian
group of the surface. The corresponding sides on the surface and the fundamental polygon are
marked with the same number of arrows.

If p1 and p2 are related perfectly by (4.12), then we can compute the least square
Beltrami flow with the above linear constraint applied to every pairs of corresponding
points. However, the corresponding points and the parameters of the corresponding
Möbius transformation may not satisfy the relation (4.12) initially or during the evo-
lution, since the adjustment of the corresponding points is made in the Euclidean
sense after the vector field is computed. Therefore we use a relaxation way to enforce
the relation during the evolution by

ṗ2 − ψ̇(p1) = −α(p2 − ψ(p1)), (4.14)

where α is some relaxation parameter. In our experiment we use α = 1. This
is also equivalent to adding a Lagrange multiplier to the energy functional of the
diffeomorphism to enforce the relation (4.12) in a least square sense. So we use the
following constraint for the velocity field at the vertices of the target fundamental
polygons in D:

ṗ2 + p2 − ψ(p1) = p2iφ̇+
eiφ + p2a

1− ap1
ṗ1 −

eiφ

1− ap1
ȧ+

p1p2

1− ap1
ȧ. (4.15)

Another important constraint in our algorithm is to keep the generator relations
valid. In other words, the fundamental domain has to morph in a way such that
they can tessellate the whole hyperbolic disk. This requires all pairs of corresponding
edges to have equal length, and the angle sum of the fundamental polygon to be
2π. Interestingly, these constraints are automatically enforced by (4.12). This is
because (4.12) guarantees that each pair of corresponding sides is related by a Möbius
transformation, which is an isometry. Therefore the copies of the corners of the
fundamental domain meet at a point (e.g. one of its corners) with all pairs of its sides
consistently matched in length. Since the angle around every point in the hyperbolic
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disk is 2π, the sum of the angles of the corners has to be 2π as well. This guarantees
that the generator relation (3.1) is satisfied, and no extra constraint other than (4.12)
is needed.

We summarize the algorithm for high genus surfaces in Algorithm 2 and leave the
discussion about the optimal time step to the following subsection.

Algorithm 2 Compute the uniformization for a high genus surface

Require: A genus g surface represented by a triangular mesh M = {P,E, F}, with
g ≥ 2; Pick a vertex p ∈ P to be mapped to the 4g corners of the fundamental
polygon in the hyperbolic disk D; Pick 2g loops L1, . . . , L2g through p representing
the homological basis of M formed by points in P and edges in E;
Using Tutte embedding, compute a map φ from the open surface cut by L1, . . . , L2g

onto the standard 4g-gon in D = int(D) ∪ A1 ∪ B1 ∪ A−1
1 ∪ B−1

1 ∪ · · · ∪ Ag ∪
Bg ∪ A−1

g ∪ B−1
g , with φ−1(Ai) = L2i−1, φ−1(A−1

i ) = L2i−1, φ−1(Bi) = L2i and

φ−1(B−1
i ) = L2i for i = 1, . . . , g;

Set tolerance TOL;
Set generators gi(z) = e

√
−1φi z−ai

1−aiz ;
repeat

Compute the the least squares flow V in (4.7) with the constraints defined by
(4.15);
Set φnew(z) := φ(z) + tV (φ(z)), where t is an optimally chosen time step;
Set φ to φnew;

until maxz∈P t · |V (z)| < TOL.

4.6. Choosing the Optimal Time Step. In both of the algorithms above, the
time step should be chosen to lead to a fast decay of the least square energy of the

Beltrami differential µ(z)dzdz of surface M :

E

(
µ(z)

dz

dz

)
=

∫
M

|µ(z)|2 dA. (4.16)

Note that since the modulus of µ(z) does not depend on the coordinates chosen to
represent the Beltrami differential, the above definition makes sense.

After computing the vector field V using Beltrami flow that adjusts the Beltrami
differential of the surface map in the direction of the steepest descent of (4.16), the
diffeomorphism with an adjustment of size t is given by φnew(z) = φ(z) + tV (φ(z)).
Therefore the Beltrami differential also depends on t. We can simplify the notation
and write

E(t) = E

(
µ(z, t)

dz

dz

)
=

∫
M

|µ(z, t)|2 dA, (4.17)

where we have abused the notation and assumed we have a global parametrization
in z. This is not essential as our computation is done locally. The first and second
derivatives of |µ(z, t)|2 can be computed on each triangle of the triangulated M . Each
such triangle can be considered as a plane with given local coordinates (x, y), and each
triangle of the target domain can also be given local coordinates (u, v). Therefore the
definition of the Beltrami coefficient with local coordinates (3.7) can be used. The
flow V can also be represented locally as V (x, y) = V1(x, y) +

√
−1 ·V2(x, y) ∈ C. Let
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f0(x, y) = u(x, y) +
√
−1 · v(x, y) be the local representation of the current surface

map. Then f(x, y, t) = u(x, y) + tV1(x, y) +
√
−1 · [v(x, y) + tV2(x, y)] gives the local

representation of the surface map at time t after applying the flow. Therefore locally,
µ(z, t) is just a complex fraction in terms of u, v, V1 and V2. Hence, d

dt |µ(z)|2 and
d2

dt2 |µ(z)|2 can be computed easily. We have put the derivation of these two formulas
in detail in the Appendix.

With d
dt |µ(z)|2 and d2

dt2 |µ(z)|2 computed locally on each face, the first derivative
of E(t) is given by

E′(t) =

∫
M

d

dt
|µ(z, t)|2 dA. (4.18)

Also, the second derivative of E(t) is given by

E′′(t) =

∫
M

d2

dt2
|µ(z, t)|2 dA. (4.19)

The integrations in both E′(t) and E′′(t) can be written as summations over all faces
of M .

For small t, E(t) can be approximated by

E(t) = E(0) + E′(0)t+
1

2
E′′(0)t2. (4.20)

Using Newton’s method, the optimal time step toptimal is the time step t such that
the first derivative of the above approximation becomes 0, which means the energy
attains a local minimum. The optimal time step is then given by

toptimal = − E
′(0)

E′′(0)
. (4.21)

Another constraint of the time step is that the Jacobian J of the map must
be positive on M . Locally, the Jacobian of the resulting map with time step t in
direction V can be computed on each face as a quadratic polynomial in t. Similar
to the above discussion, on a face of M , we can write the current map as f0(x, y) =
u(x, y) +

√
−1 · v(x, y) and the flow as V (x, y) = V1(x, y) +

√
−1 · V2(x, y) ∈ C using

local coordinates. The local representation of the surface map at time t is given by
f(x, y, t) = u(x, y) + tV1(x, y) +

√
−1 · [v(x, y) + tV2(x, y)]. The Jacobian of the face

at time t is given by

J(x, y, t) =

(
∂u

∂x
+ t

∂V1

∂x

)(
∂v

∂y
+ t

∂V2

∂y

)
−
(
∂u

∂y
+ t

∂V1

∂y

)(
∂v

∂x
+ t

∂V2

∂x

)
=

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
+ t

(
∂u

∂x

∂V2

∂y
+
∂v

∂y

∂V1

∂x
− ∂u

∂y

∂V2

∂x
− ∂v

∂x

∂V1

∂y

)
+ t2

(
∂V1

∂x

∂V2

∂y
− ∂V1

∂y

∂V2

∂x

)
, (4.22)

which is a quadratic polynomial in t.
Therefore, on each triangle T , we can set the maximal time step tmax,T we can

take to be the smallest positive root of the above polynomial in t for that triangle.
This is the smallest time step that causes the triangle to degenerate and then overlap
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Table 5.1
The results of our algorithm for the uniformization of genus zero surfaces.

Surface # Vertices # Triangles # Iterations Time Taken (s)
Human Brain 6002 12000 8 1.7723
Fandisk 6475 12946 12 2.8990
Octa Flower 7919 15834 19 5.3817
Fish 29498 58992 19 24.2558
Fish 120K 120069 240134 27 303.7301
Armadillo 128930 257856 36 399.3548

for any bigger time step. Therefore we define the global maximum time step allowed
as

tmax = min
T∈F

tmax,T . (4.23)

In our algorithms, we choose our time step tchosen as

tchosen = min(toptimal, tmax/2). (4.24)

This ensures fast convergence of our algorithms and guarantees that the resulting map
is not close to overlapping.

5. Results and Analysis. In this section, we present numerical results jus-
tifying the effectiveness of our algorithms. All computations are performed using
MATLAB on a mobile machine equipped with a quad-core 2.6 GHz processor and 8
GB of RAM. With a more efficient implementation in C/C++, the computation time
can be further reduced.

5.1. Uniformization for Genus Zero Surfaces. We compute the uniformiza-
tion of 6 genus zero surfaces onto the unit sphere. The complexity of the triangulated
surfaces ranges from 6002 vertices to 128930 vertices. As shown in Table 5.1, except
for the 2 largest meshes, which took a longer time, the uniformization for other genus
zero surfaces of up to 30K can be computed quickly within 25 seconds. This shows
that our algorithm can compute reasonably sized meshes efficiently, and is able to
work on large meshes of more than 100K vertices. A few computation results have
been shown in our previous work [16].

5.2. Uniformization for Genus One Surfaces. We test our algorithm on the
computation for genus one surfaces, which is the simplest case for surfaces with genus
g ≥ 1. The target domain is some parallelogram in the plane, and only 1 generator
with 2 real parameters are needed. As the constraints are linear, the computation
is also very efficient. The results for 3 examples are shown in Table 5.2. The time
required by our algorithm for genus one cases is comparable to similar sized meshes for
genus zeros cases. The final uniformization of these surfaces and their uniformization
domains are shown in Figure 5.1.

5.3. Uniformization for Genus Two Surfaces. For genus two surfaces, since
the target uniformization domain is the hyperbolic disk, and the relations between the
sides of the fundamental polygon are non-linear, we restrict out maximum possible
step size to 0.2 · tmax to prevent points from going outside the disk. Our algorithm
works well for both examples. When the algorithm converges, the relative error of
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Table 5.2
The results of our algorithm for the uniformization of genus one surfaces.

Surface # Vertices # Triangles # Iterations Time Taken (s)
Rocker Arm 9397 18794 13 4.6053
Kitten 24956 49912 8 9.2172
Bumpy Torus 16815 33630 12 8.2035

(a) (b)

(c) (d)

(e) (f)

Fig. 5.1. The uniformization of 3 genus one surfaces and their fundamental domains. (a)(b)
Rocker Arm. (c)(d) Kitten. (e)(f) Bumpy Torus.

the equations describing the generator relations (4.12) approaches machine precision.
This indicates that our algorithm successfully works on the hyperbolic disk. The
results are shown in Table 5.3. The final uniformization of these surfaces and their
uniformization domains are shown in Figure 5.2.
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Table 5.3
The results of our algorithm for the uniformization of genus two surfaces.

Surface # Vertices # Triangles # Iterations Time Taken (s)
Amphora 9014 10832 40 17.4853
Figure Eight 12286 24576 32 29.3965

(a) (b)

(c) (d)

Fig. 5.2. The uniformization of 2 genus two surfaces and their fundamental domains. (a)(b)
Amphora. (c)(d) Figure Eight.

5.4. Comparison with Other Methods. We compare our algorithms with 2
other existing methods, namely the harmonic map method and methods based on
Ricci flow. We compare the results of these methods in terms of the running time
and the angular distortion of the final parametrization.

For the harmonic map method, we compute the harmonic map from 2 genus
zero surface onto a sphere. Theoretically, such map always exists and is unique and
conformal if we fix 3 points on the surface. The harmonic maps are computed using
gradient descent for the Octa Flower mesh and the Fish mesh, both genus 0 surfaces.
With the same initial maps as used in our algorithm and the same stopping criteria for
both meshes, the running time for Octa Flower was 3.7649 seconds and that for Fish
was 40.2178 seconds. This shows that as the mesh size grows larger, our algorithm
outperforms the harmonic map method.

We also tested the Ricci flow algorithms for genus one and high genus surfaces
from the RiemannMapper programs publicly available1. The programs were written
in C++ and call MATLAB at runtime for matrix computations. In this test, 2 genus

1http://www.cs.sunysb.edu/ gu/software/RiemannMapper/index.html
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one surfaces and 1 genus two surfaces were used, and each of them has around 10K
vertices. In particular, the genus two surface of Figure Eight used was the same as
our test examples. We found that the uniformization of these 3 surfaces can each be
computed in 5 to 6 seconds. This suggests that the Ricci flow algorithms are highly
efficient due to the use of Newton’s method for energy minimization. From the results
of our algorithms, it can be seen that our algorithm is also highly efficient, with the
Kitten, a mesh with 25K vertices, taking only 9.2172 seconds. For high genus surfaces,
our algorithm runs slower and takes nearly 30 seconds on the figure eight mesh of 12K
vertices. This was mainly because we used the step size 0.2 · tmax to prevent points
from going outside the hyperbolic disk. We hope to improve its efficiency by using a
more flexible step size in the future.

To compare the distribution of angular distortion from different methods, we
compute the distribution of distortions in each triangle of the surface mesh and the
parametrized mesh. Denote the angle from the face of the original surface by Ao and
that from the face of the parametrized mesh by Aprm, we compute the distribution of
the quantity

1− Aprm

Ao
. (5.1)

If the value of the above quantity is close to 0, it means the parametrized angle is
close to the original angle, which means a small angular distortion. By comparing the
angular distortion using different algorithms, we can conclude which method achieves
the best result in preserving conformality.

We plot the angular distortions of the results from our algorithms in Figure 5.3,
and results from other algorithms in Figure 5.4. It can be seen that our method
produces very little angular distortion for surfaces of all topologies consistently. On
the other hand, the widely dispersed histograms of the results from harmonic maps
show serious angular distortions. Our algorithm produces similar results to those from
Ricci flow algorithm which is considered the current state of the art. Also, the serious
angular errors show that the harmonic map may not be a good characterization for
conformal map for discrete triangulated surfaces.

6. Conclusion. In this paper, we introduced a novel algorithm based on discrete
Beltrami flow for the computation of surface uniformizations. By computing a vector
field with proper constraints enforced for the adjustment of different generators, we
successfully computed the uniformization for surfaces with genus g ≥ 1. Comparison
of the results by our method and other methods shows that our method is very efficient
in minimizing the angular distortion of the unformizing map and achieved a similar
quality as the state of the art Ricci flow method. Both methods are much better than
the method of harmonic maps, suggesting that parametrizations minimizing the L2-
norm of the Beltrami differential could be used as an alternative good characterization
for discrete surface uniformization.

Appendix. In this part, we derive the derivatives of the Beltrami coefficient
with respect to the time, when the local representation of the surface map f0(x, y) =
u(x, y) +

√
−1 · v(x, y) is adjusted by the flow V (x, y) = V1(x, y) +

√
−1 · V2(x, y),

also given by a local representation. We have used (x, y) and (u, v) to represent
the coordinates of the source and target surfaces respectively. Therefore f(x, y, t) =
u(x, y) + tV1(x, y) +

√
−1 · [v(x, y) + tV2(x, y)] gives the local representation of the

surface map at time t after applying the flow. Our target is to compute d
dt |µ(z)|2 and

d2

dt2 |µ(z)|2 from the given information.
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Fig. 5.3. The distribution of angular error of the results by our algorithms. (a) Octa Flower.
(b) Fish. (c) Rocker Arm. (d) Kitten. (e) Bumpy Torus. (f) Amphora. (g) Figure Eight.

Write f(z, t) = f(x, y, t) = f0(z) + tV (z), where z = x +
√
−1 · y and we have

treated f and V as complex-valued functions on the complex plane. Then the Beltrami
coefficient µ(z, t) at z ∈ C and time t is given by

µ(z, t) =
f0z + tVz
f0z + tVz

. (6.1)

Then

µ′(z, t) =
(f0z + tVz)Vz − (f0z + tVz)Vz

(f0z + tVz)2

=
Vz − µ(z, t)Vz
f0z + tVz

. (6.2)

Also

µ′′(z, t) =
(f0z + tVz)(−µ′(z, t)Vz)− (Vz − µ(z, t)Vz)Vz

(f0z + tVz)2
. (6.3)

Then we can easily compute the derivatives of |µ(z, t)|2 with respect to t. For the
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Fig. 5.4. The distribution of angular error of the results by other algorithms. (a) Octa Flower
by harmonic map. (b) Fish by harmonic map. (c) Rocker Arm by Ricci flow. (d) Kitten by Ricci
flow. (e) Figure Eight by Ricci flow.

first derivative,

d

dt
|µ(z, t)|2 =

d

dt

(
µ(z, t)µ(z, t)

)
= µ′(z, t)µ(z, t) + µ(z, t)µ′(z, t). (6.4)

For the second derivative,

d2

dt2
|µ(z, t)|2 = µ′′(z, t)µ(z, t) + 2µ′(z, t)µ′(z, t) + µ(z, t)µ′′(z, t). (6.5)

This completes the derivation of the formulas.
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