
Adaptively Constrained Convex Optimization

for Accurate Fiber Orientation Estimation with
High Order Spherical Harmonics

Giang Tran1 and Yonggang Shi2,�

1 Dept. of Mathematics, UCLA, Los Angeles, CA, USA
2 Lab of Neuro Imaging (LONI), UCLA School of Medicine, Los Angeles, CA, USA

Abstract. Diffusion imaging data from the Human Connectome Project
(HCP) provides a great opportunity to map the whole brain white matter
connectivity to unprecedented resolution in vivo. In this paper we develop
a novel method for accurately reconstruct fiber orientation distribution
from cutting-edge diffusion data by solving the spherical deconvolution
problem as a constrained convex optimization problem. With a set of
adaptively selected constraints, our method allows the use of high order
spherical harmonics to reliably resolve crossing fibers with small separa-
tion angles. In our experiments, we demonstrate on simulated data that
our algorithm outperforms a popular spherical deconvolution method
in resolving fiber crossings. We also successfully applied our method to
the multi-shell and diffusion spectrum imaging (DSI) data from HCP to
demonstrate its ability in using state-of-the-art diffusion data to study
complicated fiber structures.

1 Introduction

With the advance of diffusion weighted MR imaging techniques from the Human
Connectome Project (HCP) [1, 2], large scale datasets acquired using sophisti-
cated sampling schemes are becoming publicly available. This provides unprece-
dented opportunities for mapping the white matter fiber structure with higher
spatial and angular resolutions. The vast amount of data, however, also poses
significant challenges for data analysis algorithms that have focused mostly on
conventional, single-shell acquisition schemes. In this work, we propose a novel
method for analyzing diffusion images with arbitrary acquisition schemes by
accurately reconstructing the fiber orientation distribution (FOD). We demon-
strate our method can achieve superior angular resolution and resolve fiber struc-
tures on both simulated and in vivo data from the HCP.

The diffusion tensor model is practically the most popular method for study-
ing major fiber bundles with diffusion imaging data[3]. For the mapping of whole
brain connectivity, however, the tensor model is vastly insufficient as complicated
fiber crossings occur frequently throughout the brain. To overcome this difficulty,

� This work was in part supported by NIH grants K01EB013633, R01MH094343, and
P41EB015922.

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 485–492, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



486 G. Tran and Y. Shi

various techniques for high angular resolution diffusion imaging (HARDI) were
developed [4–9]. By representing the FOD with spherical harmonics, the spheri-
cal deconvolution model has demonstrated great potential in efficiently resolving
complicated fiber crossings [6, 9]. The ill-posedness of the deconvolution prob-
lem, however, has hindered the use of high order spherical harmonics to resolve
fibers with small separation angles. To improve numerical stability, Laplacian or
Tiknohov regularizations [7, 9] were incorporated, but these models are limited
to single-shell acquisition schemes and only partially overcome the difficulty.
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Fig. 1. An illustration of the two acqui-
sition schemes from the HCP. (a) The
multi-shell sampling scheme with 270 di-
rections distributed over three shells with
b=1000,2000,3000 s/mm2. (b) The DSI
sampling scheme has 514 directions with
b-values increasing from 400 to 10,000
s/mm2.

In this work we propose a new
method for FOD estimation from
data acquired with general sampling
schemes, which enables us to seam-
lessly process HCP data collected
with either the multi-shell or DSI
schemes [10] illustrated in Fig. 1. At
the core of our method is a con-
strained convex optimization problem
for spherical deconvolution with adap-
tively chosen constraints. By adap-
tively selecting a minimal set of uni-
formly distributed constraints, our
method can easily use high order
spherical harmonics to reconstruct
crossing fibers with very small sepa-
ration angles. In our experiments, we demonstrate on simulated data that our
method outperforms a previous method [9] in reliably resolving fibers with small
crossing angles. We also apply it to data from the HCP to demonstrate its gen-
erality in processing cutting-edge diffusion imaging data.

The rest of the paper is organized as follows. In section 2, we formulate the
spherical deconvolution problem in the general setting of analyzing data from
arbitrary acquisition schemes. The adaptively constrained convex optimization
approach is then developed in section 3. Experimental results are presented in
section 4. Finally conclusions are made in section 5.

2 Spherical Deconvolution Model

In this section, we develop the spherical deconvolution model for FOD recon-
struction from general acquisition schemes. At each voxel, the diffusion signal
at the b-value bi and the direction ui is denoted as s(bi, ui)(i = 1, · · · , N). Let
S denote the unit sphere, and f : S → R

+ the FOD. Given the single fiber
response function k(b, u, w) for a fiber in the direction w, the diffusion signal is
expressed as the convolution of the FOD and the kernel:

s(b, u) =

∫
S

f(w)k(b, u, w)dw + n(b, u) (1)
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where n is noise. Instead of estimating the kernel directly from the data [6], which
is difficult for general acquisition schemes such as DSI, we follow the single tensor
model and represent the kernel parametrically as:

k(b, u, w) = e−b(λ2+(λ1−λ2)(u·w)2). (2)

where the only parameters λ1 >> λ2 = λ3 are the eigenvalues of the tensor
model. These parameters can be either chosen from previous literature or com-
puted easily from the data.

For efficient computation, the FOD is represented with the spherical harmon-
ics up to the order L as:

f(w) =
∑
l,m

xm
l Y m

l (w) ∀w ∈ S (3)

where Y m
l is the m-th real spherical harmonics at the order l = 0, 2, · · · , L,

and xm
l is the coefficient for the basis Y m

l . Note that only even order spherical
harmonics are used because the FOD is symmetric on the sphere. From a signal
processing perspective, high order spherical harmonics are needed if we want to
accurately represent or reconstruct crossing fibers with really small separation
angles. Due to numerical difficulties, typically spherical harmonics up to the
order of eight were used in previous work [6, 9], which limits their capability in
reliably resolving fiber crossing of small angles.

Using the Funk-Hecke theorem, we can express the diffusion signal as

s(b, u) =

∫

S

∑
l,m

xm
l Y m

l (w)e−b(λ2+(λ1−λ2)(u·w)2)dw + n(b, u)

=
∑
l,m

Y m
l (u)Gl(b, λ1, λ2)x

m
l + n(b, u) (4)

with Gl(b, λ1, λ2) defined as:

Gl(b, λ1, λ2) = 2π

1∫

−1

Pl(t)e
−bλ2−b(λ1−λ2)t

2

dt, (5)

where Pl is the Legendre polynomial of degree l.
Let s denote the vector of diffusion signals s(bi, ui) sampled at a discrete set of

points (bi, ui)(i = 1, · · · , N). For simplicity, we denote Y m
l and xm

l by Yj and xj ,

respectively, with j = m+
l2 + l + 2

2
. Given the maximum order L of spherical

harmonics used, the total number of basis functions is J = (L+1)(L+2)/2. Let
x = [x1, · · · , xj , · · · , xJ ] be the vector of coefficients for the FOD, we can write
(4) in matrix form as:

s = Ax+ n (6)
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where n denotes the vector of noise, and A = B ·G is the entry-wise product of
two matrices B and G defined as follows:

B =

⎛
⎜⎜⎝

Y1(u1) Y2(u1) · · · YJ (u1)
Y1(u2) Y2(u2) · · · YJ (u2)
· · · · · · · · · · · ·

Y1(uN ) Y2(uN ) · · · YJ(uN )

⎞
⎟⎟⎠G =

⎛
⎜⎜⎝

G0(b1) G2(b1) · · · G2(b1) · · · GL(b1)
G0(b2) G2(b2) · · · G2(b2) · · · GL(b2)

· · ·
G0(bN ) G2(bN) · · · G2(bN) · · · GL(bN )

⎞
⎟⎟⎠ .

For each order l, the element Gl(bi) = Gl(bi, λ1, λ2) is repeated 2l + 1 times on
the i-th row.

3 Adaptively Constrained Convex Optimization

(a) Q = 73. (b) Q = 100.

Fig. 2. FOD reconstruction from simulated
diffusion data. The true fiber directions are
plotted as red lines.

In this section, we develop a novel ap-
proach for FOD estimation by solving
the spherical deconvolution problem
as a constrained convex optimization
problem. The key idea is the adaptive
selection of the set of constraints for
every voxel to avoid overly constrain
the solution and affect reconstruction
accuracy. The constraint we impose
on FOD reconstruction is motivated
by its non-negativity condition. With
the spherical harmonics representa-
tion up to a fixed order, however, it
is impossible to completely eliminate
negative values in the FOD. It is thus
critical to limit the negative compo-
nents to the minimal extent and ensure major fiber directions are captured. To
achieve this goal, our strategy is to constraint the FOD to be non-negative on a
minimal set of uniformly distributed points on the sphere.

With a remeshing algorithm [11], we build a collection of constraint sets
V = {V1, V2, · · · , } with varying number of points on the sphere, where each

member VQ = {v1Q, v2Q, · · · , vQQ} is a set of Q uniformly distributed points on the
hemisphere of the unit sphere. With the spherical harmonics representation, the
requirement that f should be non-negative on VQ can be expressed as:

CQx ≥ 0 (7)

where CQ is a matrix of size Q× J defined as

CQ =

⎛
⎜⎜⎝

Y1(v
1
Q) Y2(v

1
Q) · · · YJ (v

1
Q)

Y1(v
2
Q) Y2(v

2
Q) · · · YJ (v

2
Q)

· · · · · · · · · · · ·
Y1(v

Q
Q) Y2(v

Q
Q) · · · YJ(v

Q
Q)

⎞
⎟⎟⎠ .
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Given a specific constraint set VQ(Q = 1, 2, · · · ), the spherical deconvolution
problem for FOD reconstruction can be formulated as a constrained convex
optimization problem:

min ‖ s−Ax ‖2
s.t. CQx ≥ 0 (8)

Because this problem is convex, global minimum can always be found numerically
with software packages such as cvx [12]. With the FOD being non-negative on
a set of uniformly distributed points, we ensure that large negative components
will not occur and most of the energy of the FOD are contributed by physically
meaningful, i.e., positive, components. Because the complexities of fiber crossings
are spatially varying across the brain, the number of active constraints in (8)
could be different as a result. Thus it is also unreasonable to fix the number
of constraints. To overcome this difficulty, we adaptively search through the
constraint collection V at every voxel to find the smallestQ such that the solution
satisfies: ∫

f(w)>0
fdw∫

f(w)<0 |f |dw
> δ. (9)

This condition measures how successful the reconstructed FOD is able to focus
its energy on positive components. For example, if we pick δ = 25, we ensure
more than 95% of the L1 energy of the FOD are from positive components.
As a demonstration, we show in Fig. 2 the FOD reconstruction results of two
fibers using simulated diffusion data from 60 directions with b=1000 s/mm2.
The maximum order of spherical harmonics used here is L = 8. The result in
Fig. 2 (a) is obtained from adaptively determined constraints, where Q = 73,
and the result in Fig. 2 (b) is obtained by fixing Q = 100. We can see the overly
constrained solution is less sharp and one of its peaks is obviously misaligned
with the true fiber direction.

For practical implementation, there is no need to start the search from Q = 1.
Given a maximum order L, we can pick a constraint set from experience and
start the search there. For L = 8, we typically start the search at Q = 60 and
the reconstruction of the FOD in Fig. 2(a) took less than one second.

4 Experimental Results

In this section, we present experimental results to demonstrate our method on
both simulated and in vivo data from the HCP. In our experience, the FOD
reconstruction results from our method are very robust to the selection of the
parameters in the kernel. For all experiments, we thus fix the parameters for
the kernel as λ1 = 0.0017 and λ2 = 0.0003 following the literature [9], and the
threshold in (9) as δ = 25.
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4.1 Simulated Data

(a) (b) (c)

Fig. 3. A comparison of 100 runs of FOD recon-
struction results from simulated diffusion data. The
cyan surface is the mean FOD and the shaded sur-
face is mean plus two standard deviation of the FOD
from 100 runs. Red lines indicate true fiber direc-
tions. (a) Method in [9]: L = 8. (b) Method in [9]:
L = 16. (c) Our method: L = 16.

In the first experiment, we
compare with the spherical
deconvolution method in [9]
on simulated data. For two
fibers with a crossing angle
of 30o, we follow the multi-
tensor model to simulate the
diffusion data from a single-
shell acquisition scheme of
81 directions with b = 3000
s/mm2. Rician noise was
added to obtain a signal to
noise ratio of 20. For ev-
ery parameter selection from
both methods, the experi-
ments were run 100 times to obtain the mean and standard deviation of the
FOD. For the spherical deconvolution method in [9], the results with the max-
imum order L = 8 and L = 16 are plotted in Fig. 3 (a) and (b). At the order
of L = 8, we chose the same regularization parameter 0.006 as in [9]. We can
see that the reconstructed FOD at this order cannot resolve the fiber crossing.
When the order was increased to L = 16, its result became highly oscillatory even
though we increased the regularization parameter to 0.02. With our adaptively
constrained optimization method, such oscillations were successfully suppressed
and accurate results were obtained as shown in Fig. 3(c). This demonstrates the
superior ability of our method in resolving fiber crossings at small angles with
data from single-shell acquisition schemes.

4.2 Multi-shell Data from HCP

In the second experiment, we applied our method to the diffusion data of a
subject from the HCP that was acquired with a multi-shell sampling scheme as
illustrated in Fig. 1 (a). The reconstructed FODs of an ROI on an axial slice,
which is shown in Fig. 4(b), in the right thalamus with L = 8 and L = 16
are plotted in Fig. 4 (a) and (c). All FODs are color-coded with the directions.
The reconstructed FODs are consistent with known anatomical knowledge that
various fibers cross the thalamus to reach different cortical regions. The top-
right corner of the ROI touches the cortical spinal tract that goes from inferior
to the superior part of the brain. At this location, the FOD reconstructed with
our method in both Fig. 4 (a) and (c) has only one major fiber direction, which
is consistent with the orientation of the cortical-spinal tract. By comparing the
results in Fig. 4(a) and (c), especially regions highlighted by the dashed lines, we
can clearly see that our method successfully uses high order spherical harmonics
to achieve better angular resolution of crossing fibers than results reconstructed
with low order spherical harmonics.



Adaptively Constrained Convex Optimization 491

(a) L=8. (b) ROI. (c) L=16.

Fig. 4. FOD reconstruction results from multi-shell diffusion data of the HCP

(a) L = 8. (b) ROI. (c) L = 16.

Fig. 5. FOD reconstruction results from DSI data of the HCP

4.3 DSI Data from HCP

In the third experiment, we applied our method for FOD reconstruction using
DSI data of a subject from the HCP. As illustrated in Fig. 1(b), the diffusion data
was acquired at 514 points in the q-space with b-values ranging from 400 to 10000
s/mm2. For an ROI on a coronal slice shown in Fig. 5(b) that has crossing fibers
possibly from the corpus callosum, cortical spinal tract, and superior longitudinal
fasciculus, we applied our method with L = 8 and L = 16 to compute the FODs.
The reconstructed FODs are plotted in Fig. 5(a) and (c). As a demonstration, we
highlighted two FODs with dashed lines in Fig. 5(a) and (c). It clearly shows the
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power of our method in using high order spherical harmonics to resolve crossing
fibers with small separation angles.

5 Conclusions

In this paper we developed a novel approach for the accurate reconstruction of
FODs from arbitrarily sampled diffusion imaging data. By solving the spherical
deconvolution as an adaptively constrained convex optimization problem, our
method can robustly use high order spherical harmonics to resolve complicated
fiber crossings. We demonstrated the power of our method on HCP data from
both the multi-shell and DSI acquisition schemes. For future work, we will inte-
grate our method with tractography algorithms and investigate its application
in studying whole brain connectivity.
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