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Abstract. We consider standard finite-dimensional variational models used in signal/image
processing that consist in minimizing an energy involving a data fidelity term and a regularization
term. We propose new remarks from a theoretical perspective which give a precise description on how
the solutions of the optimization problem depend on the amount of smoothing effects and the data
itself. The dependence of the minimal values of the energy is shown to be ruled by Hamilton-Jacobi
equations, while the minimizers u(x,t) for the observed images x and smoothing parameters t are
given by

u(x,t) = x− t∇H(∇xE(x,t))

where E(x,t) is the minimal value of the energy and H is a Hamiltonian related to the data fidelity
term. Various vanishing smoothing parameter results are derived illustrating the role played by the
prior in such limits.

1. Introduction
Many low-level image processing and computer vision problems can be formu-

lated as an optimization problem. A quite standard approach for performing image
denoising consists in optimizing an energy that is a weighted combination between a
data fidelity term (that embeds the knowledge we have on the nature of the noise that
corrupts the image) and a prior (that contains the knowledge we have on the image
to be reconstructed). Among such models, the Rudin-Osher-Fatemi (ROF) model
which consists in minimizing the Total Variation with a separable quadratic term has
received a lot of interest in the image processing and computer vision communities
since the seminal works of [8, 35]. Many other priors other than Total Variation have
been introduced in image processing and computer vision to get better quality for
image reconstruction (see [1, 8, 37] for instance). In this paper, we shall consider
variational imaging problems that consist in minimizing a convex data fidelity term
with a given convex prior. In a Bayesian framework, this corresponds to consider
Maximum A Posteriori estimators. The goal of this paper is to establish new theoret-
ical relationships between the solutions of the energy minimization problems in image
processing and Hamilton-Jacobi (H-J) partial differential equations.

A finite-dimensional framework is considered in this paper. Scalars and vectors
will be denoted by letter and bold letters, respectively. It is assumed that images are
defined on a lattice V with cardinality |V| = n. The value of an image x at a site
i ∈ V is denoted by xi ∈ R. It is more convenient for mathematical purposes to see
an image x as an element of Rn and to access its ith entry by xi ∈R for i = 1,. ..,n.
We shall abuse notation by always writing xi even though i could live in the sets V
or {1,. ..,n}. This abuse of notation should never be confusing in this paper.

A standard model for image formation is formally given by

x = Aū + η , (1.1)

where x ∈Rn is the observed signal or image and we aim at estimating ū. In other
words, the observed image x has been generated from an unknown ideal (noiseless)
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image ū ∈Rn that is seen through a linear application (represented by the matrix
A with real entries) that generally corresponds to a blur in image processing. In
addition, it has also been corrupted by some additive noise η. It is also assumed that
the model “Aū+η” spans Rn, i.e., for any observed image x there exists at least one
ideal image ū and a realization of the noise η that yields the observation x. In this
paper, we shall assume that the matrix A is an invertible matrix. Two scenarios are
considered: (a) ideal images live in a subset of Rn and thus we assume that the noise
perturbation spans the whole space or (b) we assume that the noise is bounded and
that the set of possible original images is Rn. Note that the latter assumption on the
boundedness of the noise represents no limitation for signal/image processing. Indeed
sensors readouts are bounded from obvious physical reasons.

Priors contain some knowledge we have on the signal to reconstruct [37]. Several
priors used in image processing are convex functions but they are not necessarily
differentiable. We briefly present below some of the most common priors encountered
in the literature. Priors based on `1 have been remarkably popular since they promote
sparsity. Among them, Total Variation-based prior is a popular choice in image
processing since it allows the reconstructed image to exhibit sharp edges. There
are several ways to define Total Variation (TV) on lattices. Perhaps the simplest
one consists in considering the weighted absolute value of the pairwise difference of
some pixels. This yields to the following finite dimension anisotropic version of TV
[8, 11, 16, 29]:

J(y) =
∑

(i,j)∈V2

wij |yj−yi|, (1.2)

where the weights wij are finite and non-negative. Another used formulation of TV
considers a more isotropic version [35] than the pairwise interactions formulation given
by (1.2). It is contained in the following general form:

J(y) =
∑

(i,j,k)∈V3

wijk

√
(yj−yi)2 +(yk−yi)2,

where any weight wijk is still non-negative and finite. Higher order interaction priors
can also be considered. Note that both of these formulations can be seen as a particluar
case of Non-Local Total Variation [23] that takes the following form

J(y) =
∑
i∈V

√∑
j∈V

wij(yj−yi)2

where any weight wij is finite and non-negative.
Another useful prior on images consists in weighted l1-norms for encouraging

sparsity of the image. It takes the following form

J(y) =
∑
i∈V

wi|yi|,

where, again, the weights wi are non-negative and finite. This prior has received a lot
of interest due to its close connection with compressive sensing reconstruction [10, 19].

One can also use priors on images that do not come from lp-norm. A general form
of priors with pairwise interactions takes the following form

J(y) =
∑

(i,j)∈V2

φij(yi−yj),
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where any φij is a convex function. For example a popular choice for φij is the Huber
prior [37] that corresponds to the following definition:

φij(z) =

{
z2 if|z|≤α,
2α|z|−α2 otherwise,

where the real valued parameter α is non-negative. Note that this prior is differen-
tiable. We refer the reader to [1, 8, 37] for other possible priors.

The data fidelity term corresponds to the knowledge we have on the process that
alter the ideal image ū. A standard assumption in image processing is that the noise
that corrupts ideal images is Gaussian and additive. For the sake of simplicity, we
should only consider this case in this section. We shall present it formally while
rigorous justification will be given later. This corresponds to consider a separable
quadratic data fidelity term. More general data fidelity terms, i.e., non-Gaussian
noise, will be covered later in the paper. Given an observed image x ∈Rn, a standard
imaging problem consists in minimizing in the y variable the following energy

y 7→ 1

2t
‖y−x‖22 + J(y), (1.3)

for any fixed t>0. The Euclidean norm in Rn is denoted by ‖·‖2. The real t > 0 gives
the amount of filtering we wish to consider. It corresponds to a trade-off between the
smoothing effect of the prior and the fidelity to the observed image x.

A lot of effort has been devoted to proposing efficient algorithms for minimizing
(1.3) when J is given by one of the prior recalled above and for a given fixed observed
image x and a given fixed smoothing parameter t>0. This is still an active field of
research. In this paper, we study the behavior of the minimal values of the energy
(1.3) with respect to both the observed data x ∈ R and the smoothing parameter
t>0. In other words we study the function F :Rn×(0,+∞)→R formally defined by

F (x,t) = min
y∈Rn

{
1

2t
‖y−x‖22 + J(y)

}
. (1.4)

For a fixed t>0, the mapping x 7→F (x,t) is called the Moreau envelopes of J [34,
Def. 1.22, p. 20] or the Moreau-Yosida regularization of J [28, p. 317]. For imaging
purposes, one is generally more interested in the minimizer of the energy F itself (i.e.,
the vector y that realizes the minimum of F ) rather than its minimal value F (x,t).
This minimizer is called the proximal point of x relatively to J [32]. In that context,
the object of interest is the function v :Rn×(0,+∞) that maps the observed data
x ∈Rn and the smoothing parameter t > 0 to the proximal point (i.e., the minimizer
of (1.4))

v(x,t) = argmin
y∈Rn

{
1

2t
‖y−x‖22 + J(y)

}
. (1.5)

For any fixed t > 0, the mapping x 7→v(x,t) is called the proximal mapping of J
[34, Def. 1.22,p. 20]. In [12], the connection with imaging problems of the form of
(1.3) and proximal methods is highlighted. The authors give some properties of the
proximal mapping x 7→v(x,t) for any fixed t > 0. Nevertheless, their study is not
sufficient for our goal since we shall consider non-quadratic data fidelity terms. In
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[24, chp. 3] and [25], the author studies the proximal mapping for Total Variation in
an infinite-dimensional framework.

In this paper, we shall consider imaging problems where the data fidelity term is
not restricted to be quadratic. We study both the mappings that take the observed
data x ∈ Rn and the smoothing parameter t ≥ 0 to the minimal values of the energy
F (x,t) (1.4) and the minimizers (1.5) v(x,t).

Let us illustrate the behavior of the minimal values and of the minimizers on a
simple example. We consider an energy of the form of (1.3). We recall that the data
fidelity term is a separable quadratic term. We set the prior J to an anisotropic Total
Variation with pairwise interactions of the form of (1.2), i.e., J(y) =

∑
(i,j)∈V2wij |yj−

yi|. We set the lattice V to be a regular 2D grid and we endow it with the 4-nearest
neighbors [37]. For any i ∈ V we denote by N (i) the set of the 4-nearest neighbors
of i. The weights wij are defined as follows: for any i ∈ V and any j ∈ N (i) we set
wij = 1

2 . Thus, the energy we consider in this example corresponds to the anisotropic
ROF problem [35] that takes the form

1

2t

∑
i∈V

(yi−xi)2 +
1

2

∑
i∈V

∑
j∈N (i)

|yj−yi|. (1.6)

The minimizer and the minimal value of the this energy can be computed up to
the machine precision using maximum-flow based algorithms [11, 16, 29]. Figure 1.1
depicts two original images: an aerial image of an area of Montpellier and an image of
a baboon that are respectively denoted by xM and xB. Figure 1.2-(a-d) depicts the
minimizer of energy (1.6) for the two images with two different values of the smoothing
parameter t. It also depicts in figure 1.2-(e) the minimal values of (1.6) as a function
of the smoothing parameter t with the observed data x = xM or x = xB being fixed.
Let us note that this function is convex. We pursue this example by illustrating the
behavior of minimizing (1.6) when it is seen as a function of both the observed data
x and the smoothing parameter t. The following toy example aims at illustrating this
behavior. We consider the convex combinations between the two observed images xB

and xM, and the two smoothing parameters t0 = 15 and t1 = 50. More precisely we
consider

[0,1] 3 α 7→ min
y∈Rn

‖y−(1−α)t0xB +αt1xM‖22
2((1−α)t0 +αt1)

+
1

2

∑
i∈V

∑
j∈N (i)

|yj−yi|

 . (1.7)

Figure 1.3-(a,c) depicts the convex combination images (1−α)t0xB +αt1xM. The
minimizer of (1.7) for α = 0.4 and α = 0.6 are depicted in figure 1.3-(b,d). The plot
of the function (1.7) is depicted in Figure 1.3-(e). We also observe that this function
is convex.

The goal of this paper is to show that for a broad class of variational problems
(including the ones presented above) the function E which maps the observed sig-
nals/images x ∈ Rn and the smoothing parameters t ≥ 0 to the minimal values is
ruled by the solution of a Hamilton-Jacobi partial differential equation. The initial
datum of this Hamilton-Jacobi equation is the convex prior J . We provide a closed
formula in Proposition 3.1 that gives an explicit representation of the minimizers u
in function of x,t>0,E and some Hamiltonians related to the data fidelity term. In
addition, the behavior of both mappings for the limiting case t→0 is also described.
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(a) (b)

Fig. 1.1. Two original images: (a) an aerial image of an area of Montpellier, and (b) an image
of a baboon.

Indeed, theorem 2.6 gives the value of E when t→0 and proposition 3.2 provides the
convergence of the minimizer u when t→0. The behavior of the semi-derivative of
E at (x,0) and the evolution rule of the minimizer when t→0 are also characterized;
see proposition 3.3 and proposition 3.4. These results when the smoothing parameter
t→0 are important for imaging purposes.

In other words, the study gives the dependency of the minimal value of the energy
and of the minimizer of the variational problem with respect to the observed data x
and the value of the smoothing parameter t.

The remainder of this paper is organized as follows: section 2 studies the minimal
value of the imaging problems in function of the observed image x ∈ Rn and the
smoothing parameter t>0. Not only lemma 2.1 shows that the image processing
problem is well-posed: for any x ∈ Rn and t>0 it has a unique solution); but it also
proves properties on the Hamiltonian that are essential for Hamilton-Jacobi equations.
Indeed, theorem 2.6 shows that the minimal value function is convex and obeys a
Hamilton-Jacobi equation with initial datum. Section 3 gives the formulas for the
minimizer of imaging problems. Proposition 3.1 gives formulas that connect directly
the minimizers to the minimal values of the imaging problem: Proposition 3.2, 3.3 and
3.4 give a precise description of the behavior of the minimizers when the smoothing
parameter t ends to 0. We draw some conclusions in section 4.

2. Convex problems and Hamilton-Jacobi Equations

The goal of this section is to describe theoretical connections between the mini-
mal value of convex image processing problems with Hamilton-Jacobi equations with
convex initial datum. In this paper we shall make use of the book on convex analysis
in finite dimension of Hiriart-Urruty and Lemaréchal [27] and [28]. We also refer the
reader to the monographs [6, 18, 20, 33]. We first introduce some useful definitions
of convex analysis.

2.1. Preliminaries

We first recall some standard definitions of convex analysis.
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Fig. 1.2. Minimizers of the quadratic + anisotropic TV model for two values of the smoothing
parameter t: In (a) and (c) the aerial image respectively filtered with t= 25 and t= 50 while in (c)
and (d) is the minimizer for the baboon image with the same values of the smoothing parameter t.
The figure (e) depicts the plot of the minimal values of the energy with respect to the smoothing
parameter t for the two images.
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Fig. 1.3. Figure (a) and (b) depicts the convex combination (1−α)t0xB +αt1 for α = 0.4 and
α = 0.6 respectively. The corresponding minimizers that solves (1.7) are respectively depicted in (b)
and (d). The plot of the function (1.7) that corresponds to the minimal energy against the convex
combination coefficient α ∈ [0,1] is shown in (e).
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Definition 2.1 (Convex functions and the set Γ0(Rn)). A function f :Rn→
R∪{+∞}, not identically +∞, is said to be convex when, for all (x,y)∈Rn×Rn and
for all α∈ (0,1), there holds

f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y), (2.1)

considered as an inequality in Rn∪{+∞}. The class of convex functions that are
lower semicontinuous is denoted by Γ0(Rn). The function f is said to be strictly
convex if the inequality is strict in (2.1).

The class of convex functions Γ0(Rn) is the one of interest in this paper. The
domain of f ∈ Γ0(Rn) is the nonempty set domf = {x∈Rn, f(x)<+∞}. The
standard Euclidean scalar product of Rn is denoted by 〈·, ·〉 and its associated norm
by ‖·‖2.

Definition 2.2 (Subdifferential/subgradients [27, p. 241]). The subdifferential
∂f(x) of f ∈Γ0(Rn) at x∈domf is the set (possibly empty) of vectors s∈Rn satisfying

∀y∈Rn, f(y) ≥ f(x)+〈s,y−x〉.

Any vector s ∈ ∂f(x) is called a subgradient of f at x.

Definition 2.3 (Fenchel transform [28, p. 37]). Let f ∈Γ0(Rn). The Fenchel-
Legendre transform f∗ ∈ Γ0(Rn) of f is given by

s 7→f∗(s) = sup
x∈domf

{〈s,x〉−f(x)}.

Definition 2.4 (Infimal-convolution [27, p. 163]). Let f1 ∈ Γ0(Rn) and f2 ∈
Γ0(Rn). The infimal-convolution of f1 and f2 is the function from Rn to R∪{+∞}
defined by

(f1 �f2)(x) = inf
x1+x2=x

{f1(x1)+f2(x2)} .

The infimal convolution is said to be exact if the infimum is attained at
(x̄1,x̄2) ∈ domf1×domf2, and the infimum can be replaced by a minimum.

Definition 2.5 (Differentiability and gradient). A function f : Ω→R with Ω 6= ∅
an open subset of Rn is said to be differentiable at x ∈ Ω if there exists a linear form
l on Rn such that

f(x+h) = f(x)+ l(h)+o(‖h‖2).

This linear form l is donted by Df(x) and is called the differential of f at x. It can
be represented by a unique vector of Rn that we denote by ∇f(x) ∈ Rn. It is defined
for all x ∈ Ω by

Df(x)(h) = 〈∇f(x),h〉 for all h ∈ Rn.

We call this element the gradient of f at x.
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2.2. H-J equations with convex initial datum and convex Hamiltonians
We now describe the connection between a large class of convex imaging problems

and Hamilton-Jacobi equations.
We consider imaging problems that take formally the following form: for any

observed data x ∈ Rn and any t>0 solve

inf
y∈Rn

{
J(y) + tH∗

(
x−y

t

)}
. (2.2)

Here J corresponds to the prior we have on the image to be reconstructed. The
other term, namely tH∗

(
x−·
t

)
corresponds to the data fidelity. For example, the

canonical imaging problem (1.4) is obtained by setting H∗= 1
2‖·‖

2
2. We shall make

some assumptions on J and H. Throughout this paper, the following assumptions
are made

(H1) domH = Rn,
(H2) H is differentiable,
(H3) H strictly convex,
(H4) J ∈ Γ0(Rn) (see definition 2.1).

We will add one of the following two assumptions:
either

(H5) H is 1-coercive, i.e., lim‖x‖2→+∞
H(x)
‖x‖2 = +∞,

or either
(H5’) H∗ is differentiable at point whenever it has a subgradient at this point, i.e.,

∀x∈domH∗, ∂H∗(x) 6= ∅ ⇒ ∂H∗(x) = {∇H∗(x)},
(H6’) H is bounded from below by a constant,
(H7’) domJ = Rn.

Let us briefly review the impact of these assumptions on the general image processing
problem (2.2). The set of assumptions (H1), (H2), (H3) and (H5) on H corresponds to
consider that domH∗ = Rn and that H∗ is strictly convex, continuously differentiable
and 1-coercive. These properties comes from [28, Corollary 4.1.4, p. 82]. The set of
assumptions (H1-H5) are widely used in image processing since the only requirement
on the prior J is (H4), i.e., J ∈ Γ0(Rn) (see definition 2.1). This allows to consider
priors J that have bounded domains. The set of assumptions (H1-H4) and (H5’-H7’)
allows for the data fidelity term H∗ to have a bounded domain. This means that the
perturbation due to the noise is bounded. Assumption (H5’) is a technical assumption
on H∗ (an example will be given later in this section). This assumption will be
used for making the connection between the general problem (2.2) and Hamilton-
Jacobi equations. Assumption (H7’) ensures that for any observed data x ∈ Rn and
any smoothing parameter t>0 the imaging problem has always a solution. The
assumption (H6’) implies that H∗(0) is finite.

The two sets of assumptions (H1)-(H4) with either (H5) or (H5’)-(H7’) yield to
data fidelity terms H∗ and priors J where, for each case, the domain of definition of
J or H∗ is Rn. This ensures that there is a solution to the imaging problem (2.2)
for any observed data x ∈Rn and any smoothing parameter t > 0. Indeed, the next
lemma shows that under the above assumptions, the problem (2.2) admits a unique
minimizer for any observed data x and positive smoothing parameter t. Note that
if one assumption is removed then it may happen that the existence of a minimizer
might be lost, or that the uniqueness does not hold, or that the connection of the
imaging problem (2.2) with Hamilton-Jacobi equations does not hold (at least in the
classical sense). This means that these two sets of minimal assumptions are, in a
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sense, minimal for imaging purposes.

Lemma 2.1. Suppose the assumptions (H1)-(H4) along with either (H5) or (H5’)-
(H7’) hold. Then, the following properties hold for any x ∈ Rn and for any postive
smooting parameter t>0:

i) The infimum in (2.2) exists and is attained at a unique point ȳ ∈ domJ .
ii) In addition, ∇H∗

(
x−ȳ
t

)
exists .

iii) Futhermore, ∇H∗
(
x−ȳ
t

)
∈ ∂J(ȳ).

The proof is given in Appendix A. This Lemma means that the image restoration
problem (2.2) is well-posed: it has a unique minimizer. There is exactly one minimizer
and it corresponds to the estimated restored image. Note that this only states that
the minimization problem (2.2) is well-behaved. In practice, one needs to find the
minimizer of (2.2) by some theoretical or numerical/algorithmical means. The next
section provides a constructive proof for finding this minimizer in function of the
observed data x ∈ Rn and the smoothing parameter t≥0.

We are now ready to relate the minimal values of the problem (2.2) to Hamilton-
Jacobi equations. To this purpose, we consider the initial-value problem for the
Hamilton-Jacobi equation that takes the following form:

(H-J)


∂E

∂t
(x,t)+H(∇xE(x,t)) = 0 in Rn×(0,+∞),

E(x,0) = J(x) ∀x∈Rn,

where the unknown is the function E that maps Rn× [0,+∞) into R. Here, ∂E/∂t
and ∇xE respectively denote the partial derivatives with respect to t and the gradient
vector with respect to x ∈ Rn of the function E.

The function H is called the Hamiltonian. In general, Hamilton-Jacobi equations
do not have global classical solutions in the sense that one cannot find a differentiable
function that satisfies (H-J) everywhere in Rn×(0,+∞). The theory of viscosity
solutions has been developed in [13, 14] to provide an appropriate notion on weak
solutions of (H-J) and has been widely studied since. The formalism proposed in this
paper does not require the theory of viscosity solutions; the goal of this paper is to
exhibit the connections between (H-J) and convex variational problems in imaging
sciences. When either the Hamiltonian H or the initial datum J is convex along with
some continuity assumptions, then the solutions can be obtained through the Hopf
and Lax formulas [4], [21, chp. 10]. In this paper, we shall use these formulas and
make strong assumptions on both the Hamiltonian and the initial datum such that
the solutions are classical.
The solution of the Hamilton-Jacobi equation is given by

Theorem 2.6 (Hopf and Lax formula). Suppose the assumptions (H1)-(H4)
along with either (H5) or (H5’)-(H7’) hold. Then, the unique differentiable and convex
function E :Rn× [0,+∞)→R that satifies the Hamilton-Jacobi equation (H-J) with
initial datum J in Rn×(0,+∞) is defined by

E(x,t) = (J∗+ tH)
∗
(x) (Hopfformula) (2.3)

= (J�(tH)∗)(x) (Laxformula) (2.4)

= inf
y∈Rn

{
J(y) + tH∗

(
x−y

t

)}
. (2.5)
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Furthermore, for any x∈domJ the pointwise limit of limt→0,t>0E(x,t) exists and is
given by

lim
t→0
t>0

E(x,t) = J(x).

In addition, the infimum in (2.5) is attained and is unique.

The proof relies on convex analysis and is done in [26, exercise 7.28, p. 358]. Note
that with our assumptions, both the Hopf and Lax formulas yield the same solution.
This comes from the fact that both the Hamiltonian H and the initial datum J live
in Γ0(Rn) as defined in definition 2.1.
The set of assumptions (H1)-(H4) along with either (H5) or (H5’)-(H7’) are rather
minimal. Indeed, if one assumption is relaxed, then a solution to the H-J equation
with initial datum may not be defined on Rn× [0,+∞) but only on a subset of it.
Also, the solution may not be classical as one cannot expect to find a solution that is
differentiable everywhere on the interior of its domain of definition.

Note that for any fixed t > 0 the Hopf and Lax formula corresponds exactly to
the imaging problem of interest (2.2) which consists in estimating the ideal image
ū while observing the data x = Aū+η given by the image formation model (1.1).
The convex behavior of the minimal energies that are observed in Figures 1.2-(e)
and 1.3-(e) follows directly from the fact the Hopf-Lax solution is a convex function.
Compared to many Hamilton-Jacobi equations used in physics and optimal-control
[3], the dimension of the problem is very high since it involves (n+1) variables where
n is the number of pixels of the image. In addition, the initial datum of the Hamilton-
Jacobi equation is the prior we set on the image to reconstruct. The use of an imaging
prior J as the convex initial datum of the Hamilton-Jacobi equation is not common in
the partial differentiable equation literature compared to standard Hamilton-Jacobi
based problems [3].
Some examples. Let us consider the particular case of the separable quadratic
Hamiltonian, i.e., H= 1/2‖·‖22 in (H-J). Its Fenchel-Legendre transform is itself, i.e.,
H∗ = 1/2‖·‖22 = H. We consider the following Hamilton-Jacobi equation

∂E

∂t
(x,t)+

1

2
‖∇xE(x,t)‖22 = 0 in Rn×(0,+∞),

E(x,0) = J(x) ∀x∈Rn.

The solution is given by the Lax formula which gives for any t>0 and any x ∈ Rn

E(x,t) = min
y∈Rn

{
J(y) +

1

2t
‖x−y‖22

}
.

This corresponds exactly to the minimal value of the variational image restoration
problem when the regularization term is J and the perturbation is zero-mean, additive
and Gaussian. If J is a Total Variation then we obtain the Rudin-Osher-Fatemi model
[35].

This approach can also deal with more elaborated observation models as (1.1).
For example, more general quadratic Hamiltonians of the form H = 1

2 〈A
−1·,·〉

can be considered in (H-J). Here A is a n×n symmetric positive-definite invert-
ible matrix with real entries. The Fenchel-Legendre transform of the Hamiltonian
is H∗ = 1

2 〈A·, ·〉. Suppose we observe the image A−1x, then the Lax formula yields
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E(A−1x,t) = miny∈Rn

{
J(y) + 1

2t‖x−Ay‖22
}

. This corresponds to a variational for-
mulation for a deconvolution problem with additive Gaussian noise. In other words,
the approach can deal with observations x that could be obtained from blurry versions
of the ideal image ū and then corrupted by some realisation of the noise.

The assumption on the perturbation η is fairly weak. For instance, non-Gaussian
noise can also be considered. Take f ∈ Γ0(R) as defined in definition 2.1. Suppose
H=f(‖·‖) in (H-J) with ‖·‖ any norm on Rn and f ∈ Γ0(R) is an even function.
Following [20, Prop. 4.2, p. 19], we have H∗ =f∗(‖·‖∗), where ‖·‖∗ is the dual norm
of ‖·‖. For instance, if we consider the `p norm with 1 < p < +∞ and f(x) = 1

p x
p,

then H(x) = 1
p ‖x‖

p
p and we get H∗(x) = 1

q ‖x‖
q
q with q such that 1

p + 1
1 = 1. By doing

so, we can consider generalized Gaussian noise distribution [8, 30] as well.
So far, all the Hamiltonians considered satisfy assumption (H5). Under the (H5)

assumption, we can consider convex regularization terms J that include some con-
straints, i.e., that domJ can be different from Rn. For instance, suppose it is a priori
known that the signal to reconstruct is piecewise constant and is nonnegative. A
standard regularization term under these assumptions takes the following form

J(v) =

{∑
(i,j)∈V2wij |vj−vi| ifvi≥0

+∞ otherwise.

where each coefficient wij ≥ 0.

Now, let us exhibit one that satisfies (H5’). Assume that H(x) =
√

1+‖x‖22. Its
Fenchel-Legendre transform is

H∗(x) =

{
−
√

1−‖x‖22 if ‖x‖2 ≤ 1,

+∞ otherwise ,

and satisfies (H6’). Indeed H∗ is differentiable in the open ball {x∈Rn |‖x‖2<1}
and has empty subdifferentials for any x∈Rn such that ‖x‖2 ≥ 1.

More generally, the Lax formula given by Eq. (2.5) says that the regulariza-
tion term in the image processing problem always become the initial datum of the
Hamilton-Jacobi equation. The function H∗ aims at taking into account some noise ef-
fects and implicitly defines the Hamiltonian through the Fenchel-Legendre transform.
The amount of regularization is obtained by adjusting the smoothing parameter t>0
through the perspective scaling tH∗

( ·
t

)
.

3. Behavior of the minimizer
So far we have only considered the behavior of the minimal value of the optimiza-

tion problem. Recall that we are more interested in the minimizer of the optimization
problem since it corresponds in estimating the ideal image. We shall now address the
issue of the behavior of the minimizers.

Since the the minimizer in the Hopf-Lax formula is unique for any observed data
x ∈ Rn and any smoothing parameter t>0, we can introduce the function that maps
the observed data and the regularization parameter to the minimizer; that is the
function u :Rn× [0,+∞)→Rn defined by

u(x,t) =

arg min
y∈Rn

{
J(y) + tH∗

(
x−y

t

)}
if t > 0,

x if t = 0.

(3.1)
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The justification for setting u(x,0) = x will be justified in proposition 3.2. We first
study a simple example to highlight the behavior of (3.1) before considering the
general case.

3.1. An example with l1 prior
Let us first consider an example in order to understand the kind of formula we

wish to establish. We set an `1 prior on images (as given by Eq. (1.3)) J =‖·‖1 and
consider the quadratic Hamiltonian H= 1/2‖·‖22. The corresponding Hamilton-Jacobi
equation is 

∂E

∂t
(x,t)+

1

2
‖∇xE(x,t)‖22 = 0 in Rn×(0,+∞),

E(x,0) = ‖x‖1 ∀x∈Rn .

The Hopf-Lax formula yields for any t>0 and any x ∈ Rn

E(x,t) = min
u∈Rn

{
1

2t
‖u−x‖22 +‖u‖1

}
. (3.2)

It is well known that the optimal solution corresponds to a soft thresholding/shrink
applied component by component [31, 22, 17]. This operation is widely used in image
processing, computer vision, machine learning and compressive sensing as it promotes
sparsity and can be computed efficiently. The soft thresholding operator is defined
for any real value a and any positive real number α as

S(a,α) =


a−α if a ∈ (α,+∞),

0 if a ∈ [−α,α],

a+α otherwise.

(3.3)

The minimizer of (3.2) is then given component-wise by

ui(x,t) =S(xi,t)

for any i = 1,. ..,n. Another formulation of the solution consists in noting that the
soft thresholding can be expressed as an Euclidean projection onto a closed convex
set. More precisely, let πC1

be the Euclidean projection onto the closed convex set
C1 = [−1,1]n. The soft thresholding reads as follows

u(x,t) = x−πtC1(x) = x− tπC1

(x

t

)
.

Let us note here that this problem is a specific Riemann problem and that the solutions
and inequalities involving generalizations of this problem have originally been obtained
by Bardi and Osher in [5].

This approach is not specific to the `1-norm and can be generalized. Indeed, in-
stead of choosing J = ‖·‖1, we consider J ∈ Γ0(Rn) that is positively 1-homogeneous,
i.e., J(λy) = λJ(y) for any y ∈ Rn and λ ≥ 0. The set convex closed set C1 is replaced
by the convex closed set C defined by

C = ∂J(0),

and the minimizer then satisfies

u(x,t) = x−πtC(x) = x− tπC
(x

t

)
.
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Note that the behavior of the minimizer could be studied through the stability of
the Euclidean projector onto a closed convex set [7, 36]. However, in this paper we
do not wish to resctrict the study to 1-homogeneous prior J as many priors used in
signal/image processing do not enjoy this property.

3.2. Main results
We now describe the general case that will include the above examples. Our

goal is to establish proposition 3.1 that gives an explicit formula of the minimizers
in function of x ∈ Rn,t>0,E and H. The behavior of the minimizers when the
smoothing parameter t→0 is given by Prop. 3.2. The behaviors of the minimal
values E and ∇xE at (x,0) are also characterized by proposition 3.3 and proposition
3.4.

Lemma 2.1 states that the infimal-convolution (2.5) of J with tH∗( ·t ), which
corresponds to the Hopf-Lax formula, is exact for any t>0. Thus, we can invoke [28,
Prop. 3.4.1, p. 119] and deduce that the subdifferential of this infimal-convolution
with respect to the variable x is given for any t>0 and any x ∈ Rn by

∂(y 7→E(y,t))(x) = ∂J(u(x,t)) ∩ ∂H∗
(

x−u(x,t)

t

)
. (3.4)

By Lemma 2.1-ii) we have that ∂H∗
(

x−u(x,t)
t

)
=
{
∇H∗

(
x−u(x,t)

t

)}
, and by Lemma

2.1-iii), we obtain that for any t>0 and any x ∈ Rn that∇H∗(x−u(x,t)
t ) ∈ ∂J(u(x,t)).

This implies that the subdifferential of (3.4) is a singleton. In other words it is
differentiable and its partial derivative with respect to x is given by

∇xE(x,t) =∇H∗
(

x−u(x,t)

t

)
∈ ∂J(u(x,t)). (3.5)

In addition, under the assumptions (H1)-(H4) with (H5) (the proofs can be adapted
to cope with the other set of assumptions, i.e., (H1)-(H4) with (H5’)-(H7’)) we can
invoke [28, Corollary 4.1.4, p. 82] or [18, Prop. 23.2, p. 289] to obtain for any
y ∈ domH∗ such that ∂H∗(y) 6= ∅ the following formula about the differentials

DH∗(y) = (DH)−1(y). (3.6)

Using (3.6) and Definition 2.5 into (3.5), we get

∀x ∈ Rn ∀t>0 u(x,t) = x− t∇H (∇xE(x,t)) .

Thus, we have proved the following result.

Proposition 3.1. Suppose assumptions (H1)-(H4) along with either (H5) or (H5’)-
(H7’) hold. Then, for any x ∈Rn and any t > 0 we have

u(x,t) = x− t∇H (∇xE(x,t)) . (3.7)

The above formula states that the behavior of the minimizers are completely dictated
by the spatial derivative ∇xE of the solution of (H-J) and the gradient of the Hamil-
tonian. To the best of our knowledge, this relationship that links the restored image
u(x,t) with the minimal value of the imaging problem (2.2) was unknown.
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However, proposition 3.1 is valid only for smoothing parameters t > 0. The next
propositions study the behavior of the minimizers when t→0 with t > 0. For this
purpose we shall consider any sequence of positive smoothing parameter tk>0 con-
verging to 0. We also consider the sequence of observed data (x+ tkdk)k∈N where
x ∈ Rn and dk ∈ Rn for any k ∈ N such that limk→+∞dk = d with d ∈ Rn. In other
words, we consider sequences of the form (x+ tkdk,tk)k∈N that are converging from
the direction (d,1) to (x,0) [34, p. 197].

Our goal is to prove that the sequences (u(x+ tkdk,tk))k∈N, (E(x+ tkdk,tk))k∈N
and (∇xE(x+ tkdk,tk)))k∈N are convergent and to provide explicit formulas of these
limits.

The next proposition describes the behavior of the minimizer when the smoothing
parameter vanishes. It shows that the minimizer of the imaging problem converges
to the final observed data x. This means that vanishing smoothing parameters
corresponds vanishing noise.

Proposition 3.2. Suppose assumptions (H1)-(H4) along with either (H5) or (H5’)-
(H7’) hold. Let (tk)k∈N be a sequence of positive real numbers converging to 0 and let
(dk)k∈N be a sequence of elements of Rn converging to d∈Rn. Then, the following
properties hold:

i) For any x∈domJ we have for u given by (3.7)

lim
k→+∞

u(x+ tkdk,tk) = x .

ii) For any x∈domJ such that ∂J(x) 6=∅ then

the sequence

(
x+ tkdk−u(x+ tkdk,tk)

tk

)
k∈N

is bounded.

Part-ii) of the above proposition is a technical result that is useful to prove the
next proposition. It shows that the sequence (∇Ex(x+ tkdk,tk))k∈N is bounded. It
also provides the set where any accumulation point of (∇Ex(x+ tkdk,tk))k∈N lives.

Proposition 3.3. Suppose assumptions (H1)-(H4) with either (H5) or (H5’)-(H7’)
hold. Let (tk)k∈N be a sequence of positive real numbers converging to 0 and (dk)k∈N
be a sequence of elements of Rn converging to d∈Rn. Then, the sequence (∇Ex(x+
tkdk,tk))k∈N is bounded and any accumulation point q satisfies

q∈∂J(x) .

We can refine the above proposition by looking at the semiderivates (see
[34, Def. 7.20, p. 256]) of E for t= 0. The next proposition describes the lim-
its of the variations of E and ∇xE in function of the data and the smoothing
parameter as the latter vanishes and the data converges to x along the direction
d. It provides explicit formulas of the limits of these variations in function of H and J .

Proposition 3.4. Suppose assumptions (H1)-(H4) along with either (H5) or (H5’)-
(H7’) hold. Let x∈domJ such that ∂J(x) 6=∅. Let (tk)k∈N be a sequence of positive
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real numbers converging to 0 and let (dk)k∈N be a sequence of elements of Rn con-
verging to d∈Rn. Then, the semiderivative of E at (x,0) along the direction (d,1) is
given by

lim
k→+∞

E(x+ tkdk,tk) − E(x,0)

tk
= max

y∈∂J(x)
{〈d,y〉 −H(y)}.

Furthermore,

lim
k→+∞

∇xE(x+ tkdk,tk) = arg max
y∈∂J(x)

{〈d,y〉 −H(y)}.

The above proposition shows that ∇Ex and the variations of E correspond to the
maximum deviation between the linear form 〈d,·〉 and H over the closed convex set
∂J(x) as the smoothing parameter t vanishes. It gives thus explicit formulas for the
role played by the image prior J on the minimal value E and its variations as t→0.

This constraint ∂J(x) shows how that image processing prior J acts on the min-
imal value and its variation of the image processing problem (2.2).

Let us make some remarks for the particular case of the quadratic Hamiltonian
H= 1

2‖·‖
2
2 in (H-J). In this case, for any fixed x ∈Rn the mapping (0,+∞) 3 t 7→

∇xE(x,t) is called the ”Yosida approximation” of the subdifferential ∂J [2, Chp. 3,
p. 144]. We apply Proposition 3.4 with the direction (0,1) and we get

lim
k→+∞

∇xE(x,tk) = π∂J(x)(0) , (3.8)

where π∂J(x)(0) corresponds to the element of the subdifferential of J at the point
x that has the minimal Euclidean norm (i.e., the Euclidean projection of 0 onto the
convex closed set ∂J(x)). The result given by (3.8) on Yosida approximation is widely
known and can be found for instance in [9, Thm. 3.1, p. 54] and [2, Thm. 2, p 144].

‘

3.3. Proof of Proposition 3.2
We set xk = x+ tkdk.

Case with (H5).
Proof of i). Since for all k ∈ N, u(xk,tk) is the minimizer of (2.5), we have

∀y ∈ Rn J(u(xk,tk))+ tkH
∗
(

xk−u(xk,tk)

tk

)
≤ J(y)+ tkH

∗
(

xk−y

tk

)
.

In particular, for y = x we get for any k∈N

J(u(xk,tk))+ tkH
∗
(

xk−u(xk,tk)

tk

)
≤ J(x)+ tkH

∗
(

xk−x

tk

)
. (3.9)

By (H5), H is 1-coercive and by invoking [28, Prop. 1.3.8, p. 46] we get that domH∗ =
Rn. Since H∗ is also convex it is continuous on Rn. In addition, since xk = x+
tkdk we deduce that xk−x

tk
→d as k→+∞. We then obtain by the continuity of H∗

that limk→+∞H
∗(xk−x

tk
) = H∗(d). Thus, there exists c0∈R such that for any k∈N

H∗(xk−x
tk

) ≤ c0. From (3.9) we get that for any k∈N

J(u(xk,tk))+ tkH
∗
(

xk−u(xk,tk)

tk

)
≤ J(x)+ tkc0 . (3.10)
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Since domJ 6=∅ and J is convex, there exists y0∈domJ such that ∂J(y0) 6=∅. Let
sy0
∈∂J(y0). Using the convex inequality and the Cauchy-Schwarz inequality we get

J(u(xk,tk)) ≥ J(y0)+〈sy0
,u(xk,tk)−y0〉 ≥ J(y0)−‖sy0

‖2 ‖u(xk,tk)−y0‖2 ,
(3.11)

which yields when combined with (3.10) to

tkH
∗
(

xk−u(xk,tk)

tk

)
≤ J(x)+ tkc0−J(y0)+‖sy0

‖2 ‖u(xk,tk)−y0‖2 . (3.12)

By the triangle inequality, we have that for any k∈N,‖u(xk,tk)−y0‖2 ≤ ‖y0−xk‖2 +
‖xk−u(xk,tk)‖2. Since the sequence (xk)k∈N converges to x, it is bounded and so
is (‖y0−xk‖2)k∈N. Also, the sequence (tkc0)k∈N is bounded since it converges to 0.
Thus, there exists a constant c1∈R such that for any k∈N it holds J(x)+ tkc0−
J(y0)+‖sy0

‖2‖y0−xk‖2 ≤ c1. Thus, we obtain that for any k∈N

tkH
∗
(

xk−u(xk,tk)

tk

)
≤ c1 +‖sy0‖2 ‖xk−u(xk,tk)‖2 . (3.13)

Suppose by contradiction that (‖xk−u(xk,tk)‖2)k∈N does not converge to 0, i.e.,

∃ε > 0,∀k0∈N,∃l∈N, l ≥ k0, ‖xl−u(xl,tl)‖2 > ε.

Dividing by ‖xl−u(xl,tl)‖2 ≥ ε>0 in (3.13) we get

tl
‖xl−u(xl,tl)‖2

H∗
(

xl−u(xl,tl)

tl

)
≤ c1
‖xl−u(xl,tl)‖2

+‖sy0
‖2 ≤

c1
ε

+‖sy0
‖2 .

(3.14)

Since (tk)k∈N is converging to 0 and ‖xl−u(xl,tl)‖2 ≥ ε we can make the quan-

tity ‖xl−u(xl,tl)‖2
tl

as large as desired by choosing k0 sufficiently large. By (H1),

i.e., domH = Rn and [28, Prop. 1.3.9, p. 46] we have that H∗ is 1-coercive,
i.e., there exists a constant c2∈R such that for any z∈Rn with ‖z‖2 ≥ c2 it holds

H∗(z) ≥ ( c1ε +‖sy0‖2 +1)‖z‖2. Letting z = xl−u(xl,tl)
tl

with k0 large enough such that

‖z‖2 ≥ c2 we get

tl
‖xl−u(xl,tl)‖2

H∗
(

xl−u(xl,tl)

tl

)
≥ c1

ε
+‖sy0‖2 +1

which contradicts (3.14). Thus, (‖xk−u(xk,tk)‖2) converges to 0. Since
‖x−u(xk,tk)‖2 ≤ ‖xk−u(xk,tk)‖2 + tk‖dk‖2, we get the desired result by tak-
ing the limit on k→+∞, i.e., limk→+∞u(xk,tk) = x. The proof of i) is complete.

Proof of ii). By assumption we have x∈domJ and ∂J(x) 6=∅. Thus we can choose
y0 = x and s0∈∂J(x) in (3.11). Thus, inequality (3.12) becomes

tkH
∗
(

xk−u(xk,tk)

tk

)
≤ J(x)+ tkc0−J(x)+‖s0‖2 ‖u(xk,tk)−x‖2 .

We apply the triangle inequality ‖u(xk,tk)−x‖2 ≤ ‖u(xk,tk)−xk‖2 + ‖xk−x‖2 to
get

tkH
∗
(

xk−u(xk,tk)

tk

)
≤ tkc0 +‖s0‖2 ‖u(xk,tk)−xk‖2 +‖s0‖2 ‖x−xk‖2 .
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We divide by tk > 0 and since xk = x+ tkdk, we obtain

H∗
(

xk−u(xk,tk)

tk

)
≤ ‖s0‖2

‖u(xk,tk)−xk‖2
tk

+ c0 +‖s0‖2 ‖dk‖2.

We can bound the sequence (c0 +‖s0‖2 ‖dk‖2)k∈N from above by c3∈R (since dk→d
and ‖dk‖2→‖d‖2 by continuity of the l2(Rn) norm, when k→+∞) to obtain

H∗
(

xk−u(xk,tk)

tk

)
≤ ‖s0‖2

‖u(xk,tk)−xk‖2
tk

+ c3 . (3.15)

Suppose by contradiction that the sequence
(

xk−u(xk,tk)
tk

)
k∈N

is not bounded, i.e.,

∀ε>0, ∀k0∈N, ∃l∈N, l ≥ k0,

∥∥∥∥xk−u(xk,tk)

tk

∥∥∥∥
2

≥ ε. (3.16)

Since H∗ is 1-coercive, there exists a constant c4∈R such that for any z∈Rn with
‖z‖2 ≥ c4 it holds H∗(z) ≥ (1+‖s0‖2)‖z‖2. Choosing ε ≥ max{c4, c3} and letting

z = xl−u(xl,tl)
tl

we get

(‖s0‖2 +1)

∥∥∥∥xl−u(xl,tl)

tk

∥∥∥∥
2

≤ H∗
(

xl−u(xl,tl)

tk

)
.

Together with (3.15) this gives

1+c3 ≤ ε ≤
∥∥∥∥xl−u(xl,tl)

tk

∥∥∥∥
2

≤ c3 ,

which is a contradiction. Thus
(

xk−u(xk,tk)
tk

)
k∈N

is bounded.

Case with (H5’)-(H7’). Since for all k ∈ N, u(xk,tk) is the minimer of (2.5), we
have for any y ∈ Rn

J(u(xk,tk))+ tkH
∗
(

xk−u(xk,tk)

tk

)
≤ J(y)+ tkH

∗
(

xk−y

tk

)
.

In particular, for y = xk we get that for any k∈N

J(u(xk,tk))+ tkH
∗
(

xk−u(xk,tk)

tk

)
≤ J(xk)+ tkH

∗ (0) . (3.17)

The quantity H∗(0) is finite since by (H6’) H is assumed to be bounded from below
by a constant. Since J is a real-valued convex function on Rn we have that ∂J(y) 6=∅
for any y∈Rn. Let sk ∈∂J(xk). Using the convex inequality and the Cauchy-Schwarz
inequality we get that

J(u(xk,tk)) ≥ J(xk)+〈sk,u(xk,tk)−xk〉 ≥ J(xk)−‖sk‖2 ‖u(xk,tk)−xk‖2 , (3.18)

which yields when combined with (3.17)

tkH
∗
(

xk−u(xk,tk)

tk

)
≤ tkH∗(0)+‖sk‖2 ‖u(xk,tk)−xk‖2 . (3.19)
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By assumption, xk→x when k→+∞ which implies that the sequence (xk)kN is
bounded. Thus, there exists a convex compact set C of Rn such that xk ∈C for any
k∈N. By (H7’), we have that domJ = Rn. Then [27, Thm. 3.1.2, p. 174] implies that
the function J restricted on the convex compact set C, i.e., J |C :C→R, is Lipschitz
with some constant L. This yields that ‖sk‖2 ≤ L for any k∈N. We get

tkH
∗
(

xk−u(xk,tk)

tk

)
≤ tkH∗(0)+L‖u(xk,tk)−xk‖2 . (3.20)

From there we proceed as in the previous case. We assume that the results do not
hold and we obtain again a contradicton by using the 1-coercivity of H∗.

3.4. Proof of Proposition 3.3
We note xk = x+ tkdk.

Case with (H5). By Proposition 3.2, we have that the sequence
(

xk−u(xk,tk)
tk

)
kN

is

bounded. Thus, we can find a compact convex set C ⊂ Rn, e.g., a closed ball in Rn,

such that for any k∈N we have xk−u(xk,tk)
tk

∈ C. By (H1), i.e., domH = Rn, and [28,

Prop. 1.3.8, p.46] we have that domH∗ = Rn. This yields that the restriction of H∗

to C, i.e., H∗|C :C→R, is convex and Lipschitz of constant L by invoking [27, Thm.
3.1.2, p. 174]. For any y∈C, we thus have ‖∇H∗(y)‖2 ≤ L. Recall that equation

(3.5) states that ∇xE(xk,tk) =∇H∗
(

xk−u(xk,tk)
tk

)
. Thus, we have that for any k∈N

‖∇xE(xk,tk)‖2 =
∥∥∥∇H∗(xk−u(xk,tk)

tk

)∥∥∥
2
≤ L, which shows that (∇xE(xk,tk))k∈N is

bounded.
Since the sequence (∇xE(xk,tk))k∈N is bounded in Rn, we can extract a subse-

quence that converges to q∈Rn by the Bolzano-Weierstrass theorem. This subse-
quence is denoted by (∇xE(xψ(k),tψ(k)))k∈N with ψ :N→N increasing. By Lemma
2.1-iii) we have that ∂J(u(x,t)) is non-empty. According to the Fenchel-Legendre
inequality for J and since ∇xE(y,t)∈∂J(u(y,t)) for any y∈Rn, we thus have

∀y∈Rn, J(y) ≥ J(u(xψ(k),tψ(k)))+〈∇xE(xψ(k),tψ(k)),y−u(xψ(k),tψ(k))〉 .

According to Propoposition 3.2 limk→+∞u(xk,tk) = u(xψ(k),tψ(k)) = x and since
(∇Ex(xψ(k),tψ(k)))k∈N→q as k→+∞ we have

∀y∈Rn, lim
k→+∞

〈∇xE(xψ(k),tψ(k)),y−u(xψ(k),tψ(k))〉 = 〈q,y−x〉 ,

by the continuity of the Euclidean scalar product. In addition, since J is lower semi-
continuous, we get

∀y∈Rn, J(y) ≥ liminf
k→+∞

{
J(u(xψ(k),tψ(k)))+〈∇xE(xψ(k),tψ(k)),y−u(xψ(k),tψ(k))〉

}
,

hence

∀y∈Rn, J(y) ≥ J(x)+〈q,y−x〉 ,

that is q∈∂J(x).
Case with (H5’)-(H7’). We only show that the sequence (∇xE(x+ tkdk,tk))k∈N is
bounded since the rest of the proof is the same as in the previous case.

By Proposition 3.2, u(xk,tk)→x as k→+∞. Thus we can find a compact C⊂Rn,
e.g., a closed ball of Rn, such that u(xk,tk)∈C for any k∈N. Recall that (H7’)
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states that domJ = Rn. Thus, by [27, Thm. 3.1.2, p. 174] the restriction of J :
Rn→R to C, i.e., J |C :C→R is Lipschitz with some constant L. Thus, for any
s∈∂J(u(xk,tk)) we have that ‖s‖2 ≤ L. Since for any t>0, ∇xE(x,t)∈∂J(u(x,t)),
we get that ‖∇xE(x+ tkdk,tk)‖2 ≤ L.

3.5. Proof of Proposition 3.4
We proceed in three steps: the first two steps respectively consist in

bounding from below liminfk→+∞
E(x+tkdk,tk)−E(x,0)

tk
and bounding from above

limsupk→+∞
E(x+tkdk,tk)−E(x,0)

tk
. The third step shows that these two bounds are

actually equal. Thus the quantity E(x+tkdk,tk)−E(x,0)
tk

converges as k→+∞. In

addition, this last step provides the limit of ∇xE(x+ tkdk,tk).

Step 1. By the Hopf formula we have that for any k∈N and any x ∈ domJ such
that ∂J(x) 6= ∅

E(x+ tkdk,tk) = sup
y∈Rn

{〈x+ tkdk,y〉−J∗(y)− tkH(y)} .

Thus, for any y∈Rn and any k∈N we have

E(x+ tkdk,tk) ≥ 〈x+ tdk,y〉−J∗(y)− tkH(y) .

Since E(·,0) = J(·), for any y∈Rn and any k∈N we deduce

E(x+ tkdk,tk)−E(x,0) ≥ 〈x,y〉−J∗(y)−J(x)+ tk 〈dk,y〉− tkH(y) . (3.21)

By assumption, we have ∂J(x) 6=∅. We choose y∈∂J(x). We invoke [28, Thm. 1.4.1,
p.47] to get

J∗(y)+J(x)−〈y,x〉 = 0.

Combining this equality with inequality (3.21) we get for any y∈∂J(x) and any k∈N

E(x+ tkdk,tk)−E(x,0)

tk
≥ 〈dk,y〉−H(y) .

We take the limit inferior as k→+∞. The right-hand side has actually a limit since
we have that dk→d and by continuity of the Euclidean scalar product we obtain that
〈dk,y〉→〈d,y〉 as k→+∞. Thus, we get for any y∈∂J(x)

liminf
k→+∞

E(x+ tkdk,tk)−E(x,0)

tk
≥ liminf

k→+∞
(〈dk,y〉−H(y)) = 〈d,y〉−H(y) .

We thus obtain

liminf
k→+∞

E(x+ tkdk,tk)−E(x,0)

tk
≥ sup

y∈∂J(x)

{〈d,y〉−H(y)} .

Since H :Rn→R is assumed to be strictly convex, coercive, i.e., lim‖x‖2→+∞H(x)→
+∞, we have that the supremum in the right hand side is attained at some ŷ∈∂J(x)
and is unique, i.e.,

ŷ = arg max
y∈∂J(x)

{〈d,y〉−H(y)} (3.22)
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and

liminf
k→+∞

E(x+ tkdk,tk)−E(x,0)

tk
≥ max

y∈∂J(x)
{〈d,y〉−H(y)} = 〈d,ŷ〉−H(ŷ) . (3.23)

Step 2. Set any e∈Rn, any x ∈ domJ such that ∂J(x) 6= ∅. Let us introduce
the function φ : [0,+∞)→R defined by

φ : t 7→E(x+ te, t).

The function φ is convex since it is the composition of E convex with an affine mapping
([27, Prop. 2.1.5, p. 159]). It is also differentiable in (0,+∞). For any t>0 the
derivative φ′ of φ is given by

φ′(t) = 〈∇xE(x+ te,t),e〉+ ∂E

∂t
(x+ te, t) .

By the Hamilton-Jacobi equation, we have that for any t>0 ∂E
∂t (x+ te,t) =

−H(∇xE(x+ te,t)) and thus

φ′(t) = 〈∇xE(x+ te,t),d〉−H(∇xE(x+ td,t)).

Since φ is convex we have that for any t>0

φ(t)−φ(0)

t
≤ φ′(t) .

This yields that for any k∈N

E(x+ tkdk,tk)−E(x,0)

tk
≤ 〈∇xE(x+ tkdk,tk),dk〉−H(∇xE(x+ tkdk,tk)) . (3.24)

By proposition 3.3 we have that the sequence (∇xE(x+ tkdk,tk))k∈N of Rn is
bounded. Since we are working in Rn with the usual topology induced by the
Euclidean metric, Bolzano-Weierstrass theorem yields that the sequence (∇xE(x+
tkdk,tk))k∈N has a convergent subsequence. Let q ∈ Rn be the limit of a conver-
gent sub-sequence of (∇xE(x,tk))k∈N (that we also denote by (∇xE(x,tk))k∈N). By
proposition 3.3 we have that q ∈ ∂J(x). We take to the limit superior on k→+∞
in (3.24). We have that ∇xE(x+ tkdk,tk)→q (since we have extracted the subse-
quence with limit q). Futhermore, by assumption we have that dk→d, which gives
〈∇xE(x+ tkdk,tk),dk〉 → 〈q,d〉 by continuity of the Euclidean scalar product. By
continuity of H we get that H(∇xE(x+ tkdk,tk))→ H(q). Thus we obtain

limsup
k→+∞

E(x+ tkdk,tk)−E(x,0)

tk
≤ 〈q,d〉−H(q) . (3.25)

Step 3. From inequalities (3.23) and (3.25) we get

〈d,ŷ〉−H(ŷ) ≤ liminf
k→+∞

E(x+ tkdk,tk)−E(x,0)

tk
≤ (3.26)

limsup
k→+∞

E(x+ tkdk,tk)−E(x,0)

tk
≤ 〈q,d〉−H(q).
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However, recall that 〈d,ŷ〉−H(ŷ) = maxy∈∂J(x){〈y,d〉−H(y)}. This yields

max
y∈∂J(x)

{〈d,y〉−H(y)} = 〈d,ŷ〉−H(ŷ) ≤ 〈q,d〉−H(q) , (3.27)

where ŷ∈∂J(x) is given by (3.22) and is the unique element that realizes the max-
imum in the left-hand side quantity of (3.27). Since q∈∂J(x), we necessarily have
that q = ŷ where ŷ is given by (3.22). Indeed, suppose by contradiction that q 6= ŷ.
This would yield that ŷ is not the unique maximizer of (3.27). This would be in
contradiction with step 1. Thus, we have shown that

max
y∈∂J(x)

{〈d,ŷ〉−H(ŷ} = 〈q,d〉−H(q) . (3.28)

Combining (3.26) and (3.28) yields

lim
k→+∞

E(x+ tkdk,tk)−E(x,0)

tk
= 〈d,ŷ〉−H(ŷ).

The same argument also shows that for any convergent subsequence of the bounded
sequence (∇xE(x+ tkdk,tk))k∈N the limit is ŷ. Recall that the sequence (∇xE(x+
tkdk,tk))k∈N of Rn is bounded and we conclude that this sequence converges to ŷ,
that is

lim
k→+∞

∇xE(x+ tkdk,tk) = arg max
y∈∂J(x)

{〈d,y〉−H(y)} .

4. Conclusion
This work has described some original connections between convex optimization

problems in image processing and Hamilton-Jacobi equations. The striking new fact is
that the minimal values of these problems are solutions of Hamilton-Jacobi equations.
The initial datum corresponds to the prior while the Hamiltonian is related to the data
fidelity term. Explicit formulas give the dependence of the minimizers with respect
to the observed images x ∈ Rn and the smoothing parameter t. Not only the analysis
provides explicit formulas for t>0 but also when t→0.

Obviously, the proposed formalism and formulas apply to vector valued sig-
nals/images (e.g., colors, hyperspectral) but also cope with more sophisticated convex
models (e.g, nuclear norm, non-local and/or vector valued convex priors).

As a byproduct, this study shows that the solution of certain initial-valued
Hamilton-Jacobi problems in many space dimensions can be computed at some points
using optimization solvers already developed for imaging purposes.

This paper has only considered the case of invertible matrices A in the image
formation model given by (1.1). In [15], non-invertible matrices A are considered
and the approach described here is extended to compressive sensing and `1 related
optimization problems.

Appendix A. Proof of Lemma 2.1.
Proof of i). We proceed in two steps: first we show the existence of a minimizer

and then its uniqueness.
For any x ∈ Rn and any t>0, define the function G :Rn→R by

G :y 7→J(y) + tH∗
(

x−y

t

)
(1.1)
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attains its minimum at a unique point ȳ ∈Rn.
Step 1, existence of a minimizer. By assumption (H1), domH=Rn. Thus, by

invoking [28, Prop. 1.3.9 (ii), p. 46], H∗ is 1-coercive. Consequently, for any a ∈ R
there exists c ∈ R such that for any y ∈ Rn with ‖y‖2 ≥ c we have tH∗

(
x−y
t

)
≥

a‖x−y‖2. By (H4), there exists a point x0 ∈ Rn such that ∂J(x0) 6= ∅. Let s ∈
∂J(x0). Using the convex inequality for J , the Cauchy-Schwarz inequatlity and the
triangle inequality, we get that for any y ∈ Rn J(y) ≥ J(x0)+〈s,y−x0〉 ≥ J(x0)−
‖s‖2‖y−x0‖2 ≥ J(x0)−‖s‖2(‖y−x‖2 +‖x−x0‖2). This yields that for any y ∈ Rn
with ‖y‖2 ≥ c we have

J(x0)−‖s‖2‖x−x0‖2 +(a−‖s‖2)‖x−y‖2 ≤ G(y).

By choosing a large enough such a>‖s‖2, we get the lim‖y‖2→+∞(a−‖s‖2)‖x−y‖2 =
+∞. Thus, we have that lim‖y‖2→+∞G(y) = +∞. Futhermore, G∈Γ0(Rn) since it is
the sum of two lower semicontinuous functions. Thus, since G is lower semicontinuous
and coercive, it has a minimizer ȳ.

Step 2, uniqueness of the minimizer. By (H2), H is differentiable and by invoking
[28, Thm. 4.1.3, p. 81], H∗ is strictly convex, and so is tH∗

(
x−·
t

)
. J is convex by

(H4). Thus G is strictly convex as the sum of a convex function and a strictly convex
function. The concludes the proof of i).

Proof of ii). We need to show that ∇H∗
(
x−ȳ
t

)
exists .

Case with (H5). By (H5), H is 1-coercive, and thus domH∗=Rn by invok-
ing [28, Thm. 4.1.3, p. 81]. By the strict convexity of H given by (H3) and by
[28, Thm. 4.1.1, p. 81] we get that H∗ is differentiable on Rn. Thus∇H∗

(
x−ȳ
t

)
exists.

Case with (H5’)-(H7’). Recall that (H5′) states that H∗ is differentiable at point
whenever it has a subgradient, i.e., a non-empty subdifferential. It thus enough to
prove that ∂H∗

(
x−ȳ
t

)
6= ∅.

Suppose by contradiction that ∂H∗
(
x−ȳ
t

)
= ∅. This means that for any s ∈ Rn,

there exists y0 ∈ Rn such that

H∗
(

x−y0

t

)
< H∗

(
x− ȳ

t

)
+〈s, x−y0

t
− x− ȳ

t
〉. (1.2)

Since ȳ is the unique minimizer of G we have

J(ȳ)+ tH∗
(

x− ȳ

t

)
≤ J(y0)+ tH∗

(
x−y0

t

)
. (1.3)

Combining (1.2) and (1.3) we obtain

J(ȳ)+ tH∗
(

x− ȳ

t

)
< J(y0)+ tH∗

(
x− ȳ

t

)
+〈s,ȳ−y0〉.

Hence, for any s ∈ Rn there exists y0 ∈ Rn such that

J(ȳ) < J(y0)+〈s,ȳ−y0〉. (1.4)

By assumption (H7’) we have domJ =Rn, and thus J(y0) < +∞. We choose
s ∈ ∂J(y0) in (1.4) and this contradicts the convexity of J . This concludes the proof
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of ii).

Proof of iii). We need to show that ∇H∗(x−ȳ
t ) ∈ ∂J(ȳ).

Since H∗ is differentiable at x−ȳ
t , there exists an open ball B

(
x−ȳ
t ,ε

)
= {z ∈

Rn |‖z− x−ȳ
t ‖2 < ε} of radius ε>0 centered at x−ȳ

t , such that B
(
x−ȳ
t ,ε

)
⊂ domH∗.

Let y∈domJ and α∈ (0,1) such that α ȳ−y
t ∈ B

(
x−ȳ
t ,ε

)
. Since ȳ is the unique

minimizer of G, we have

J(ȳ)+ tH∗
(

x− ȳ

t

)
≤ J(αy+(1−α)ȳ)+ tH∗

(
x−(αy+(1−α)ȳ)

t

)
.

Since J is convex, we have J(αy+(1−α)ȳ) ≤ αJ(y)+(1−α)J(ȳ) and thus

J(ȳ)+ tH∗
(

x− ȳ

t

)
≤ αJ(y)+(1−α)J(ȳ)+ tH∗

(
x−(αy+(1−α)ȳ)

t

)
.

We divide by α>0 to obtain

0 ≤ J(y)−J(ȳ)+
tH∗

(
x−ȳ−α(y−ȳ)

t

)
− tH∗

(
x−ȳ
t

)
α

.

Recall that H∗ is differentiable at the point x−ȳ
t . Thus when we take the limit as

α→0, we get

0 ≤ J(y)−J(ȳ)+〈t∇H∗
(

x− ȳ

t

)
,−y− ȳ

t
〉.

We deduce that for any y ∈ domJ

J(ȳ)+〈∇H∗
(

x− ȳ

t

)
,y− ȳ〉 ≤ J(y).

This means exactly that ∇H∗
(
x−ȳ
t

)
∈ ∂J(ȳ).
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net (GREYC, Univ. Caen) and Yohann Tendero (UCLA Math. Dpt) for fruitful
discussions and careful readings of drafts. He also thanks Arjuna Flenner and Gary
Hewer (Naval Air Weapon Center, China Lake) for fruitful discussions. Part of this
work has been presented at the Second Monterey Workshop on Computational Issues
in Nonlinear Control, Monterey, CA, November 2011.

REFERENCES

[1] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing. Springer-Verlag,
2002.

[2] J.-P. Aubin and A. Cellina. Differential Inclusions. Springer-Verlag, 1984.



25

[3] M. Bardi and I. Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman
Equations. Birkhuser, 2010.

[4] M. Bardi and L.C. Evans. On Hopf’s formulas for solutions of Hamilton-Jacobi equations.
Nonlinear Analysis: Theory, Methods & Applications, 8(11):1373 – 1381, 1984.

[5] M. Bardi and S. Osher. The nonconvex multi-dimensional Riemann problem for Hamilton-
Jacobi equations. SIAM Journal on Mathematical Analysis, 22(2):344–351, March 1991.

[6] H.H. Bauschke and P.L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, 2011.

[7] F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer, 200.
[8] C. Bouman and K. Sauer. A generalized gaussian image model for edge-preserving map es-

timation. IEEE Transactions on Transactions on Signal Processing, 2(3):296–310, July
1993.
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[28] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms Part

II. Springer Verlag, Heidelberg, 1996.
[29] D.S. Hochbaum. An efficient algorithm for image segmentation, Markov Random Fields and

related problems. Journal of the ACM, 48(2):686–701, July 2001.
[30] S. Kassam and J. Thomas. Signal detection in non-Gaussian noise. Springer-Verlag, 1988.
[31] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM

Journal on Numerical Analysis, 16(6):964–979, 1979.
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