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Abstract. Registration, which aims to find an optimal one-to-one correspondence between
different data, is an important problem in various fields. This problem is especially challenging
when large deformations occur. In this paper, we present a novel algorithm to obtain diffeomorphic
image or surface registrations with large deformations via quasi-conformal maps. The basic idea is to
minimize an energy functional involving a Beltrami coefficient term, which measures the distortion of
the quasi-conformal map. The Beltrami coefficient effectively controls the bijectivity and smoothness
of the registration. Using the proposed algorithm, landmark-matching diffeomorphic (1-1 and onto)
registrations between images or surfaces can be effectively obtained, even with a large deformation
or large number of landmark constraints. The proposed algorithm can also be extended to a hybrid
registration model, called Q-Fibra, which combines landmark and intensity (such as image intensity
or surface curvature) information to obtain a more accurate registration. Experiments have been
carried out on both synthetic and real data. Results demonstrate the efficacy of the proposed
algorithm to obtain diffeomorphic registrations between images or surfaces.
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1. Introduction. Registration is a process of finding the optimal one-to-one
correspondence between different data, such as images or surfaces. Applications can
be found in various fields, including computer graphics, computer visions and medical
imaging. For example, in medical imaging, finding accurate 1-1 correspondence be-
tween medical data is crucial for statistical shape analysis of the anatomical structures.
While in computer graphics, surface registration is needed for texture mapping.

Different registration approaches have been developed. Existing algorithms can
mainly be divided into three categories, namely, 1. landmark-based registration, 2.
intensity-based registration and 3. hybrid registration using both landmark and in-
tensity information. Landmark-based registration computes a smooth 1-1 correspon-
dence between corresponding data that matches important features. This kind of
registration, with good feature alignment, is particularly crucial in medical imaging
and computer graphics. For example, in computer graphics, landmark-based regis-
tration is used to obtain the constrained texture mapping. The main advantage of
the landmark-based method is that larger deformations can be dealt with and intu-
itive user-interaction can be incorporated. Intensity-based registration aims to match
corresponding data without feature landmarks. Registration is usually obtained by
matching intensity functions, such as image intensity for image registration or surface
curvature for surface geometric registration. The main advantage of the intensity-
based registration is that more image information is taken into account and the delin-
eation of feature landmarks is not required. However, it usually cannot cope with large
geometric deformations. Recently, hybrid registration that combines landmark-based
and intensity-based methods have gained increased attention. Hybrid approaches use
both the landmark and intensity information to guide the registration. This type of
approaches can usually obtain more accurate registration result, since the advantages
of landmark-based and intensity-based registration can be combined. In this work,
we will mainly focus on the landmark-based registration and the hybrid registration.

Most existing algorithms can compute registration accurately and efficiently when
the deformation is small. However, the registration problem becomes challenging when
large deformations occur. Bijectivity can be easily lost and overlaps can usually be
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observed in the obtained registration. This causes inaccuracies in the registration.
It is therefore necessary to develop an algorithm to obtain diffeomorphic registration
with large deformations.

In this paper, we introduce a novel method to obtain diffeomorphic image or sur-
face registrations via quasi-conformal maps, which can deal with large deformations.
The key idea is to minimize an energy functional involving a Beltrami coefficient
term, which measures the distortion of the quasi-conformal map. The Beltrami co-
efficient effectively controls the bijectivity and smoothness of the registration, even
with very large deformations. By minimizing the energy functional, we obtain an op-
timal Beltrami coefficient associated to the desired registration, which is guaranteed
to be bijective. Using the proposed algorithm, landmark-based diffeomorphic (1-1
and onto) registration between images or surfaces can be effectively obtained, even
with a large deformation or a large number of landmark constraints. The proposed
algorithm can also be combined with matching intensity (such as image intensity or
surface curvature) to improve the accuracy of the registration. Numerical results show
that the combination of landmark constraints with intensity matching can significantly
improve the accuracy of the registration. To test the effectiveness of the proposed al-
gorithm, experiments have been carried out on both synthetic and real data. Results
show that the proposed algorithm can compute diffeomorphic registration between
images or surfaces effectively and efficiently.

In summary, the contributions of this paper are three-folded. Firstly, we propose
a variational method to search for an optimized Beltrami coefficient associated to
a diffeomorphic quasi-conformal map with large deformations, which minimizes the
local geometric distortion. Secondly, we apply the model to compute the landmark-
based registration, which can deal with very large deformations and large amount
of landmark constraints. Thirdly, we extend the landmark-based registration model
to a hybrid registration model, called Q-Fibra, which combines both landmark and
intensity information to obtain more accurate registration.

The rest of the paper is organized as follows. In Section 2, we review some
previous works closely related to this paper. In Section 3, we describe some basic
mathematical background related to our proposed model. In Section 4, our proposed
model for diffeomorphic registration with large deformations is explained in details.
We describe the numerical implementation of the proposed algorithm in Section 5.
Experimental results are reported in Section 6. Finally, we conclude our paper in
Section 7.

2. Previous works. In this section, we will review some previous works closely
related to this paper.

Intensity-based image registration has been widely studied. A comprehensive sur-
vey on the existing intensity-based image registration can be found in [45]. One of
the commonly used method is based on the variational approaches to minimize the
intensity mismatching error. For example, Vercauteren et al. [36] proposed the dif-
feomorphic demons registration algorithm, which is a non-parametric diffeomorphic
image registration algorithm based on Thirion’s demons algorithm[34]. The basic idea
is to adapt the optimization procedure underlying the demons algorithm to a space
of diffeomorphic transformations. The obtained registration is smooth and bijective.
Glocker et al. [6][7][8] proposed the intensity-matching image registration algorithm
using a Markov random field formulation. Several algorithms for surface registra-
tion that matches geometric quantities, such as curvatures, have also been propsoed
[3][32][25][41]. For example, Lyttelton et al. [32] proposed an algorithm for surface



Fibra Registration with Large Deformations 3

parameterizations based on matching surface curvatures. Yeo et al. [41] proposed
the spherical demons method, which adopted the diffeomorphic demons algorithm
[36], to drive surfaces into correspondence based on the mean curvature and aver-
age convexity. Conformal surface registration, which minimizes angular distortions,
has also been widely used to obtain a smooth 1-1 correspondence between surfaces
[16, 14, 15, 39, 18, 20, 40, 44]. An advantage of conformal registrations is that they
preserve local geometry well. Quasi-conformal surface registrations, which allows
bounded amount of conformality distortion, have also been studied [29, 30, 43, 31].
For example, Lui et al. [30] proposed to compute quasi-conformal registration be-
tween hippocampal surfaces based on the holomorphic Beltrami flow method, which
matches geometric quantities (such as curvatures) and minimizes the conformality
distortion [29].

Landmark-based registration has also been widely studied and different algo-
rithms have been proposed. Bookstein et al. [1] proposed to use a thin-plate spline
regularization (or biharmonic regularization) to obtain a registration that matches
landmarks as much as possible. Tosun et al. [35] proposed to combine iterative clos-
est point registration, parametric relaxation and inverse stereographic projection to
align cortical sulci across brain surfaces. These diffeomorphisms obtained can better
match landmark features, although not perfectly. Wang et al. [38, 28, 26, 27] proposed
to compute the optimized harmonic registrations of brain cortical surfaces by mini-
mizing a compounded energy involving the landmark-mismatching term [38, 28]. The
obtained registration is an optimized harmonic map that better aligns the landmarks.
However, landmarks cannot be perfectly matched, and bijectivity cannot be guaran-
teed under large number of landmark constraints. Later, Lin et al. [24] propose a
unified variational approach for registration of gene expression data to neuroanatomi-
cal mouse atlas in two dimensions that matches feature landmarks. Again, landmarks
cannot be exactly matched. Inexact landmark-matching registrations are sometimes
advantageous. In the case when landmark points/curves cannot be accurately delin-
eated, this method is more tolerant of errors in labeling landmarks and gives better
parameterization. In the situation when exact landmark matching is required, smooth
vector field has been applied to obtain surface registration. Lui et al. [26, 27] proposed
the use of vector fields to represent surface maps and reconstruct them through inte-
gral flow equations. They obtained shape-based landmark matching harmonic maps
by looking for the best vector fields minimizing a shape energy. The use of vector fields
to compute the registration makes the optimization easier, although it cannot describe
all surface maps. An advantage of this method is that exact landmark matching can
be guaranteed. Time dependent vector fields can also be used [22, 12, 13, 9, 10]. For
example, Glaunés et al. [12] proposed to generate large deformation diffeomorphisms
of a sphere, with given displacements of a finite set of template landmarks. The
time dependent vector fields facilitate the optimization procedure, although it may
not be a good representation of surface maps since it requires more memory. The
computational cost of the algorithm is also expensive. Quasi-conformal mapping that
matches landmarks consistently has also been proposed. Wei et al. [42] also proposed
to compute quasi-conformal mappings for feature matching face registration. The
Beltrami coefficient associated to a landmark-matching parameterization is approxi-
mated. However, neither exact landmark matching nor the bijectivity of the mapping
can be guaranteed, especially when very large deformations occur.

Algorithms for hybrid registration, which combines both the landmark and inten-
sity information to guide the registration, has also been proposed[33][2][17][21][11].
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Fig. 3.1: Illustration of how the Beltrami coefficient determines the conformality
distortion.

For example, Christensen et al. [21] propsoed an algorithm for hybrid registration
that uses both landmark and intensity information to guide the registration. The
method utilizes the unidirectional landmark thin-plate spline (UL-TPS) registration
technique together with a minimization scheme for the intensity difference to obtain
good correspondence between images. Glocker et al. [11] proposed a hybrid im-
age registration paradigm with a coupled formulation of two energy functionals that
measure landmark and intensity mistmatching. The algorithm exploits the Markov
random field formulation to match image intensity and uses a discrete optimization
technique to minimize the coupled energy. Paquin et al. [33] proposed a registration
method using a hybrid combination of coarse-scale landmark and B-splines deformable
registration techniques. Chanwimaluang et al. [2] proposed a hybrid retinal image
registration approach that combines both area-based and feature-based methods. Ex-
isting hybrid registration techniques can drive data into good correspondence when
deformations are not too large. In this work, we propose a hybrid quasi-conformal
registration method, which can deal with very large deformations.

3. Mathematical background. In this work, we apply quasi-conformal maps
to obtain diffeomorphic registrations with large deformations. In this section, we
describe some basic theories related to quasi-conformal geometry. For details, we
refer readers to [4][23].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N , a map f : M → N is conformal if it preserves the
surface metric up to a multiplicative factor called the conformal factor. An immediate
consequence is that every conformal map preserves angles. With the angle-preserving
property, a conformal map effectively preserves the local geometry of the surface
structure. A generalization of conformal maps is the quasi-conformal maps, which
are orientation preserving homeomorphisms between Riemann surfaces with bounded
conformality distortion, in the sense that their first order approximations take small
circles to small ellipses of bounded eccentricity [4]. Mathematically, f : C → C is
quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3.1)

for some complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, which is a measure of non-conformality. It measures how far the map at
each point is deviated from a conformal map. In particular, the map f is conformal
around a small neighborhood of p when µ(p) = 0. Infinitesimally, around a point p,
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f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication of
fz(p), which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),
we can determine the angles of the directions of maximal magnification and shrinking
and the amount of them as well. Specifically, the angle of maximal magnification
is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; The angle of maximal shrinking is
the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor 1 − |µ(p)|. Thus, the
Beltrami coefficient µ gives us lots of information about the properties of the map
(See Figure 3.1).

The maximal dilation of f is given by:

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (3.3)

Given a Beltrami coefficient µ : C → C with ‖µ‖∞ < 1. There is always a
quasiconformal mapping from C onto itself which satisfies the Beltrami equation in
the distribution sense [4]. More precisely,

Theorem 3.1 (Measurable Riemann Mapping Theorem). Suppose µ : C→ C is
Lebesgue measurable satisfying ‖µ‖∞ < 1, then there is a quasiconformal homeomor-
phism φ from C onto itself, which is in the Sobolev space W 1,2(C) and satisied the
Beltrami equation 3.1 in the distribution sense. Furthermore, by fixing 0, 1 and ∞,
the associated quasiconformal homeomorphism φ is uniquely determined.

By reflection, the above theorem can be further extended to Beltrami coefficients
defined on the unit disk D.

Theorem 3.2. Suppose µ : D→ C is Lebesgue measurable satisfying ‖µ‖∞ < 1,
then there is a quasiconformal homeomorphism φ from the unit disk to itself, which is
in the Sobolev space W 1,2(Ω) and satisied the Beltrami equation 3.1 in the distribution
sense. Furthermore, by fixing 0 and 1, the associated quasiconformal homeomorphism
φ is uniquely determined.

Theorem 3.1 and Theorem 3.2 suggest that under suitable normalization, a home-
omorphism from C or D onto itself can be uniquely determined by its associated
Beltrami coefficient (See Figure 3.2).

Quasiconformal mapping between two Riemann surfaces S1 and S2 can also be
defined. Instead of the Beltrami coefficient, the Beltrami differential is used. A

Beltrami differential µ(z)dzdz on a Riemann surface S is an assignment to each chart
(Uα, φα) of an L∞ complex-valued function µα, defined on local parameter zα such
that

µα(zα)
dzα
dzα

= µβ(zβ)
dzβ
dzβ

, (3.4)

on the domain which is also covered by another chart (Uβ , φβ). Here,
dzβ
dzα

= d
dzα

φαβ
and φαβ = φβ ◦ φ−1

α .
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(a) Original diffeomorphism f (b) Reconstructed f (c) µ(f)

Fig. 3.2: Reconstruction of a diffeomorphism f from its associated Beltrami coeffi-
cient µ. (a) shows a diffeomorphism between two rectangles. Its Beltrami coefficient
is computed. (b) shows the reconstructed quasi-conformal map from the Beltrami
coefficient. (c) shows the norm of the Beltrami coefficient.

An orientation preserving diffeomorphism f : S1 → S2 is called quasi-conformal

associated with µ(z)dzdz if for any chart (Uα, φα) on S1 and any chart (Vβ , ψβ) on S2,

the mapping fαβ := ψβ ◦ f ◦ ψ−1
α is quasi-conformal associated with µα(zα)dzαdzα

.

4. Proposed algorithm. In this section, we explain our proposed model for
diffeomorphic registration with large deformations in details. The basic idea is to
look for a quasi-conformal map to register two corresponding data, which can either
be images or surfaces. The quasi-conformal map is obtained by minimizing an energy
functional involving a Beltrami coefficient term, which measures the distortion of the
quasi-conformal map. The Beltrami coefficient effectively controls the bijectivity and
smoothness of the registration, even with very large deformations.

4.1. Proposed model. Let S1 and S2 be two corresponding images or surfaces.
Our goal is to find a smooth and bijective mapping f : S1 → S2 between S1 and S2

satisfying certain prescribed criteria. For landmark-based registration, we look for
a registration that matches corresponding feature landmarks. Let {pi ∈ S1}mi=1 and
{qi ∈ S1}mi=1 be the sets of corresponding feature landmarks defined on S1 and S2

respectively. We search for a diffeomorphism f : S1 → S2 subject to the landmark
constraints that f(pi) = qi for all 1 ≤ i ≤ m.

We propose a variational approach to obtain an optimized quasi-conformal map f ,
which minimizes an energy functional ELM involving the Beltrami coefficient terms.
More specifically, we propose to solve the following minimization problem:

f = arg min
g:S1→S2

ELM (µg)

:= arg min
g:S1→S2

{∫
S1

|∇µg|2 + α

∫
S1

|µg|p
} (4.1)

subject to the constraints that:
C(i) f(pi) = qi for 1 ≤ i ≤ m (landmark constraint);
C(ii) ||µf ||∞ < 1 (bijectivity),
where µf and µg are the Beltrami coefficients of f and g respectively.

The first term of ELM ensures the smoothness of f . The second term of ELM
aims to minimize the conformality distortion of f . The constraint C(i) is the landmark
constraint, which enforces f to match corresponding landmarks consistently.



Fibra Registration with Large Deformations 7

Proposition 4.1. If f : S1 → S2 is a C1 map satisfying the constraint C(ii),
then f is bijective.

Proof. Suppose f = u+ iv under some local coordinates. The Beltrami coefficient
µf is given by:

µf =
∂f

∂z
/
∂f

∂z
(4.2)

where

∂f

∂z
=

(ux − vy) + i(uy + vx)

2
;
∂f

∂z
=

(ux + vy) + i(vx + uy)

2
; (4.3)

Now, the Jacobian of f , Jf , is given by:

Jf = uxvy − uyvx

=
(ux + vy)2 + (vx + uy)2 − (ux − vy)2 − (uy + vx)2

4

= |∂f
∂z
|2 − |∂f

∂z
|2 = |∂f

∂z
|2(1− |µf |2)

(4.4)

Since ||µf ||∞ < 1, |∂f∂z |
2 6= 0. Also, (1− |µf |2) > 0. Hence, Jf > 0 everywhere.

Since the Jacobian is postive everywhere, by the inverse function theorem, the
mapping f is locally invertible everywhere. In other words, f is bijective.

In other words, C(ii) is the condition to ensure the obtained registration is bijec-
tive. In practice, this condition is automatically satisfied by minimizing the second
term of ELM for large enough p. In all of our experiments, we choose p = 2 and the
method is able to obtain a bijective registration satisfying the condition C(ii).

In order to improve the accuracy of the registration, one can combine the landmark-
matching registration model with the intensity matching model. The intensities are
functions defined on S1 and S2. Usually, they are image intensities for image regis-
tration and surface curvatures for surface registration. Ideally, we want to obtain a
landmark-matching diffeomorphism f : S1 → S2 that matches the intensities as much
as possible. We denote the intensities on S1 and S2 by I1 : S1 → R and I2 : S2 → R
respectively. Our registration model can be modified as solving the following mini-
mization problem:

f = arg min
g:S1→S2

EIM (g)

:= arg min
g:S1→S2

{∫
S1

|∇µg|2 + α

∫
S1

|µg|p + β

∫
S1

(I1 − I2(g))2
} (4.5)

subject to the constraints C(i) and C(ii).

4.2. Energy minimization. In this subsection, we describe an algorithm to
approximate the solutions of the above minimization problems.

4.2.1. Landmark-based registration model. Given two corresponding sets
of landmarks {pi}ni=1 and {qi}ni=1on S1 and S2 respectively, our goal is to look for a
diffeomorphism f : S1 → S2 that satisfies f(pi) = qi (i = 1, ..., n) while minimizing
the local geometric distortion. Our proposed model is to solve the variational problem
(4.1) as described in the last subsection.
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More specifically, our goal is to look for an optimal Beltrami coefficient ν : S1 →
C, which is the Beltrami coefficient of some diffeomorphism f : S1 → S2, minimizing
the following energy functional ELM :

ELM (ν) =

∫
S1

|∇ν|2 + α

∫
S1

|ν|p (4.6)

subject to the constraints that ||ν||∞ < 1, f(pi) = qi for i = 1, 2, ...n and ν = µ(f),
where µ(f) is the Beltrami coefficient of f .

We apply a splitting method to solve the constrained optimization problem. In
particular, we consider to minimize:

EsplitLM (ν, f) =

∫
S1

|∇ν|2 + α

∫
S1

|ν|p + σ

∫
S1

|ν − µ(f)|2 (4.7)

subject to the constraints that ||ν||∞ < 1 and f(pi) = qi for i = 1, 2, ...n.

We iteratively minimize EsplitLM subject to the constraints. Set ν0 = 0. Suppose νn
is obtained at the nth iteration. Fixing νn, we minimize EsplitLM (νn, f) over f , subject
to the constraint that f(pi) = qi (i = 1, 2, ..., n), to obtain fn. Once fn is obtained,

by fixing fn, we minimize EsplitLM (ν, fn) over ν to obtain νn+1.

To minimize EsplitLM (νn, f) over f fixing νn, it is equivalent to finding a landmark
matching diffeomorphism fn : S1 → S2, whose Beltrami coefficient closely resembles
to νn and satisfies the landmark constraints f(pi) = qi. To obtain such fn, we propose
to use the Linear Beltrami Solver (LBS) to find fn such that fn matches landmark
constraints and its Beltrami coefficient closely resembles to νn.

Let f = u+ iv. From the Beltrami equation (3.1),

µ(f) =
(ux − vy) + i (vx + uy)

(ux + vy) + i(vx − uy)
(4.8)

Let µ(f) = ρ+ i τ . We can write vx and vy as linear combinations of ux and uy,

−vy = α1ux + α2uy;

vx = α2ux + α3uy.
(4.9)

where α1 = (ρ−1)2+τ2

1−ρ2−τ2 ; α2 = − 2τ
1−ρ2−τ2 ; α3 = 1+2ρ+ρ2+τ2

1−ρ2−τ2 .
Similarly,

uy = α1vx + α2vy;

−ux = α2vx + α3vy.
(4.10)

Since ∇ ·
(
−vy
vx

)
= 0 and ∇ ·

(
uy
−ux

)
= 0, we obtain

∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0 (4.11)

where A =

(
α1 α2

α2 α3

)
.

In the discrete case, the elliptic PDEs (4.11) can be discretized into sparse positive
definite linear systems. Given νn and the landmark constraints, one can solve the
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linear systems with the landmark constraints in the least square sense. A landmark
matching quasi-conformal map fn, whose Beltrami coefficient closely resembles to νn,
can then be obtained.

Once fn is obtained, we minimize EsplitLM (ν, fn) over ν while fixing fn. In other
words, we look for νn+1 minimizing:∫

S1

|∇ν|2 + α

∫
S1

|ν|p + σ

∫
S1

|ν − µ(fn)|2 (4.12)

In the case when p = 2, by considering the Euler-Lagrange equation, it is equiv-
alent to solving:

(∆ + 2αI + 2σI)νn+1 = µ(fn) (4.13)

In discrete case, equation (4.13) can be discretized into a sparse linear system
and can be solved efficiently. However, the Beltrami coefficient νn+1 obtained by
solving (4.13) might not be associated to a landmark-matching quasi-conformal map.
To minimize the landmark mismatching error, we use the LBS with νn+1 as the
input together with the landmark constraints to obtain a landmark-matching quasi-
conformal map f̃n+1, whose Beltrami coefficient νni closely resembles to νn+1. Using
d = νni −νn+1 as a descent direction, we update νn from the solution of the Equation
(4.13) by νn+1 ← νn+1 + td for some small t. This gives a smooth νn+1 and the
landmark-mismatching error can be reduced.

We keep the iteration going to obtain a sequence of pair {(νn, fn)}∞i=1. The
iteration stops when ||νn+1 − νn||∞ ≤ ε for some small threshold ε. Theoretically,
the conventional penalty method requires that σ increases to infinity. In practice, we
increases σ in each iteration and the algorithm can give satisfactory results.

In summary, the proposed landmark-based registration model can be described
as follows:

Algorithm 1: Landmark-based registration

Input: Images or surfaces: S1 and S2; landmark sets {pi ∈ S1}mi=1 and
{qi ∈ S2}mi=1.

Output: Optimal Beltrami coefficient ν∗; Landmark-matching f∗ : S1 → S2.

1 Initial ν0 = 0;
2 repeat
3 Use LBS to reconstruct fn from νn with landmark constraints;
4 Fix fn, obtain νn+1 by solving:

νn+1 = arg min
ν

{∫
|∇ν|2 + α

∫
|ν|p + σ

∫
|ν − µ(fn)|2

}
;

5 Use LBS to obtain f̃n+1 from νn+1 with landmark constraints;

6 Compute d = µ(f̃n+1)− νn+1;
7 νn+1 ← νn+1 + td for some small t;

8 until ||νn+1 − νn||∞ ≤ ε;
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4.2.2. Hybrid registration model. The propsoed landmark-based registra-
tion model can also be combined with matching intensity (such as image intensity for
image registration or surface curvature for surface registration) to improve the accu-
racy of the registration result. More specifically, our goal is to look for an optimal
Beltrami coefficient ν : S1 → C, which is associated to a diffeomorphism f : S1 → S2,
minimizing the following energy functional EIM :

EIM (ν, f) =

∫
S1

|∇ν|2 + α

∫
S1

|ν|p + β

∫
S1

(I1 − I2(f))2 (4.14)

subject to the constraints that ||ν||∞ < 1 and f(pi) = qi for i = 1, 2, ..., n. Here, I1
and I2 are the intensity functions defined on S1 and S2 respectively.

We again apply a splitting method to solve the above constrained optimization
problem. We consider to minimize:

EsplitIM (ν, µ) =

∫
S1

|∇ν|2 + α

∫
S1

|ν|p + σ

∫
S1

|ν − µ|2

+ β

∫
S1

(I1 − I2(fµ))2

(4.15)

subject to the constraints that ||ν||∞ < 1 and fµ is the quasi-conformal map with
Beltrami coefficient µ satisfying fµ(pi) = qi for i = 1, 2, ..., n.

To solve the above optimization problem, we iteratively minimize EsplitIM subject to
the constraints. Set ν0 = 0 and use the LBS to reconstruct f0 from µ̃0 := 0 satisfying
the landmark constraints. Set µ0 = µ(f0). Suppose νn and µn is obtained at the nth

iteration. Fixing νn, we minimize EsplitIM (νn, µ) over µ, subject to the constraint that
fµ(pi) = qi (i = 1, 2, ..., n), to obtain µn+1. Once µn+1 is obtained, fixing µn+1, we

minimize EsplitIM (ν, µn+1) over ν to obtain νn+1.

We first discuss the minimization EsplitIM (νn, µ) over µ fixing νn, subject to the
constraint that fµ(pi) = qi (i = 1, 2, ...n). This problem is equivalent to solving:

µn+1 = arg min
µ

{
β

∫
S1

(I1 − I2(fµ))2 + σ

∫
S1

|µ− νn|2
}

(4.16)

Using the gradient descent method, we compute the descent direction df , which
minimizes

∫
S1

(I1 − I2(fµ))2. The descent direction df is given by:

df = 2(I1 − I2(fµ))∇I2(fµ). (4.17)

As fµ is perturbed, its associated Beltrami coefficient is also adjusted by dµ1.
The adjustment can be explicitly computed. Note that:

∂(f + df)

∂z̄
= (µ+ dµ1)

∂(f + df)

∂z
(4.18)

which implies:

∂f

∂z̄
+
∂df

∂z̄
= µ

∂f

∂z
+ dµ1

∂f

∂z
+ µ

∂df

∂z
+ dµ1

∂df

∂z
(4.19)

Note that ∂f
∂z̄ = µ∂f∂z . Thus, the adjustment dµ1 can be obtained by:

dµ1 =

(
∂df

∂z̄
− µ∂df

∂z

)/∂(f + df)

∂z
(4.20)
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Similiarly, we can obtain the descent direction dµ2 that minimizes
∫
S1
|µ − νn|2.

dµ2 is given by:

dµ2 = −2(µ− νn). (4.21)

Therefore, the descent direction to solve the optimization problem (4.16) is given
by:

dµ = βdµ1 + σdµ2 (4.22)

Using the above formula for the descent direction, we obtain an updated Beltrami
coefficient:

µ̃n+1 = µn + dµ (4.23)

We then compute a quasi-conformal map fn+1, whose Beltrami coefficient closely
resembles to µ̃n+1, using LBS with the landmark constraints enforced. This step
ensures a landmark matching registration can be obtained. We then update µn by:
µn+1 = µ(fn+1).

Once µn+1 is obtained, fixing µn+1, we minimize EsplitIM (ν, µn+1) over ν to obtain
νn+1. In other words, we look for νn+1 minimizing:∫

S1

|∇ν|2 + α

∫
S1

|ν|p + σ

∫
S1

|ν − µn+1|2 (4.24)

In the case when p = 2, by considering the Euler-Lagrange equation, it is equiv-
alent to solving:

(∆ + 2αI + 2σI)νn+1 = µn+1 (4.25)

In discrete case, equation (4.25) can be discretized into a sparse linear system
and can be solved efficiently. Similar to section 4.2.1, we use the LBS with νn+1 as
the input together with the landmark constraints to obtain a descent direction d to
update νn+1 by νn+1 ← νn+1 + td for some small t. This gives a smooth νn and the
landmark-mismatching error will be reduced.

We keep the iteration going to obtain a sequence of pair {(νn, µn)}∞i=1. The
iteration stops when ||µn+1 − µn||∞ ≤ ε for some small threshold ε. Again, the con-
ventional penalty method requires that σ increases to infinity. However, in practice,
we increases σ in each iteration and the algorithm can give satisfactory results.

We call this proposed algorithm Q-Fibra, which refers to quasi-conformal feature
and intensity-based registration algorithm. In summary, the proposed Q-Fibra hybrid
registration model can be described as follows:

5. Numerical implementation. The proposed models for landmark-based and
hybrid registration rely on the Linear Beltrami Solver(LBS) and solving the Euler-
Lagrange(E-L) equations. In this section, we will describe the numerical implemen-
tation of the LBS and also the discretizations of the E-L equations.

Practically speaking, 2D domains or surfaces in R3 are usually represented dis-
cretely by triangular meshes. Suppose K1 and K2 are two surface meshes with the
same topology representing S1 and S2. We define the set of vertices on K1 and K2 by
V 1 = {v1

i }ni=1 and V 2 = {v2
i }ni=1 respectively. Similarly, we define the set of triangular

faces on K1 and K2 by F 1 = {T 1
j }mj=1 and F 2 = {T 2

j }mj=1.
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Algorithm 2: Q-Fibra Hybrid registration

Input: Images or surfaces: S1 and S2; landmark sets {pi ∈ S1}mi=1 and
{qi ∈ S2}mi=1; intensity functions I1 and I2 defined on S1 and S2

respectively.
Output: Optimal Beltrami coefficient ν∗; hybrid registration f∗ : S1 → S2.

1 Initial ν0 = 0, µ̃0 = 0;
2 Use LBS to reconstruct f0 from µ̃0 = 0 with landmark constraints;
3 Initial µ0 = µ(f0);
4 repeat
5 Given νn, µn. Fix νn and obtain µ̃n+1 by solving:

µ̃n+1 = arg min
µ

{
β

∫
S1

(I1 − I2(fµ))2 + σ

∫
S1

|µ− νn|2
}

;

6 Use LBS to reconstruct fn+1 from µ̃n+1 with landmark constraints;
7 µn+1 ← µ(fn+1);
8 Fix µn+1 and obtain νn+1 by solving:

νn+1 = arg min
ν

{∫
|∇ν|2 + α

∫
|ν|p + σ

∫
|ν − µ(fn)|2

}
;

9 Use LBS to reconstruct f̃n+1 from νn+1 with landmark constraints;

10 Compute d = µ(f̃n+1)− νn+1;
11 νn+1 ← νn+1 + td for some small t;

12 until ||νn+1 − νn||∞ ≤ ε;

5.1. Numerical details of LBS. Suppose f : K1 → K2 is an orientation
preserving piecewise linear homeomorphism between K1 and K2. We can assume K1

and K2 are both embedded in R2. In case K1 and K2 are surface meshes in R3, we
first parameterize them conformally by φ1 : K1 → D1 ⊆ R2 and φ2 : K2 → D2 ⊆ R2.
The composition of f with the conformal parameterizations, f̃ := φ2 ◦ f ◦ φ−1

1 , is
then an orientation preserving piecewise linear homeomorphism between D1 and D2

embedded in R2.

To compute the quasi-conformal mapping, the key idea is to discretize Equation
(4.11) with two linear systems.

Given a map f = (u + iv) : K1 → K2, we can easily compute its associated
Beltrami coefficient µf , which is a complex-valued function defined on each triangular
faces of K1. To compute µf , we simply need to approximate the partial derivatives on
every face T . We denote them by Dxf(T ) = Dxu+ iDxv and Dyf(T ) = Dyu+ iDyv
respectively. Note that f is piecewise linear. The restriction of f on each triangular
face T can be written as:

f |T (x, y) =

(
aTx+ bT y + rT
cTx+ dT y + sT

)
(5.1)

Hence, Dxu(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT and Dyv(T ) = dT . Now, the
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gradient:

∇T f :=

(
Dxf(T )
Dyf(T )

)
(5.2)

on each face T can be computed by solving the linear system:(
~v1 − ~v0

~v2 − ~v0

)
∇T f̃i =

(
f̃i(~v1)−f̃i(~v0)
|~v1−~v0|

f̃i(~v2)−f̃i(~v0)
|~v2−~v0|

)
, (5.3)

where [~v0, ~v1] and [~v0, ~v2] are two edges on T . By solving equation (5.3), aT , bT , cT
and dT can be obtained. The Beltrami coefficient µf (T ) of the triangular face T can
then be computed from the Beltrami equation (3.1) by:

µf (T ) =
(aT − dT ) + i(cT + bT )

(aT + dT ) + i(cT − bT )
, (5.4)

Equation (4.9) and (4.10) are both satisfied on every triangular faces. Let µf (T ) =
ρT + i τT . The discrete versions of Equation (4.9) and (4.10) can be obtained.

−dT = α1(T )aT + α2(T )bT

cT = α2(T )aT + α3(T )bT
(5.5)

and

−bT = α1(T )cT + α2(T )dT

aT = α2(T )cT + α3(T )dT
(5.6)

where: α1(T ) =
(ρT−1)2+τ2

T

1−ρ2T−τ2
T

; α2(T ) = − 2τT
1−ρ2T−τ2

T
and

α3(T ) =
1+2ρT+ρ2T+τ2

T

1−ρ2T−τ2
T

.

In order to discretize Equation (4.11), we need to introduce the discrete diver-
gence. The discrete divergence can be defined as follows. Let T = [vi, vj , vk] and
wI = f(vI) where I = i, j or k. Suppose vI = gI + i hI and wI = sI + i tI (I = i, j, k).
Using equation (5.3), aT , bT , cT and dT can be written as follows:

aT = ATi si +ATj sj +ATk sk;

bT = BTi si +BTj sj +BTk sk;

cT = ATi ti +ATj tj +ATk tk;

dT = BTi ti +BTj tj +BTk tk;

(5.7)

where:

ATi = (hj − hk)/Area(T ),

ATj = (hk − hi)/Area(T ),

ATk = (hi − hj)/Area(T );

BTi = (gk − gj)/Area(T ),

BTj = (gi − gk)/Area(T ),

BTk = (gj − gi)/Area(T );

(5.8)
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Suppose ~V = (V1, V2) is a discrete vector field defined on every triangular faces.
For each vertex vi, let Ni be the collection of neighborhood faces attached to vi. We
define the discrete divergence Div of ~V as follows:

Div(~V )(vi) =
∑
T∈Ni

ATi V1(T ) +BTi V2(T ) (5.9)

By careful checking, one can prove that∑
T∈Ni

ATi bT =
∑
T∈Ni

BTi aT ;
∑
T∈Ni

ATi dT =
∑
T∈Ni

BTi cT . (5.10)

This gives,

Div

(
−Dyu
Dxu

)
= 0 and Div

(
−Dyv
Dxv

)
= 0 (5.11)

As a result, Equation (4.11) can be discretized:

Div

(
A

(
Dxu
Dyu

))
= 0 and Div

(
A

(
Dxv
Dyv

))
= 0 (5.12)

where A =

(
α1 α2

α2 α3

)
. This is equivalent to:

∑
T∈Ni

ATi [α1(T )aT + α2(T )bT ] +BTi [α2(T )aT + α3(T )bT ] = 0

∑
T∈Ni

ATi [α1(T )cT + α2(T )dT ] +BTi [α2(T )cT + α3(T )dT ] = 0
(5.13)

for all vertices vi ∈ D. Note that aT , bT , cT and dT can be written as a linear
combination of the x-coordinates and y-coordinate of the desired quasi-conformal map
f . Hence, equation (5.13) gives us the linear systems to solve for the x-coordinate
and y-coordinate function of f .

Besides, f has to satisfy certain constraints on the boundary. One common
situation is to give the Dirichlet condition on the whole boundary. That is, for any
vb ∈ ∂K1

f(vb) = wb ∈ ∂K2 (5.14)

Note that the Dirichlet condition is not required to be enforced on the whole
boundary. The proposed algorithm also allows free boundary condition. For example,
in the case that K1 and K2 are rectangles, the desired quasi-conformal map should
satisfy

f(0) = 0; f(1) = 1 f(i) = i f(1 + i) = 1 + i;

Re(f) = 0 on arc [0, i]; Re(f) = 1 on arc [1, 1 + i];

Imag(f) = 0 on arc [0, 1]; Imag(f) = 1 on arc [i, 1 + i]

(5.15)

Besides, in our case, interior landmark correspondences {pi}ni=1 ↔ {qi}ni=1 are also
enforced. Thus, we should add this constraint to the linear systems. Mathematically,
it is described as f(pi) = qi (i = 1, 2, ..., n).
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5.2. Discretization of E-L equation (4.13). In both the landmark-based
and Q-Fibra hybrid registration algorithms, solving Equation (4.13) to adjust the
Beltrami coefficient is required. In this subsection, we describe how Equation (4.13)
can be discretized.

In discrete case, the Beltrami coefficient µ(T ) is defined on each triangular face
T . We first approximate the Beltrami coefficient µ(vi) at a vertex vi by

µ(vi) =
1

Ni

∑
T∈Ni

µ(T ) (5.16)

where Ni is the collection of neighborhood faces attached to vi. In other words, µ(vi)
is the average of the Beltrami coefficients µ(T ) on 1-ring neighbourhood triangles.

The discretization of Equation (4.13) can be done after discretizing the Laplacian
operator ∆. Let T1 = [vi, vj , vk] and T2 = [vi, vj , vl]. The mesh laplacian is defined
as:

∆(f(vi)) =
∑
T∈Ni

cotαij + cotβij
2

(f(vj)− f(vi)) (5.17)

where αij and βij are the two interior angles of T1 and T2 which are opposite to the
edge [vi, vj ]. To find αij and βij , we follow the idea of [19]. Let lij be the length of
the edge [vi, vj ]. By law of cosines: l2ij = l2jk + l2ki − 2ljklki cosαij , we have

cosαij =
−l2ij + l2jk + l2ki

2ljklki
. (5.18)

Similar, by the law of sines: Area(T1) = 1
2 ljklki sinαij , we have

sinαij =
2Area(T1)

ljklki
. (5.19)

Therefore we have

cotαij =
−l2ij + l2jk + l2ki

4Area(T1)
(5.20)

and the discrete Laplacian operator can then be constructed. Similarly, cotβij can
be computed.

The solution νn+1 of the discretized Equation (4.13) is defined on each vertices.
We have to approximate νn+1(T ) on each face T before proceeding to the next step .
The approximation is taken to be

νn+1(T ) =
1

3

∑
vi∈T

νn+1(vi) (5.21)

5.3. Numerical implementation for intensity-matching. In Section 4.2.2,
we propose the Q-Fibra hybrid registration algorithm, which requires to solve

arg min
µ

{
γ

∫
S1

(I1 − I2(fµ))2 + σ

∫
S1

|µ− νn|2
}
,

which can be solved using the gradient descent method. It involves calculating the
gradient of µ, which is a second order derivatives. To reduce the computation error
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and improve numerical instability, we separately search for the descent direction of
µ1 and µ2 for the two energy terms

∫
S1

(I1 − I2(fµ))2 and
∫
S1
|µ − νn|2 respectively

in the following way.
For the first term, we apply the Demon force proposed by Wang et al. [37] to find

the deformation:

u =
(I1 − I2)∇(I2)

|∇(I2)|2 + α2(I1 − I2)2
+

(I1 − I2)∇(I1)

|∇(I1)|2 + α2(I1 − I2)2
(5.22)

where u is the deformation vector field. The corresponding Beltrami coefficient of the
deformation is

µd =
∂(Id+ u)

∂z̄

/
∂(Id+ u)

∂z
(5.23)

By the composition rule of the Beltrami coefficient, we have

µ(u(f)) =
µ(f) + fz

fz
µd

1 + fz
fz
µ(f)µd

, (5.24)

where u(f) := (id+u) ◦ f . Then the descent direction dµ1, which minimizes
∫
S1

(I1−
I2(fµ))2, can be approximated by

dµ1 ≈ µ(u(f))− µ(f) (5.25)

For the second term, we can obtain the descent direction as dµ2 = −2(µ − νn).
Therefore, the descent direction to solve the optimization problem is given by:

dµ = βdµ1 + σdµ2 (5.26)

Using the Demon force as registration guarantee the smoothness of µd and also
stabilizes the algorithm.

5.4. Multiresolution scheme. To reduce the computation cost of registering
high-resolution images or high-quality surface meshes, we adopt a multiresolution
scheme for the registration procedure. In the multiresolution scheme, we first coarsen
both I1 and I2 by k layers, where I0

j = Ij and Ikj is the coarsest images of Ij (j = 1, 2).

The registration process starts with registering Ik1 and Ik2 . Diffeomorphism fk can
then be obtained. To proceed to finer scale, we adopt a linear interpolation on fk to
obtain fk−1, which serves as the initial map for the registration at the finer layer. We
keep the process going until the registration at the finest (original resolution) layer is
obtained. This multiresolution scheme significantly speed up the compuational time.

6. Experimental results. We have test our proposed algorithms on synthetic
data together with real medical data. In this section, experimental results are re-
ported.
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(a) Landmark correspondence (b) Our result

Fig. 6.1: Landmark-based registration with large amount of landmark constraints. (a)
shows the correspondence between two landmark sets defined on two unit squares. (b)
shows the obtained landmark-matching diffeomorphic registration using our proposed
algorithm.

(a) Landmark correspondence (b) Our result

Fig. 6.2: Landmark-based registration with large deformations. (a) shows the the
correspondence between two landmark sets defined on two unit squares. (b) shows the
obtained landmark matching diffeomorphic registration using our proposed algorithm.

6.1. Landmark-based registration.

Example 1. We first test our proposed landmark-based registration model on a
synthetic example with large amount of landmark constraints enforced. Figure 6.1(a)
shows the correspondence between two landmark sets defined on two rectangles. 78
corresponding landmark features are labeled on each rectangles. We compute the
landmark matching diffeomorphic registration between the two rectangles, using our
proposed landmark-based registration model. The registration result is as shown in
(b), which is visualized by the deformation of the regular grids under the registration.
Note that the obtained registration is bijective. No overlaps or flips can be found.

Example 2. In this example, we test our proposed algorithm on a synthetic exam-
ple to obtain a landmark matching registration between two rectangles with very large
deformations. Figure 6.2(a) shows two rectangles, with corresponding landmark sets
defined on each of them. The presecribed deformations of the landmarks are large.
Using our proposed landmark-based registration model, we compute the landmark
matching diffeomorphic registration between the two rectangles. The registration re-
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(a) Source (b) Target (c) Conformal map (d) Registration result

Fig. 6.3: (a) and (b) show two brain cortical surfaces, each of them is labeled with
six corresponding sulcal landmarks. (c) shows the conformal registration between the
two surfaces without landmark matching. (d) shows the registration result using our
proposed landmark-matching quasi-conformal registration.

sult is as shown in (b), which is visualized by the deformation of the regular grids
under the registration. Note that the obtained registration is bijective. No overlaps
or flips can be found.

Example 3. (Brain landmark matching registration) We apply the proposed al-
gorithm to compute landmark matching quasi-conformal registration between brain
cortical surfaces. Figure 6.3(a) and (b) show two brain cortical surfaces, each of
them is labeled by 6 sulcal landmarks. Using our proposed method, we compute
the landmark-matching quasi-conformal registration between them. Figure 6.3(c)
shows the conformal registration between the two surfaces. Note that the correspond-
ing landmarks cannot be matched. Figure 6.3(d) shows the registration result using
our proposed landmark-matching quasi-conformal registration, which matches corre-
sponding landmarks consistently. Figure 6.4 (a) shows the energy plot versus itera-
tions. It demonstrates our method iteratively minimizes the energy functional to an
optimal quasi-conformal map between the two brain surfaces. (b) shows the maximum
landmark error versus iterations. In Figure 6.5, we compute the landmark-matching
quasi-conformal registrations with 6 sulcal landmarks between 10 brain cortical sur-
faces. The mean surface is then computed after the cortical surfaces are registered.
The sulcal features are well-preserved, illustrating that the landmarks are consistently
matched under the registration.

Table 6.1: Comparison with other methods with different sizes of deformation

(Time / Overlap) Tiny Moderate Large
QC 6.220 s / 0 9.632 s / 0 12.934 s / 0

Harmonic Map 1.633 s / 13 1.665 s / 42 1.652 s / 110
TPS 0.308 s / 20 0.339 s / 27 0.253 s / 27

LDDMM 382.316 s / 0 396.240 s / 0 409.902 s / 0

Example 4. We also compared our proposed landmark-matching quasi-conformal
registration algorithm with other state-of-the-art algorithms, namely, 1. harmonic
map [38, 28, 26, 27]; 2. thin-plate spline (TPS) [1] and 3. LDDMM [22, 12, 13, 9, 10].
Experiments have been carried out for different sizes of deformations. As shown in Ta-
ble 6.1, our method outperforms other methods. In all cases (tiny, moderate and large
deformations), our method is able to compute a non-overlapping landmark-matching
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(a) Source (b) Target

Fig. 6.4: (a) shows the energy plot versus iterations for the landmark-matching quasi-
conformal registration between brain cortical surfaces. (b) shows the maximum land-
mark matching error versus iterations.

Fig. 6.5: Using the proposed algorithm, the landmark-matching quasi-conformal regis-
trations with 6 sulcal landmarks between 10 brain cortical surfaces are obtained. The
mean surface is then computed after the cortical surfaces are registered. The sulcal
features are well-preserved, illustrating that the landmarks are consistently matched
under the registration.

registration with the least amount of computational time. Both harmonic map and
TPS has overlaps for their obtained registration results, although the computations of
these methods are efficient. LDDMM can obtain non-overlapping landmark-matching
registrations, however, the computational cost is comparatively much more expensive.

6.2. Q-Fibra Hybrid registration.
Example 5. We next test our proposed Q-Fibra hybrid registration algorithm

on a synthetic example. Figure 6.6(a) and (b) shows two synthetic images to be
registered. (a) shows the image of the character ‘A’. (b) shows the image of the
character ‘R’. Corresponding feature landmarks are labeled on each images. Our goal
is to look for a diffeomorphic registration that matches the corresponding landmarks
and also the image intensities. (c) shows the obtained diffeomorphic registration
using our proposed Q-Fibra hybrid registration model. Image 1 in (a) is deformed
using the obtained registration to get a deformed image, which is shown in (c). The
deformed image closely resembles to the target image (Image 2 in (b)). Landmarks
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(a) Image 1 (b) Image 2 (c) Deformed image

Fig. 6.6: (a) and (b) show two images to be registered. Corresponding feature land-
marks are labeled on each images. (c) shows the obtained diffeomorphic registration
using our proposed Q-Fibra hybrid registration model.

(a) Layer 1 (b) Layer 2 (c) Layer 3

Fig. 6.7: The plots of energy versus iterations for the hybrid registration between
the ‘A’ and ‘R’ images. Multiresolution scheme is applied to perform the registration
from the coarsest layer to the finest (original resolution) layer. The energy plots at
different layers are shown.

are consistently matched, and the obtained registration is bijective. Figure 6.7 shows
the plots of energy versus iterations. In our algorithm, multi-resolution scheme is
applied to perform the hybrid registration from the coarsest layer to the finest (original
resolution) layer. In this example, three layers are used. Layer 1 refers to the coarsest
resolution and layer 3 refers to the finest (original) resolution. The energy plots at
different layers are shown in Figure 6.7. The energy is significantly reduced during
the optimization process at the first layer. The obtained coarse registration is then
interpolated back to the finer layer. An optimal solution is finally reached during the
optimization process at the third layer using about 10 iterations. Figure 6.8 shows
the optimal registration at different layers of the multiresolution scheme.

Example 6. We also test the proposed Q-Fibra hybrid registration algorithm on
another synthetic example with larger deformation. Figure 6.9(a) and (b) shows
two synthetic images to be registered. (a) shows the image of the character ‘I’. (b)
shows the image of the character ‘C’. Corresponding feature landmarks are labeled
on each images. Again, the goal is to look for a diffeomorphic registration that
matches the corresponding landmarks and also the image intensities. (c) shows the
obtained diffeomorphic registration using our proposed Q-Fibra hybrid registration
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(a) Layer 1 (b) Layer 2 (c) Layer 3

Fig. 6.8: The registration results using the multiresolution scheme with 3 layers.

(a) Image 1 (b) Image 2 (c) Deformed image

Fig. 6.9: (a) shows the image of the character ‘I’. (b) shows the image of the character
‘C’. These two images are to be registered. Corresponding feature landmarks are
labeled on each images. (c) shows the obtained diffeomorphic registration using our
proposed Q-Fibra hybrid registration model.

model. Image 1 in (a) is deformed using the obtained hybrid registration to get a
deformed image, which is shown in (c). The deformed image closely resembles to the
target image (Image 2 in (b)). Landmarks are consistently matched, and the obtained
registration is bijective.

Example 7. We test the Q-Fibra hybrid registration algorithm on real images.
Figure 6.10 shows two images of the human hands. Corresponding landmark features
are labeled on each images. In Figure 6.11, we show the registration results using
different approaches. Figure 6.11(b) shows the deformed image from Image 1 using our
proposed landmark-based registration model. Notice that if we only use landmarks as
constraints to guide the registration, the deformed image is very different (see regions
in the red boxes) from the target image (as shown in (a)). (c) shows the deformed
image from Image 1 using the intensity-based registration. Similarly, the deformed
image is very different (see regions in the red boxes) from the target image if only
intensity information is used. (d) shows the deformed image from Image 1 using the
proposed Q-Fibra hybrid registration model. The deformed image closely resembles
to the target image. In fact, the intensity mismatching error is about 1.32%, which
is small, meaning that the registration is very accurate.
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(a) Image 1 (b) Image 2

Fig. 6.10: Two images of human hands to be registered. Corresponding landmark
features are labeled on each image.

(a)
Image 2
(Target)

(b)
Deformed image

(Landmark)
(c)

Deformed image
(Intensity)

(d)
Deformed image

(Hybrid)

Fig. 6.11: Registration results of the human hand images using different approaches.
(a) shows the target image (Image 2 as in Figure 6.10). (b) shows the deformed
image from Image 1 using the landmark-based registration model. (c) shows the
deformed image from Image 1 using the intensity-based registration model. (d) shows
the deformed image from Image 1 using the proposed Q-Fibra hybrid registration
model.

Example 8. We also test the Q-Fibra hybrid registration algorithm to register two
brain MRIs. Figure 6.12 shows two human brain images. Corresponding landmark
features are labeled on each images. In Figure 6.13, we show the registration results
using different approaches. Figure 6.13(b) shows the deformed image from Image 1
using our proposed landmark-based registration model. If we only use landmarks as
constraints to guide the registration, the deformed image is different (see regions in
the red boxes) from the target image (as shown in (a)). (c) shows the deformed image
from Image 1 using the intensity-based registration. Similarly, the deformed image is
very different (see regions in the red boxes) from the target image if only intensity
information is used. Notice that local minimum is reached using the intensity-based
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(a) Image 1 (b) Image 2

Fig. 6.12: Two human brain images to be registered. Corresponding landmark fea-
tures are labeled on each images.

(a)
Image 2
(Target)

(b)
Deformed image

(Landmark)
(c)

Deformed image
(Intensity)

(d)
Deformed image

(Hybrid)

Fig. 6.13: Registration results of the human brain images using different approaches.
(a) shows the target image (Image 2 as in Figure 6.12). (b) shows the deformed
image from Image 1 using the landmark-based registration model. (c) shows the
deformed image from Image 1 using the intensity-based registration model. (d) shows
the deformed image from Image 1 using the proposed Q-Fibra hybrid registration
model.

registration. (d) shows the deformed image from Image 1 using the proposed Q-Fibra
hybrid registration model. The deformed image closely resembles to the target image.
The intensity mismatching error is about 1.81%, which is small, meaning that the
registration is very accurate.

Example 9. In this example, we compare our proposed Q-Fibra hybrid registra-
tion with other existing registration algorithms to register images with tiny, moderate
and large deformations respectively. We compare our proposed method with TPS
landmark-based registration [1], Demon intensity-based registration [34], and DROP
hybrid registration (TPS landmark-matching + MRF intensity-matching registration)
[6][7][5]. Table 6.2 shows the comparison with others to register images with tiny de-
formation. In the table, emax and emean are the maximal and average landmark
mismatching error respectively. It is observed that landmarks cannot be matched
consistently using TPS, Demon and DROP. Our method is able to match landmarks
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Table 6.2: Comparison of the proposed hybrid registration with other methods (tiny
deformation)

Method emax emean Int. Diff. (%) Flipping (%)
TPS 0.0706 0.0375 16.3759 0

Demon 0.1863 0.0875 1.7288 3.5955
DROP 0.0645 0.0407 1.6010 0.0208

Proposed 2.698× 10−14 1.742× 10−14 0.893 0

Table 6.3: Comparison of the proposed hybrid registration with other methods (mod-
erate deformation)

Method emax emean Int. Diff. (%) Flipping (%)
TPS 0.1008 0.0402 7.5365 0

Demon 0.1411 0.0354 0.1950 2.5276
DROP 0.1059 0.0408 2.5561 0.2004

Proposed 3.165× 10−14 2.014× 10−14 0.2743 0

Table 6.4: Comparison of the proposed hybrid registration with other methods (large
deformation)

Method emax emean Int. Diff. (%) Flipping (%)
TPS 0.3176 0.1996 10.3934 93.3992

Demon 0.8504 0.5592 7.3914 0
DROP 0.2903 0.1772 9.1277 2.9254

Proposed 1.463× 10−13 6.314× 10−14 0.6767 0

consistently. The percentages of the intensity difference after the registration are also
shown in the table. Our proposed Q-Fibra hybrid registration gives the minimal per-
centage of the intensity difference. Also, our method generates a registration without
flippings (bijective) whereas both Demon and DROP produce registrations with flip-
pings. Table 6.3 and 6.4 show the comparison to register images with moderate and
large deformations respectively. Again, our proposed method can give registrations
without flipping, which can match landmarks consistently and effectively match the
image intensities. Note that in Table 6.4, the Demon algorithm stopped at the local
minimum. Although the obtained registration has no flipping, the percentage of the
intensity difference is relatively large.

Example 10. We also test the Q-Fibra hybrid registration algorithm to register
two human teeth surfaces. Figure 6.14 shows two human teeth surfaces, each of them
are labeled with corresponding landmarks. Figure 6.15 shows the registration results
of the two teeth surfaces using the landmark-matching quasi-conformal registration.
(a) shows the surface of Teeth 1, whose colormap is given by its mean curvature. (b)
shows the surface of Teeth 2, whose colormap is given by its mean curvature. (c) shows
the registration result using the landmark-matching quasi-conformal registration. The
colormap on the surface of Teeth 1 is mapped to the surface of Teeth 2 using the
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(a) Tooth 1 (b) Tooth 2

Fig. 6.14: Two human teeth to be registered, each of them are labeled with corre-
sponding landmarks.

(a) Tooth 1 (b) Tooth 2 (Target) (c) Landmark-based registration

Fig. 6.15: Registration results of the two teeth surfaces using the landmark-matching
quasi-conformal registration. (a) shows the surface of Teeth 1, whose colormap is given
by its mean curvature. (b) shows the surface of Teeth 2, whose colormap is given by
its mean curvature. (c) shows the registration result using the landmark-matching
quasi-conformal registration. The colormap on the surface of Teeth 1 is mapped to
the surface of Teeth 2 using the obtained registration. Note that the curvature is not
matched consistently (see the regions in the red boxes.

obtained registration. Note that the curvature is not matched consistently (see the
regions in the red boxes). It means the registration is not accurate if only landmark
constraints are used to guide the registration process. Figure 6.16 (c) shows the
registration result using the proposed Q-Fibra hybrid registration. In this case, both
landmarks and curvature information are used to guide the registration process. The
colormap (mean curvature) on the surface of Teeth 1 is mapped to the surface of Teeth
2 using the obtained registration. Note that the curvature is consistently matched,
which means the registration result is accurate.

Example 11. We also test the Q-Fibra hybrid registration algorithm to register
two human face surfaces. Figure 7.1 shows two human face surfaces, each of them are
labeled with corresponding landmarks. Figure 7.2 shows the registration results of
the two human faces using the proposed Q-Fibra hybrid registration. (a) shows the
surface of human face 1, whose colormap is given by its mean curvature. (b) shows
the surface of human face 2, whose colormap is given by its mean curvature. (c) shows
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(a) Tooth 1 (b) Tooth 2 (Target) (c) Hybrid registration

Fig. 6.16: Registration results of the two teeth surfaces using the hybrid quasi-
conformal registration. (a) shows the surface of Teeth 1, whose colormap is given
by its mean curvature. (b) shows the surface of Teeth 2, whose colormap is given by
its mean curvature. (c) shows the registration result using the hybrid quasi-conformal
registration. The colormap on the surface of Teeth 1 is mapped to the surface of Teeth
2 using the obtained registration. Note that the curvature is matched consistently.

the registration result using the proposed hybrid quasi-conformal registration. The
colormap on the surface of human face 1 is mapped to the surface of human face 2
using the obtained registration. Note that the corresponding regions are consistently
matched. (d) shows the plot of curvature mismatching energy versus iterations. It
shows that our algorithm iteratively adjusts the quasi-conformal registration to an
optimal one that minimizes the curvature mismatching error.

7. Conclusion. This paper presents a novel method to obtain diffeomorphic im-
age or surface registrations with large deformations via quasi-conformal maps. The
main strategy is to minimize an energy functional involving a Beltrami coefficient
term. The Beltrami coefficient measures the conformality distortion of the quasi-
conformal map. It controls the bijectivity and smoothness of the registration. By
minimizing the energy functional, we obtain an optimal Beltrami coefficient associ-
ated to the desired registration, which is bijective, even with very large deformations.
The proposed method can be applied for both landmark-based registration and hybrid
registration (called Q-Fibra). Experiments have been carried out on both synthetic
and real data. Results show that our proposed method can effectively obtain a smooth
registration between images or surfaces with least amount of local geometric distor-
tion. The obtained registration is also bijective (1-1 and onto), even with a large
deformation or large number of landmark constraints. In the future, we plan to ex-
tend the proposed method to high-genus surfaces and apply the method to more real
applications in medical imaging for disease analysis.
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(a) Face 1 (b) Face 2

Fig. 7.1: Two human faces to be registered, each of them are labeled with correspond-
ing landmarks. The mesh data are freely available at http://shapes.aimatshape.net.

(a) Face 1 (b) Face 2
(c)

Hybrid
registration

(d)
Curvature

mismatch energy

Fig. 7.2: Registration results of the two human faces using the hybrid quasi-conformal
registration. (a) shows the surface of human face 1, whose colormap is given by its
mean curvature. (b) shows the surface of human face 2, whose colormap is given by
its mean curvature. (c) shows the registration result using the hybrid quasi-conformal
registration. The colormap on the surface of human face 1 is mapped to the surface
of human face 2 using the obtained registration. Note that the corresponding regions
are consistently matched. (d) shows the plot of curvature mismatching energy versus
iterations.
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