DOMAIN DECOMPOSITION METHOD FOR IMAGE DEBLURRING

JING XU! AND HUI BIN, CHANG2 AND JING QIN?

ABSTRACT. As a fundamental problem in image processing, image deblurring has still attracted
a lot of research attention. Due to the large computational cost, especially for high-resolution
images, it becomes challenging to solve the deblurring minimization problem and the underlying
partial differential equations. The domain decomposition method (DD), as one of the most effi-
cient algorithms for solving large scale problems, had not been applied directly to image deblurring
because of the global characteristic of the blur operator. In this paper, in order to avoid sepa-
rating the blur operator, we propose an algorithm for directly solving the total variational based
minimization problems with DD. Various numerical experiments and comparisons demonstrate
that the larger the image size is, the more efficient the proposed method is in saving running time.
The parallelization has also been realized by using the parallel computing toolbox of MATLAB.

1. INTRODUCTION

Image deblurring is a fundamental problem in both image processing and computer vision with
broad applications. Given a blurry and noisy image z : 2 — R,

z=Ku+n (1.1)

where Q is a bounded open set in R?, u is the underlying clean image, K, also called the point
spread function (PSF), is a blur operator with Ku = h % u where h is a convolution kernel with
compact support (e.g., discrete Gaussian kernel), and n is a Gaussian white noise with zero mean.
We aim to recover the unknown v and K from z.

Given the knowledge of the blur operator K, one of the most popular methods for noise removal
and deblurring is the total variation based restoration method proposed by L. Rudin, S. Osher and
E. Fatemi, where the total variation of u is used as a penalty functional in [I5]. The corresponding

image restoration can then be formulated as the following unconstrained minimization problem:

min (/ |Vu| dedy + %HKU — z||2L2) . (1.2)
“ Q

Here, A > 0 is the penalty parameter. The functional in is strictly convex with a unique global
minimizer. If the convolution kernel h is the delta function ¢ satisfying § * u = u, we have K =T
and is simply the original TV based image denoising model which restores the image from
the noisy observation while preserving edges. For a general convolution kernel A, it becomes more
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difficult to restore the image u and may return a solution which is sensitive to the perturbation of
the input data due to the ill-posedness of the problem.

There is a considerable amount of work to solve the model, such as the gradient descent method
[15], the dual model [6], the Bregman iteration [27], the augmented Lagrangian method [24] and
multigrid methods [4] and so on. Xu et al. [25] provided a brief review of the aforementioned
algorithms. The purpose of this paper is to propose a fast algorithm based on the overlapping
domain decomposition technique to solve the TV based deblurring model . It is well known
that domain decomposition methods are powerful iterative methods for solving partial differential
equations [3 O T3] [I'7, 26]. Some recent progress has shown that DD are also efficient for some
nonlinear elliptic problems and some convex minimization problems [20, 19 21, 22] with mesh
independent convergence. To the best of our knowledge, the domain decomposition methods have
not been directly applied to the TV based deblurring problem so far. Some recent efforts have
been devoted to study this problems [I8| 14, 11, 10, 12 [7]. In Xu et al. [25], they have used
the overlapping DD to image denoising which divided the original problem into subproblems over
subdomain. However, as a global operator, the convolution operator K brings up obstacles to
directly apply DD into the image deblurring.

In this paper, we propose a DD based image deblurring algorithm which combines the subspace
correlation method and the lagged diffusivity fixed-point iteration. Following the idea proposed in
[8, 25], we use the lagged diffusivity fixed-point iteration by moving the blur operator to the right
hand side and adding a term on both sides to guarantee the convergence. Two methods are provided

to handle the model (1.2). One is “linearization method” that uses the approximation value u* at
Vu

the k-th iteration to replace the term by V - <|Vuk|> to solve the subproblem at the (k + 1)-th
iteration. The other is to use “augmented Lagrangian method” (AML) by introducing the new
variable p = Vu and the Lagrangian multiplier p.

By decomposing the image domain into overlapping subdomains, the original minimization prob-
lem related to the model is reduced to a sequence of sub-minimization problems on the sub-
domains. If the sub-minimization problems are solved exactly, then the convergence of the generated
sequence is trivial. Due to the degeneracy of the nonlinear equation associated to involving
the blur operator, it is difficult to obtain the convergence rate for the numerical solutions which will
be studied further. Numerical experiments show its capability in processing images of large size and
saving CPU time. The proposed method also has good potentials in solving large-scale problems
which are feasible for parallel computing. Furthermore, the speed-up efficiency can be enhanced by
more than 0.5.

The rest of the paper is organized as follows. In Section 2, we briefly review the domain decom-
position algorithm in a general framework of the subspace correction method. The finite-difference
discretization schemes and the details of the algorithm are shown in Section 3. Various numeri-
cal experiments and discussions are shown to demonstrate the merits of the proposed methods in
Section 4. In Section 5, we make the conclusions.

2. DOMAIN DECOMPOSITION BASED SUBSPACE CORRECTION METHOD

We put the method in a more general setting and start with the description of the subspace cor-
rection algorithm of [22]. Given a reflexive Banach space V', and a convex and Gateaux differentiable
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functional F': V — R, we consider the following minimization problem:

umei‘r/l F(u). (2.1)

Under the notions of space correction, we first decompose the space V into a sum of subspaces:
V=WV+Vat -+ Vpn, (2.2)
which implies that
m
Z v € vV, V vj € ‘/j,
j=1

m

and for any v € V there exists v; € V; such that v = )~ v;. Following the framework of [26] for
j=1

linear problems, we solve a sequence of sub-minimization problems over the subspaces:

in F(u® i=1,2,... 2.
min (u" +e), j=1,2,...,m, (2.3)

where u™ denotes the n-th approximation to resolve . Two types of subspace correction methods
based on —, known as the parallel subspace correction (PSC) and successive subspace
correction (SSC) method, were proposed in [26, 22]. Here, we adopt the latter that can also be
parallelized by coloring techniques.

In the first place, we apply the overlapping domain decomposition to the solution space V =
BV (). More precisely, we partition 2 into m overlapping subdomains

Q=J, YN #0, k#j (2.4)

j=1
For clarity, the subdomain €2, is colored with a color j, and €, consists of m; subdomains (assumed
to be “blocks” for simplicity), which are not intersected. Hence, the total number of blocks that
cover §) is

In Figure 2.1, we illustrate schematically the decomposition of € into four colored subdomains with
25 blocks. Based on the above decomposition scheme, we decompose the space V = BV (Q) as

V= Zvj, V; = BV, (Q;), (2.6)
j=1
where BV, (€);) denotes the subspace of BV (£;) with zero traces on the “interior” boundaries

00,;\09Q. Applying the SSC algorithm to the TV-deblurring model leads to an iterative algorithm.
In the following, we give a detailed description of the two proposed algorithms.

2.1. Algorithm I (Linearization Method): First, we apply the DD method to the deblurring

model (1.2)) directly, namely (2.1)) with
A
F(u) = / |Vu| dedy + §||Ku —2||32.
Q

The corresponding Euler-Lagrange equation is:

—div <V“> FAK*(Ku—2) = 0. (2.7)

VIVul? + 5
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FIGURE 2.1. Schematic illustration of the coloring of the subdomains, and fine/coarse meshes
on Q = (0,1)2. This corresponds to the decomposition: V" = Vi + Z;-lzl VI with H = 5h and
in (2.5), m =4, m1 =9,ma = 6,m3 = 6,m4 = 4, and M = 25.

Here, to avoid dividing by zero, we introduce a positive small number $ in the denominator of the
diffusion term. The differential equation ([2.7)) has been proven well-posed as 8 — 07 in [I] . Instead
of truncating the global blur operator K, we rewrite (2.7)) as follows

Cdiv [ ) S AR (s — Ku). (2.8)

VIVu|?+ 8
For some blur operators, the iterative numerical methods to solve the above differential equation
will diverge. Adding one stable term Bu (c.f. [§]) to both sides of the equations will resolve this
issue. We choose the algorithm in our numerical experiment as follows:

Bu — div __vu = AK"(z — Ku) + Bu. (2.9)

VIVul? + 8
with a homogenous Neumann boundary condition du/On = 0. We will discuss how to choose a
proper B in Section [d] Once the convergence of the algorithm is ensured, we are able to split the
entire image into small rectangles and solve efficiently the corresponding boundary value problems
on each rectangle. Recall that the lagged diffusivity fixed-point iteration (cf. [23]) for is to
solve the linearized equation

vuk+1
VIVuk2+ 8

with the initial value u". Since each iteration involves all the pixel intensities in the image domain,

BuFt! _ div = \K*(z — Ku*) + Bu*, k=0,1,---, (2.10)

it will be computationally intensive and usually cause the ill-conditioning of the system when the
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image size is large. The domain decomposition based SSC algorithm will overcome the difficulties
by decomposing the whole problem into sub-problems on much smaller subdomains.
Given an initial value u® € V, the SSC algorithm generates u™*! by

F(u”+]’%l +eﬂ) < F<u"+7%l +vj>v Vv € Vy = BW(%),

"'Hn—u = —|—e 1<j<m.

(2.11)

Notice that €} is the solution of the subproblem over €2;. Therefore, each boundary value problem
over §2; has the following form

. it i1 -1 ,
Burt — div (V“> = AK*(z — Ku™H ') + Burt . in 9,

VIvart 24

i
8“6;"‘ —0, on 9 N L,
e =yt on 0€2; \ 0.

(2.12)

One can see that u"# = u"t % for x € O\Q;. The above iterative algorithm requires us to solve

a sequence of minimization problems over the subspaces/subdomains.

2.2. Algorithm /7 (Augmented Lagrangian Method). Second, we try to solve the model
using the Augmented Lagrangian Methods (ALM) which is one of the most efficient algorithms. In
[24], the authors applied the ALM method to solve and showed that the dual method and the
split Bregman iteration can actually be either deduced from, or equivalent to the ALM method.
They both are just different iterative strategies to solve the same system resulted from a Lagrangian
and penalty approach. In fact, ALM can be replaced by other fast numerical methods to solve
subproblems which implies that our technique can be easily combined with other methods.

Instead of directly solving the Euler-Lagrange equation of using the ALM method [25], one
solves the constrained optimization problem by

A
minmaxLROF:/ |q|—|—f||Ku—zH2—|—/ (g —Vu)+ /|q—Vu|2 (2.13)
z Q 2 Q

u,q

where p = (p1, p2)T is the Lagrange multiplier and r is a positive constant. Then the method is to
seek a saddle point of the augmented Lagrangian functional Lror(u,q, p).
To solve the problem of (2.13)), we split it into the following two sub-problems [25]:

A
argm&nF(u):§||Ku—z|\2—/Qu-Vu+g/Q|q—Vu|2, (2.14)

for a given ¢q. Here F'(u) is the same as that in the equation (2.1]), which is the second example of
applying the domain decomposition method to (1.2)) and

) T
argmln/ |q|+/ u~q—|—f/ lg — Vul?, (2.15)
7 Ja Q 2 Ja

for a given u. The sub-problems (2.14) and (2.15)) can be efficiently solved. For (2.14)), Euler-

Lagrange equation is

A" (Ku—2)+V-p+rV-qg—rAu=0.
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We use the same idea as in solving equation (2.7]). The blur term and the term without w is moved
to the right hand

—rAu=AK"(z —Ku) =V -u—rV-q.
Then we add a Bu to the both sides of the equation for convergence,
Bu—rAu=Bu+AK"(z— Ku) —V-u—rV-q.
The lagged diffusivity fixed-point iteration (cf. [23]) is used to update u
Bu™t — rAu"T = Bu" + AK* (2 — Ku") =V - p"* — 7V - ¢".

After applying the SSC algorithm to the ALM for the given u™ and ¢", we obtain untE by
solving the following boundary value problem:

Burt# — rAuttE = Butts 4 AK*(z — Ku"Jr%) —V-u®—rV-q. in Q;,

ountn
on =0, | on 0§); N 012,
un-‘r% — un-i-Jn;Ll’ on an \ o0.
(2.16)

We reformulate the problem (2.15) to be

1
arg min/ |rq| + 7/ lrq — (rVu — p)|*.
v Jo 2 Ja

Then

1 1 .

q = —prox, (w) = - max{|w| — 1, 0}sign(w),

T

where w = rVu — p in [5]. In the discrete setting, we have

g = { 11— m)@“vu”“ —p") [rVu" Tt — | > 1

2.1
‘,}nvun+l _ un| S 1 ( 7)

Finally, we updated p by
Mn+1 _ Mn T T(qn-&-l _ Vun+1).

3. NUMERICAL DISCRETE ALGORITHM FOR TV DEBLURRING

Based on our experience, the coarse grid correction does not help much for the TV-denoising
n [25]. As such, we just present the one-level algorithm described in the previous section for the
TV-deblurring model.

In order to solve (2.9) numerically, we first partition the domain = (0,1) x (0,1) into L x L
uniform cells with mesh size h = 1/L , whose centers are

(z1,y) = ((l—;)h (k—;) h), Lk=1,- L.

By applying the standard five-point stencil to the Laplacian operator, we get

Bu — Vy, - (vhu> = Bu+ AK*(z — Ku), (3.1)

VIViul? 4
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or more precisely,

B 1 U1,k — ULk Uk — U—1,k
N N LU N e S

Y Mk m Uk Uk Uk (3.2)
h lyk+§ h l,k7§ h
:Bul,kJr()\K*(szu))l’k, Lk=1,---,L,

with discrete homogeneous Neumann boundary condition by one-sided second-order finite differences
when z = 0:

4 1
U = —-U — —U R
0.k = gULK — gU2,k
where
1
gk = 2 2 ’
\/((Dw“)lJr;,k) + ((Dyu)l-&-%,k) + 5
with
Up+1,k — ULk 1 (Wt b1 — Wikt -1 ULkl — Ul k—1
Doty = == (Duthige =3 ( oh LT )

etc. To simplify the notation, we abbreviate (3.1) as

Bu+ L(u)u = Bu + AK*(z — Ku), (3.3)

vy, [ Ve
L(v)w = -V, (\/m> (3.4)

In (3.3), L(u) is fully nonlinear with widely varying coefficients. Moreover, the matrix K*K is

where

wide-banded and the spectrums of the matrices L(u) and K*K are quite differently distributed. We
list the algorithm for the TV-deblurring model in the whole domain without DD in Algorithm 1.

Algorithm I: TV-Deblurring.
1. Start with «° = 2.
2. Given u", solve for u"*! by (iterating on n):
(B+ L(u™)u"™ = ~(AK*K — B)u" + A\K*z

Let
A

F

B+ L(u™)
~(\K*K — B)u" + A\K*z,

Then
AU =F
3. Go to next iteration for n.

Then the more detailed discrete forms of (2.12)) are as follows:

. 4,
Byt 5 Oy Uy
Yk 7% T ntit T ntil
\/(591 wy ") Gy )+ B (3.5)
nt+L ’
S, , ™ ;
46 y Tk _ FnJrJ:"l

Yy j—1 j—1
+5= +5=
\/(5;-qu ™ )2+(5;—qu m )2+Bh
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where 6., 6, ,0,7, 0, denote the backward and forward difference scheme in the common sense which
are the abbreviated forms of .

Compared with TV Deblurring, for which there are no nonlinear terms in the ALM equation,
it is easy to discretize the Laplace operator for solving u with the finite difference discretization

scheme. We provide the algorithm without DD as below:

Algorithm I7: TV-ALM Deblurring.
Start with u® = 2, ¢° = (0,0)T, u° =0
Assume we have u", ", u"
Solve for u™*! by (iterating on n):
(B—rA)u"™ = -(AK*K — B)u" + \K*z —rV - ¢"

Let

A = B—rA

F = —(AK*K-B)u"+\K*2—-V-u"—rV-q",
Then

AU = F
Solve for ¢"*! by (iterating on n):

_ %(1 - m)(rvunﬂ — ") |7”V“"Jrl —p>1
T lo [rVu | < 1

Solve for p"*! by (iterating on n):
lunJrl _ ‘un + T(qn+1 o vunJrl)'
Go to the next iteration for n.

Similar to equation (3.5)), obtained by applying the ALM method, we have

ji—1

(B —r(8; 8% +68,6)uy ™ = i, (3.6)

We list below a few possible choices for B (c.f. [§]) with identity matrix I:

(a)

* A *
B=bl, b>b'=3 mjaxzi:([( K)i (3.7)
(b)
A
B=ding\K"K) +91, 5 >7" = Jmax | Y (KK)yj — (K'K)i (3.8)
b\
(c)
>\ . * 1 * *
B = Zdiag(K*K) + 61,  §>6" =Amax Y (K*K);; (3.9)
2 2 b A /

In this paper, we have adopted (3.7) for simplification. Both (3.8) and (3.9) have been proven
experimentally to perform equivalently. The convergence analysis can be traced to [8] and [16].
Next we state the two algorithm for sub-domains proposed in Section
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3.1. Algorithm Ipp: DD-Linearization Method. In the following, we provide the TV deblur-
ring’s DD forms of Algorithm I in the above section.

Algorithm Ipp: TV DD-Deblurring.
Choose an initial value u% e vh.

For n =0,
Set 4y = uj,
Compute F™
while j=1,--- ;m do
Solve (B8): Ay, ja /™ = Frtt

end
Go to next iteration for n.

3.2. Algorithm I7pp: DD-Augmented Lagrangian Method. As a popular and efficient solver
for the subproblem, we present the augmented Lagrangian method in Subsection where B is
chosen the same as B in Algorithm I1.

Algorithm IIpp: TV ALM DD-Deblurring.
Choose an initial value u% evh,

For n =0,
Set 4y = up,
while j=1,--- ,;m do
Solve (3.6)) for updating u, Ah,jﬁzﬂ/m S
end

update ¢" and u”,
Go to next iteration for n.

4. NUMERICAL RESULTS

Next we present various numerical results to demonstrate the efficiency of the proposed domain
decomposition based image deblurring algorithms.

We first give an example to show the general structure of a blur operator. If a blur operator
given by the unit kernel (support size=5 x 5) as

11 4 11

) . Ll a1

GLLALDT L L4 1) = | 4 4 16 4 4 |,
11 4 11
11 4 11
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then we let
4 1 1 0]
1 4 1 1
1 1 4 1 1
T2: '.’
1 1 4 1 1
1 4 1 1
| O 4 1 1_L*L7
and

To :4T27 T, =T5.

Therefore, the blur matrix can be written as

To T. T» 0
T, Tv T Ty
T T, To T To

T2 T1 TO Tl T2
T, Ty Ty Th

| 0 T Thv 1o ] o, e

Moreover, if a blur kernel can be expressed as

hit hi2 -+ hip
hot  hog -+ hoy

H= ) ) ) i )
hnl hn2 T hnn

n*xn

then the maximal diagonal entry of K*K is > . =1 hfj and the corresponding largest sum of off-
diagonal entries of K*K is szzl szl:lykﬂvl#j hijhi,. Based on the construction of K, we are
able to choose a proper B.

Here, we provide two types of blur operators used in our numerical experiments.

(1) A motion blur example with 90 degree (support size =5 x 5) given by the kernel
0

| —
o O O OO
(el e B el e M)
== =
oo oo
o O O OO

(2) A truncated Gaussian blur given by the mask (support size=5 x 5)

—r(z?+y?) 2
h(.’I},y)Z ce ’ lf |1’|,|y‘ S L
0, otherwise,
Here the strength of the blur depends on parameters 7, c . Stronger blurs correspond to smaller
values of 7 or larger values of c. For example, the original images contain 256 x 256 pixels. Then
L =256, |z],|y| < 135 is equal to |i| <2, |j| < 2 of the first blur operator.
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We have
™S [T 2 2
hx f(x,y) = / ce” (@2 HW=w)) £ w)dzdw

1
12

=

— 1
128

2 2
— o (x=2)24(v-w)?) LW dzd
[2 [2 L2e L f(Lv L ) W

0|

Then, we take 7" = 7z and
e

! L2
=— .
Z e (7457
i,j=—2
Analogously, let
H= (6_227—/7 el e, 6_227—/),
then K can be considered as an operator defined by the kernel ¢ HT H.

The performance is assessed by comparing with the lagged diffusivity fixed-point iteration (i.e.,
, denoted by TV) in terms of convergence, recovered image qualities measured in peak signal-
to-noise ratio (PSNR) and the computational time. To the best of our knowledge, these algorithms
have not been applied to the image deblurring problems so far. Hence, it is interesting to see some
good results and particularly how the methods can be applied to restore images of large size.

By default, the pixel values of all images lie in the interval [0, 255], and the Gaussian white noise
is generated in MATLAB by using the command imnoise(I, ‘gaussian’, M, o) (i.e., the mean
M and variance o). In our tests, we use PSNR in [2] to measure the restored image quality, which
is defined as in the logarithmic decibel scale:

2552
ﬁ Zi,j(uivj — 2,5)%
where u is the restored image, and z is the original one. Typical values for the PSNR in lossy image
and video compression are between 30dB and 50dB. The higher the PSNR, the better the quality of

the image is. We use the relative error between two consecutive iterations as the stopping criterion:
k-1
2

PSNR = 101log;, (4.1)

uF —u
I A < (4.2)
where € is a prescribed tolerance.

We test the methods on four images: shape-128 x 128, map-256 x 256, lena-512 x 512, boat-
1024 x 1024 (See Figure . To simulate the noisy blurry observed images, we add the zero mean
Gaussian noise with the standard deviation ¢ = 10™%, and apply the Gaussian blur and the motion
blur to the clean test images. Regarding the efficiency comparison, we compute the ratio of the

elapsed time in the DD method to that in the TV method.

4.1. Algorithm I TV-Deblurring v.s. Algorithm Ipp TV DD-Deblurring. In Figure
we seek a good choice of the parameter A in the TV and DD methods with different noise levels,
where the left image uses o = 107, and the right one uses ¢ = 1073. From the result of Figure
one can see that A = 0.1 is an ideal choice for two testing images. To make the comparison
fair, we select the best restored image for each method in terms of PSNR. In Table [{.1] we look for
a good overlapping size §. Here we fix the subdomain size d = 32. One can see that the three
supporting sizes yield the same results. In particular, § = 1 gives the best results no matter what
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the supporting size is. The running time of the DD method with § = 1 is less than 10% of that of
the TV method while the corresponding PSNR is even higher than that of the TV method. The
running time grows as the § increases. All the running time of the DD mehod is less than 23% of the
TV method. In addition, we test the different subdomain size under different blur kernel operators
in Table 4.2 for the 512 x 512 lena image and Table for the 1024 x 1024 lena image. We find
the best choice is d = 32 for the running time, which is under 7% in the 512 x 512 lena image and
15% in the 1024 x 1024 boat image. Although it certainly takes more running time for both the DD
method and the TV method for larger images, the time that the DD method saves actually grows
as the image size increases based on Table 4.2 and Table [£:3] The results from the Gaussian blur is
same as those for the motion blur. When dealing with the image of size 2048 x 2048 or even larger,
the TV method is easily prone to fail due to the limited computer memory while the proposed DD
method always works by shrinking the subdomains. More detailed results are shown in Table to
Using the optimal A, overlapping size, and subdomain size from the tests, Figure and
illustrate the compared performance of Algorithm I and Algorithm Ipp. Here we also use Figure
and to show that the image features of the DD results are the same as them in the result
obtained from the original TV model, while it can reduce the running time significantly.

4.2. Algorithm /] TV-ALM Deblurring v.s. Algorithm I/pp TV-ALM DD-Deblurring.
Under the same tests with different parameters, we test the 512 x 512 lena image and get the results
directly from the server using matlabpool in jackfruit-sever with 4 Intel(R) Xeon(TM)MP CPU

3.33GHz, 16G RAM. The results are in Table

We use matlabpool in the parallel computing toolbox of MATLAB. Our server owns four com-
puting cores (P=4). Speed-up ratio refers to how much a parallel algorithm is faster than the
corresponding sequential algorithm. We see that the speed-up ratio is about 2 ~ 3.5 so the parallel
efficiency E(F = STP) is about 0.5 ~ 0.87. Parallel efficiency usually takes a value between zero and
one, estimating how well-utilized the processors are in solving the problem, compared to how much
effort is wasted in communication and synchronization. In the realization of parallel computing,
we use one core for saving data and the other 3 left cores to compute the subproblem. Then the
parallel efficiency is getting larger when setting P = 3, that is close to 1.

One can see that the proposed methods have been successfully applied to the image deblurring
and lead to significant time and memory saving. Moreover, they are not sensitive to the image size.

TABLE 4.1. Different overlapping size § using image lenab512 with tolerance ¢ =
1074, 0 = 107%, A = 0.1 and 8 = 10~°, sub-domain size d = 32, Gaussian blur
with support size S = 52,72,92. We compute the ratio of the elapsed time in the
DD method to that in the TV method.

S |0 k PSNR Time S k PSNR Time S k PSNR Time

TV | 0| 124 | 37.8835 | 839.2698 131 | 38.2565 | 915.5855 135 | 38.3278 | 738.2279
1120 | 38.1716 | 8.09% 128 | 38.5557 | 8.02% 132 | 38.5601 | 9.97%
2| 124 | 37.8219 | 9.43% 130 | 38.2328 | 9.10% 137 | 38.0984 | 11.64%

52 | 3| 124 | 37.7878 | 10.41% | 7* | 130 | 38.2147 | 10.04% | 9 | 138 | 38.0054 | 12.90%
41124 | 37.7392 | 11.96% 131 | 38.1424 | 11.62% 137 | 38.0591 | 14.62%
5| 124 | 37.7187 | 13.34% 131 | 38.1340 | 12.96% 139 | 37.9877 | 16.44%
6| 124 | 37.7318 | 14.48% 131 | 38.1503 | 14.12% 140 | 37.9686 | 18.05%
7125 | 37.7114 | 16.53% 132 | 38.0911 | 15.77% 141 | 37.9388 | 20.50%
8| 125 | 37.7175 | 18.02% 133 | 38.0659 | 17.09% 140 | 37.9323 | 22.30%
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FIGURE 4.1. Original images.
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TABLE 4.2. For 512 x 512 image, different subdomain size with stopping residual
e=10"% 0=10"% A=0.1,and B =107°, § = 2, S = 52. Each percentage in the
“time” column for DD is the ratio of the CPU time of the DD algorithm to that of
the algorithm without DD.

image type d k PSNR | Time type d k PSNR | Time
lena512 | Gaussian | TV | 147 | 36.5751 | 1391.7 | motion | TV | 127 | 34.5532 | 1324.1
8 | 143 | 36.4930 | 15.69% 8 | 142 | 34.6034 | 12.13%
lena512 | Gaussian | 16 | 149 | 36.4378 | 8.07% | motion | 16 | 128 | 34.5034 | 7.23%
32 | 146 | 36.4967 | 6.62% 32 | 128 | 34.4894 | 5.99%
64 | 147 | 36.5066 | 9.77% 64 | 128 | 34.5777 | 8.96%
128 | 142 | 36.7895 | 11.54% 128 | 127 | 34.5374 | 10.85%

5. CONCLUSION.

13

In this paper, we propose two fast domain decomposition based algorithms for solving the clas-
sical total variation based image deblurring model. By partitioning the entire image domain into
overlapping subdomains, we are able to solve a sequence of boundary value problems efficiently in
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FIGURE 4.2. Choosing a best A for the different noise level

TABLE 4.3. For 1024 x 1024 image, different subdomain size with stopping residual
e=10"%0=10"*A=0.1and B =10"° 6 =2, S = 5. The elapsed time of DD
is showed by the ratio of the time of DD to that of algorithm without DD.

image type d k PSNR Time type d k PSNR Time
boat1024 | Gaussian | TV | 131 | 37.2863 | 2701.0 | motion | TV | 116 | 35.7937 | 2527.1
8 | 127 | 37.3214 | 33.72% 8 | 111 | 35.8625 | 31.68%
boat1024 | Gaussian | 16 | 129 | 37.2895 | 16.88% | motion | 16 | 113 | 35.8325 | 15.72%
32 | 131 | 37.2536 | 14.47% 32 | 115 | 35.8342 | 13.53%
64 | 131 | 37.2718 | 16.52% 64 | 115 | 35.8156 | 15.38%
128 | 131 | 37.3504 | 23.13% 128 | 115 | 35.7767 | 21.52%

TABLE 4.4. : TV ALM DD-Deblurring-Different subdomain size with stopping
residual e =107%, 0 = 1074, A =2,7 =2, and B =0, and S = 5°.

image type d k PSNR | Time type d k PSNR | Time
8 | 108 | 27.3327 | 289.73 8 | 134 | 28.3687 | 356.48

16 | 111 | 27.2767 | 152.03 16 | 138 | 28.3082 | 185.21

lena512 | Gaussian | 32 | 113 | 27.1485 | 131.00 | motion | 32 | 142 | 28.1691 | 158.78
64 | 115 | 26.8596 | 144.81 64 | 142 | 27.8753 | 176.96

128 | 110 | 26.8518 | 214.91 128 | 142 | 27.6761 | 276.06

parallel. More importantly, the proposed algorithms can even be extended to solve certain nonlinear
stiff differential equations corresponding to variational image processing models. Various numerical
experiments demonstrate that the proposed algorithms perform consistently more efficient than the
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FIGURE 4.3. 128 Gaussian blur: blur (left), restored by TV (middle), restored by
DD (right)
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FIGURE 4.5. 256 Motion blur: blur (left), restored by TV (middle), restored by DD (right)

traditional method in terms of restored image quality and CPU time. Furthermore, this work has

large potential for a distributed and parallel computation in solving large scale problems in high
dimensions.



16 J. XU , H. B., CHANG AND J. QIN

FIGURE 4.6. Deconvolution results on the Lena image of size 512 x 512 with Gauss-
ian blur with support size=3: blur (left), restored by DD (right)

FIGURE 4.7. 1024 Gaussian blur with support size = 5: blur (left), restored by DD (right)

TABLE 4.5. matlabpool: the parallel efficiency (E) tests for the boat1024 image
with different subdomain size with tolerance ¢ = 1074, ¢ = 107%, A = 0.1 and

B=10"% 6 =5.
type d k PSNR Time E type d k PSNR Time E

8 | 167 | 30.4235 | 1180.52 | 0.725 8 | 166 | 31.4299 | 1145.45 | 0.7175

16 | 174 | 30.2730 | 561.74 0.8 16 | 167 | 31.4690 | 515.74 0.85

Gaussian | 32 | 173 | 30.4489 | 424.37 | 0.85 | motion | 32 | 171 | 31.4479 | 466.58 0.79
64 | 174 | 30.4364 | 482.82 | 0.85 64 | 174 | 31.3900 | 462.32 | 0.855
128 | 176 | 30.4092 | 639.38 0.8 128 | 173 | 31.3835 | 613.06 | 0.8325

256 | 177 | 30.5370 | 882.09 | 0.625 256 | 172 | 31.4625 | 846.09 | 0.7175

ACKNOWLEDGMENTS.

The first two authors would like to thank MAS, and SPMS for the invitation of visit Nanyang
Technological University in Singapore. The first author would also like to thank Prof. X.C. Tai and



DOMAIN DECOMPOSITION METHOD FOR IMAGE DEBLURRING 17

L.L. Wang for the helpful discussion and advice. The authors would like to thank the anonymous
referees for their valuable comments which helped to improve the manuscript.

[1]
2]
3]

4

[5]
[6]

7

(8]
[9)

(10]
(11]
(12]
(13]
14]
(15]
(16]
(17)
(18]
(19]
[20]
(21]
(22]
23]
[24]
(25]

[26]
27]

REFERENCES

R. Acar and C.R. Vogel. Analysis of bounded variation penalty methods for ill-posed problems. Inverse problems,
10(6):1217-1230, 1994.

A.C. Bovik. Handbook of image and video processing (communications, networking and multimedia). Academic
Press, Inc. Orlando, FL, USA, 2005.

J.H. Bramble, J.E. Pasciak, J. Wang, and J. Xu. Convergence estimates for product iterative methods with
applications to domain decomposition. Mathematics of Computation, 56(193):1-21, 1991.

C. Brito-Loeza and K. Chen. Multigrid algorithm for high order denoising. SIAM Journal on Imaging Sciences,
3(3):363-389, 2010.

C.A.Micchelli, L.X.Shen, and Y.S.Xu. Proximity algorithms for image models: denoising. Inverse Problems,
27(4):45009-45038, 2011.

T.F. Chan, G.H. Golub, and P. Mulet. A nonlinear primal-dual method for total variation-based image restora-
tion. SIAM Journal on Scientific Computing, 20(6):1964-1977, 1999.

H. Chang, X. Zhang, Tai X-C, and D. Yang. Domain decomposition methods for nonlocal total variation image
restoration. J.Sci.Comput. to appear.

Q. S. Chang, W. C. Wang, and J. Xu. A method for the total variation-based reconstruction of noisy and blurred
image. Springer, 2007.

M. Dryja and O.B. Widlund. Towards a unified theory of domain decomposition algorithms for elliptic problems,
Third International Symposiumon Domain Decomposition Methods for Partial Differential Equations, Houston,
Texas, T. Chan et. al., eds, 1989.

M. Fornasier, A. Langer, and C. B. Schonlieb. Domain decomposition methods for compressed sensing. arXiv
preprint arXiv:0902.0124, 2009.

M. Fornasier, A. Langer, and C.B. Schonlieb. A convergent overlapping domain decomposition method for total
variation minimization. Numerische Mathematik, 116(4):645-685, 2010.

M. Fornasier and C. B. Schonlieb. Subspace correction methods for total variation and £¢;-minimization. STAM
Journal on Numerical Analysis, 47(5):3397-3428, 2009.

M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz algorithms. Numerische
Mathematik, 70(2):163-180, 1995.

T. Kohlberger, C. Schnorr, A. Bruhn, and J. Weickert. Domain decomposition for variational optical-flow com-
putation. IEEE Transactions on Image Processing, 14(8):1125-1137, 2005.

L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60(1-
4):259-268, 1992.

Y.Y. Shi and Q.S. Chang. Efficient algorithm for isotropic and anisotropic total variation deblurring and denois-
ing. Journal of Applied Mathematics, 2013, 2013.

B.F. Smith, P.E. Bjgrstad, and W.D. Gropp. Domain decomposition. Cambridge University Press, Cambridge,
1996. Parallel multilevel methods for elliptic partial differential equations.

X.C. Tai and Y. Duan. Domain decomposition methods with Graph cuts algotithms for image segmentation.
UCLA CAM Report, 9-54, 2009.

X.C. Tai and M. Espedal. Applications of a space decomposition method to linear and nonlinear elliptic problems.
Numerical Methods for Partial Differential Equations, 14(6):717-737, 1998.

X.C. Tai and M. Espedal. Rate of convergence of some space decomposition methods for linear and nonlinear
problems. SIAM Journal of Numerical Analysis, 35(14):1558-1570, 1998.

X.C. Tai and P. Tseng. Convergence rate analysis of an asynchronous space decomposition method for convex
minimization. Mathematics of Computation, 71(239):1105-1136, 2002.

X.C. Tai and J. Xu. Global and uniform convergence of subspace correction methods for some convex optimization
problems. Mathematics of Computation, 71(237):105-124, 2002.

C.R. Vogel and M.E. Oman. Iterative methods for total variation denoising. SIAM Journal on Scientific Com-
puting, 17(1):227-238, 1996.

C. L. Wu and X. C. Tai. Augmented lagrangian method, dual methods and split-bregman iterations for rof,
vectorial tv and higher order models. SIAM J. Imaging Sci., 3(3):300-339, 2010.

J. Xu, X. C. Tai, and L. L. Wang. A two-level domain decomposition method for image restoration. Inverse
problems and Image, 4(3):523-545, 2010.

J.C. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34(4):581-613, 1992.
W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for ¢;-minimization with applica-
tions to compressed sensing. SIAM Journal on Imaging Sciences, 1(1):143-168, 2008.



	1. Introduction
	2. Domain decomposition based subspace correction method
	2.1. Algorithm I (Linearization Method):
	2.2. Algorithm II (Augmented Lagrangian Method)

	3. Numerical discrete algorithm for TV deblurring
	3.1. Algorithm IDD: DD-Linearization Method 
	3.2. Algorithm IIDD: DD-Augmented Lagrangian Method 

	4. Numerical results
	4.1. Algorithm I TV-Deblurring v.s. Algorithm IDD TV DD-Deblurring
	4.2. Algorithm II TV-ALM Deblurring v.s. Algorithm IIDD TV-ALM DD-Deblurring

	5. Conclusion.
	Acknowledgments.
	References

