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Abstract. As a fundamental problem in image processing, image deblurring has still attracted

a lot of research attention. Due to the large computational cost, especially for high-resolution

images, it becomes challenging to solve the deblurring minimization problem and the underlying
partial differential equations. The domain decomposition method (DD), as one of the most effi-

cient algorithms for solving large scale problems, had not been applied directly to image deblurring

because of the global characteristic of the blur operator. In this paper, in order to avoid sepa-
rating the blur operator, we propose an algorithm for directly solving the total variational based

minimization problems with DD. Various numerical experiments and comparisons demonstrate

that the larger the image size is, the more efficient the proposed method is in saving running time.
The parallelization has also been realized by using the parallel computing toolbox of MATLAB.

1. Introduction

Image deblurring is a fundamental problem in both image processing and computer vision with

broad applications. Given a blurry and noisy image z : Ω→ R,

z = Ku+ n (1.1)

where Ω is a bounded open set in R2, u is the underlying clean image, K, also called the point

spread function (PSF), is a blur operator with Ku = h ∗ u where h is a convolution kernel with

compact support (e.g., discrete Gaussian kernel), and n is a Gaussian white noise with zero mean.

We aim to recover the unknown u and K from z.

Given the knowledge of the blur operator K, one of the most popular methods for noise removal

and deblurring is the total variation based restoration method proposed by L. Rudin, S. Osher and

E. Fatemi, where the total variation of u is used as a penalty functional in [15]. The corresponding

image restoration can then be formulated as the following unconstrained minimization problem:

min
u

(∫
Ω

|∇u| dxdy +
λ

2
‖Ku− z‖2L2

)
. (1.2)

Here, λ > 0 is the penalty parameter. The functional in (1.2) is strictly convex with a unique global

minimizer. If the convolution kernel h is the delta function δ satisfying δ ∗ u = u, we have K = I

and (1.2) is simply the original TV based image denoising model which restores the image from

the noisy observation while preserving edges. For a general convolution kernel h, it becomes more
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difficult to restore the image u and may return a solution which is sensitive to the perturbation of

the input data due to the ill-posedness of the problem.

There is a considerable amount of work to solve the model, such as the gradient descent method

[15], the dual model [6], the Bregman iteration [27], the augmented Lagrangian method [24] and

multigrid methods [4] and so on. Xu et al. [25] provided a brief review of the aforementioned

algorithms. The purpose of this paper is to propose a fast algorithm based on the overlapping

domain decomposition technique to solve the TV based deblurring model (1.2). It is well known

that domain decomposition methods are powerful iterative methods for solving partial differential

equations [3, 9, 13, 17, 26]. Some recent progress has shown that DD are also efficient for some

nonlinear elliptic problems and some convex minimization problems [20, 19, 21, 22] with mesh

independent convergence. To the best of our knowledge, the domain decomposition methods have

not been directly applied to the TV based deblurring problem so far. Some recent efforts have

been devoted to study this problems [18, 14, 11, 10, 12, 7]. In Xu et al. [25], they have used

the overlapping DD to image denoising which divided the original problem into subproblems over

subdomain. However, as a global operator, the convolution operator K brings up obstacles to

directly apply DD into the image deblurring.

In this paper, we propose a DD based image deblurring algorithm which combines the subspace

correlation method and the lagged diffusivity fixed-point iteration. Following the idea proposed in

[8, 25], we use the lagged diffusivity fixed-point iteration by moving the blur operator to the right

hand side and adding a term on both sides to guarantee the convergence. Two methods are provided

to handle the model (1.2). One is “linearization method” that uses the approximation value uk at

the k-th iteration to replace the term by ∇ ·
(
∇u
|∇uk|

)
to solve the subproblem at the (k + 1)-th

iteration. The other is to use “augmented Lagrangian method” (AML) by introducing the new

variable p = ∇u and the Lagrangian multiplier µ.

By decomposing the image domain into overlapping subdomains, the original minimization prob-

lem related to the model (1.2) is reduced to a sequence of sub-minimization problems on the sub-

domains. If the sub-minimization problems are solved exactly, then the convergence of the generated

sequence is trivial. Due to the degeneracy of the nonlinear equation associated to (1.2) involving

the blur operator, it is difficult to obtain the convergence rate for the numerical solutions which will

be studied further. Numerical experiments show its capability in processing images of large size and

saving CPU time. The proposed method also has good potentials in solving large-scale problems

which are feasible for parallel computing. Furthermore, the speed-up efficiency can be enhanced by

more than 0.5.

The rest of the paper is organized as follows. In Section 2, we briefly review the domain decom-

position algorithm in a general framework of the subspace correction method. The finite-difference

discretization schemes and the details of the algorithm are shown in Section 3. Various numeri-

cal experiments and discussions are shown to demonstrate the merits of the proposed methods in

Section 4. In Section 5, we make the conclusions.

2. Domain decomposition based subspace correction method

We put the method in a more general setting and start with the description of the subspace cor-

rection algorithm of [22]. Given a reflexive Banach space V , and a convex and Gateaux differentiable
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functional F : V → R, we consider the following minimization problem:

min
u∈V

F (u). (2.1)

Under the notions of space correction, we first decompose the space V into a sum of subspaces:

V = V1 + V2 + · · ·+ Vm, (2.2)

which implies that
m∑
j=1

vj ∈ V, ∀ vj ∈ Vj ,

and for any v ∈ V there exists vj ∈ Vj such that v =
m∑
j=1

vj . Following the framework of [26] for

linear problems, we solve a sequence of sub-minimization problems over the subspaces:

min
e∈Vj

F (un + e), j = 1, 2, . . . ,m, (2.3)

where un denotes the n-th approximation to resolve (2.1). Two types of subspace correction methods

based on (2.2)-(2.3), known as the parallel subspace correction (PSC) and successive subspace

correction (SSC) method, were proposed in [26, 22]. Here, we adopt the latter that can also be

parallelized by coloring techniques.

In the first place, we apply the overlapping domain decomposition to the solution space V =

BV (Ω). More precisely, we partition Ω into m overlapping subdomains

Ω =

m⋃
j=1

Ωj , Ωj ∩ Ωk 6= ∅, k 6= j. (2.4)

For clarity, the subdomain Ωj is colored with a color j, and Ωj consists of mj subdomains (assumed

to be “blocks” for simplicity), which are not intersected. Hence, the total number of blocks that

cover Ω is

M :=

m∑
j=1

mj . (2.5)

In Figure 2.1, we illustrate schematically the decomposition of Ω into four colored subdomains with

25 blocks. Based on the above decomposition scheme, we decompose the space V = BV (Ω) as

V =

m∑
j=1

Vj , Vj = BV0(Ωj), (2.6)

where BV
0
(Ωj) denotes the subspace of BV (Ωj) with zero traces on the “interior” boundaries

∂Ωj\∂Ω. Applying the SSC algorithm to the TV-deblurring model leads to an iterative algorithm.

In the following, we give a detailed description of the two proposed algorithms.

2.1. Algorithm I (Linearization Method): First, we apply the DD method to the deblurring

model (1.2) directly, namely (2.1) with

F (u) =

∫
Ω

|∇u| dxdy +
λ

2
‖Ku− z‖2L2 .

The corresponding Euler-Lagrange equation is:

− div

(
∇u√
|∇u|2 + β

)
+ λK∗(Ku− z) = 0. (2.7)
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Figure 2.1. Schematic illustration of the coloring of the subdomains, and fine/coarse meshes

on Ω = (0, 1)2. This corresponds to the decomposition: V h = V H
0 +

∑4
i=1 V

h
i with H = 5h and

in (2.5), m = 4, m1 = 9,m2 = 6,m3 = 6,m4 = 4, and M = 25.

Here, to avoid dividing by zero, we introduce a positive small number β in the denominator of the

diffusion term. The differential equation (2.7) has been proven well-posed as β → 0+ in [1] . Instead

of truncating the global blur operator K, we rewrite (2.7) as follows

− div

(
∇u√
|∇u|2 + β

)
= λK∗(z −Ku). (2.8)

For some blur operators, the iterative numerical methods to solve the above differential equation

will diverge. Adding one stable term Bu (c.f. [8]) to both sides of the equations will resolve this

issue. We choose the algorithm in our numerical experiment as follows:

Bu− div

(
∇u√
|∇u|2 + β

)
= λK∗(z −Ku) + Bu. (2.9)

with a homogenous Neumann boundary condition ∂u/∂n = 0. We will discuss how to choose a

proper B in Section 4. Once the convergence of the algorithm is ensured, we are able to split the

entire image into small rectangles and solve efficiently the corresponding boundary value problems

on each rectangle. Recall that the lagged diffusivity fixed-point iteration (cf. [23]) for (2.9) is to

solve the linearized equation

Buk+1 − div

(
∇uk+1√
|∇uk|2 + β

)
= λK∗(z −Kuk) + Buk, k = 0, 1, · · · , (2.10)

with the initial value u0. Since each iteration involves all the pixel intensities in the image domain,

it will be computationally intensive and usually cause the ill-conditioning of the system when the
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image size is large. The domain decomposition based SSC algorithm will overcome the difficulties

by decomposing the whole problem into sub-problems on much smaller subdomains.

Given an initial value u0 ∈ V, the SSC algorithm generates un+1 byF
(
un+ j−1

m + enj

)
≤ F

(
un+ j−1

m + vj

)
, ∀ vj ∈ Vj = BV0(Ωj),

un+ j
m = un+ j−1

m + enj , 1 ≤ j ≤ m.
(2.11)

Notice that enj is the solution of the subproblem over Ωj . Therefore, each boundary value problem

over Ωj has the following form
Bun+ j

m − div

(
∇un+

j
m√

|∇un+
j−1
m |2+β

)
= λK∗(z −Kun+ j−1

m ) + Bun+ j−1
m , in Ωj ,

∂un+ j
m

∂n
= 0, on ∂Ωj ∩ ∂Ω,

un+ j
m = un+ j−1

m , on ∂Ωj \ ∂Ω.
(2.12)

One can see that un+ j
m = un+ j−1

m for x ∈ Ω\Ωj . The above iterative algorithm requires us to solve

a sequence of minimization problems over the subspaces/subdomains.

2.2. Algorithm II (Augmented Lagrangian Method). Second, we try to solve the model (1.2)

using the Augmented Lagrangian Methods (ALM) which is one of the most efficient algorithms. In

[24], the authors applied the ALM method to solve (1.2) and showed that the dual method and the

split Bregman iteration can actually be either deduced from, or equivalent to the ALM method.

They both are just different iterative strategies to solve the same system resulted from a Lagrangian

and penalty approach. In fact, ALM can be replaced by other fast numerical methods to solve

subproblems which implies that our technique can be easily combined with other methods.

Instead of directly solving the Euler-Lagrange equation of (1.2) using the ALM method [25], one

solves the constrained optimization problem by

min
u,q

max
µ

LROF =

∫
Ω

|q|+ λ

2
‖Ku− z‖2 +

∫
Ω

µ · (q −∇u) +
r

2

∫
Ω

|q −∇u|2, (2.13)

where µ = (µ1, µ2)T is the Lagrange multiplier and r is a positive constant. Then the method is to

seek a saddle point of the augmented Lagrangian functional LROF (u, q, µ).

To solve the problem of (2.13), we split it into the following two sub-problems [25]:

arg min
u
F (u) =

λ

2
‖Ku− z‖2 −

∫
Ω

µ · ∇u+
r

2

∫
Ω

|q −∇u|2, (2.14)

for a given q. Here F (u) is the same as that in the equation (2.1), which is the second example of

applying the domain decomposition method to (1.2) and

arg min
q

∫
Ω

|q|+
∫

Ω

µ · q +
r

2

∫
Ω

|q −∇u|2, (2.15)

for a given u. The sub-problems (2.14) and (2.15) can be efficiently solved. For (2.14), Euler-

Lagrange equation is

λK∗(Ku− z) +∇ · µ+ r∇ · q − r4u = 0.
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We use the same idea as in solving equation (2.7). The blur term and the term without u is moved

to the right hand

−r4u = λK∗(z −Ku)−∇ · µ− r∇ · q.

Then we add a Bu to the both sides of the equation for convergence,

Bu− r4u = Bu+ λK∗(z −Ku)−∇ · µ− r∇ · q.

The lagged diffusivity fixed-point iteration (cf. [23]) is used to update u

Bun+1 − r4un+1 = Bun + λK∗(z −Kun)−∇ · µn − r∇ · qn.

After applying the SSC algorithm to the ALM for the given µn and qn, we obtain un+ j
m by

solving the following boundary value problem:
Bun+ j

m − r4un+ j
m = Bun+ j−1

m + λK∗(z −Kun+ j−1
m )−∇ · µn − r∇ · qn. in Ωj ,

∂un+ j
m

∂n
= 0, on ∂Ωj ∩ ∂Ω,

un+ j
m = un+ j−1

m , on ∂Ωj \ ∂Ω.
(2.16)

We reformulate the problem (2.15) to be

arg min
q

∫
Ω

|rq|+ 1

2

∫
Ω

|rq − (r∇u− µ)|2.

Then

q =
1

r
prox|·|(ω) =

1

r
max{|ω| − 1, 0}sign(ω),

where ω = r∇u− µ in [5]. In the discrete setting, we have

qn+1 =

{ 1
r (1− 1

|r∇un+1−µn )(r∇un+1 − µn) |r∇un+1 − µn| > 1

0 |r∇un+1 − µn| ≤ 1
(2.17)

Finally, we updated µ by

µn+1 = µn + r(qn+1 −∇un+1).

3. Numerical discrete algorithm for TV deblurring

Based on our experience, the coarse grid correction does not help much for the TV-denoising

in [25]. As such, we just present the one-level algorithm described in the previous section for the

TV-deblurring model.

In order to solve (2.9) numerically, we first partition the domain Ω = (0, 1) × (0, 1) into L × L
uniform cells with mesh size h = 1/L , whose centers are

(xl, yk) =

((
l − 1

2

)
h,

(
k − 1

2

)
h

)
, l, k = 1, · · · , L.

By applying the standard five-point stencil to the Laplacian operator, we get

Bu−∇h ·

(
∇hu√
|∇hu|2 + β

)
= Bu+ λK∗(z −Ku), (3.1)
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or more precisely,

Bul,k −
1

h

(
al+ 1

2 ,k

ul+1,k − ul,k
h

− al− 1
2 ,k

ul,k − ul−1,k

h

)
− 1

h

(
al,k+ 1

2

ul,k+1 − ul,k
h

− al,k− 1
2

ul,k − ul,k−1

h

)
= Bul,k + (λK∗(z −Ku))l,k , l, k = 1, · · · , L,

(3.2)

with discrete homogeneous Neumann boundary condition by one-sided second-order finite differences

when x = 0:

u0,k =
4

3
u1,k −

1

3
u2,k,

where

al+ 1
2 ,k

=
1√(

(Dxu)l+ 1
2 ,k

)2

+
(

(Dyu)l+ 1
2 ,k

)2

+ β

,

with

(Dxu)l+ 1
2 ,k

=
ul+1,k − ul,k

h
, (Dyu)l+ 1

2 ,k
=

1

2

(
ul+1,k+1 − ul+1,k−1

2h
+
ul,k+1 − ul,k−1

2h

)
etc. To simplify the notation, we abbreviate (3.1) as

Bu+ L(u)u = Bu+ λK∗(z −Ku), (3.3)

where

L(v)w = −∇h ·

(
∇hw√
|∇hv|2 + β

)
. (3.4)

In (3.3), L(u) is fully nonlinear with widely varying coefficients. Moreover, the matrix K∗K is

wide-banded and the spectrums of the matrices L(u) and K∗K are quite differently distributed. We

list the algorithm for the TV-deblurring model in the whole domain without DD in Algorithm I.

Algorithm I: TV-Deblurring.

1. Start with u0 = z.
2. Given un, solve for un+1 by (iterating on n):

(B + L(un))un+1 = −(λK∗K − B)un + λK∗z

Let
A = B + L(un)
F = − (λK∗K − B)un + λK∗z,

Then
AU = F

3. Go to next iteration for n.

Then the more detailed discrete forms of (2.12) are as follows:

Bun+ j
m

l,k −

δ−x
 δ+

x u
n+ j

m

l,k√
(δ+
x u

n+ j−1
m

l,k )2 + (δ+
y u

n+ j−1
m

l,k )2 + βh


+ δ−y

 δ+
y u

n+ j
m

l,k√
(δ+
x u

n+ j−1
m

l,k )2 + (δ+
y u

n+ j−1
m

l,k )2 + βh

 = Fn+ j−1
m ,

(3.5)
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where δ+
x , δ

−
x , δ

+
y , δ

−
y denote the backward and forward difference scheme in the common sense which

are the abbreviated forms of (3.2).

Compared with TV Deblurring, for which there are no nonlinear terms in the ALM equation,

it is easy to discretize the Laplace operator for solving u with the finite difference discretization

scheme. We provide the algorithm without DD as below:

Algorithm II: TV-ALM Deblurring.
Start with u0 = z, q0 = (0, 0)T , µ0 = 0
Assume we have un, qn, µn

Solve for un+1 by (iterating on n):

(B − r4)un+1 = −(λK∗K − B)un + λK∗z − r∇ · qn

Let
A = B − r4
F = − (λK∗K − B)un + λK∗z −∇ · µn − r∇ · qn,

Then

AU = F

Solve for qn+1 by (iterating on n):

q =

{ 1
r (1− 1

|r∇un+1−µn| )(r∇u
n+1 − µn) |r∇un+1 − µn| > 1

0 |r∇un+1 − µn| ≤ 1

Solve for µn+1 by (iterating on n):

µn+1 = µn + r(qn+1 −∇un+1).

Go to the next iteration for n.

Similar to equation (3.5), obtained by applying the ALM method, we have

(B − r(δ−x δ+
x + δ−y δ

+
y ))u

n+ j
m

l,k = Fn+ j−1
m . (3.6)

We list below a few possible choices for B (c.f. [8]) with identity matrix I:

(a)

B = bI, b > b∗ =
λ

2
max
j

∑
i

(K∗K)i,j (3.7)

(b)

B = diag(λK∗K) + γI, γ > γ∗ =
λ

2
max
i

∑
j 6=i

(K∗K)i,j − (K∗K)i,j

 (3.8)

(c)

B =
λ

2
diag(K∗K) +

1

2
δI, δ > δ∗ = λmax

i

∑
j 6=i

(K∗K)i,j (3.9)

In this paper, we have adopted (3.7) for simplification. Both (3.8) and (3.9) have been proven

experimentally to perform equivalently. The convergence analysis can be traced to [8] and [16].

Next we state the two algorithm for sub-domains proposed in Section 2.



DOMAIN DECOMPOSITION METHOD FOR IMAGE DEBLURRING 9

3.1. Algorithm IDD: DD-Linearization Method. In the following, we provide the TV deblur-

ring’s DD forms of Algorithm I in the above section.

Algorithm IDD: TV DD-Deblurring.
Choose an initial value u0

h ∈ V h.

For n = 0,

Set ũnh = unh,

Compute Fn

while j = 1, · · · ,m do

Solve (3.5): Ah,j ũ
n+j/m
h = Fn+ j−1

m .
end
Go to next iteration for n.

3.2. Algorithm IIDD: DD-Augmented Lagrangian Method. As a popular and efficient solver

for the subproblem, we present the augmented Lagrangian method in Subsection 2.2 where B is

chosen the same as B in Algorithm II.

Algorithm IIDD: TV ALM DD-Deblurring.
Choose an initial value u0

h ∈ V h.

For n = 0,

Set ũnh = unh,

while j = 1, · · · ,m do

Solve (3.6) for updating u, Ah,j ũ
n+j/m
h = Fn+ j−1

m .
end
update qn and µn,
Go to next iteration for n.

4. Numerical results

Next we present various numerical results to demonstrate the efficiency of the proposed domain

decomposition based image deblurring algorithms.

We first give an example to show the general structure of a blur operator. If a blur operator

given by the unit kernel (support size=5× 5) as

1

64
(1, 1, 4, 1, 1)T (1, 1, 4, 1, 1) =

1

64


1 1 4 1 1
1 1 4 1 1
4 4 16 4 4
1 1 4 1 1
1 1 4 1 1

 ,
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then we let

T2 =



4 1 1 0
1 4 1 1
1 1 4 1 1

. . .
. . .

. . .
. . .

. . .

1 1 4 1 1
1 4 1 1

0 4 1 1


L∗L,

and

T0 = 4T2, T1 = T2.

Therefore, the blur matrix can be written as

K =
1

64



T0 T1 T2 0
T1 T0 T1 T2

T2 T1 T0 T1 T2

. . .
. . .

. . .
. . .

. . .

T2 T1 T0 T1 T2

T2 T1 T0 T1

0 T2 T1 T0


L2∗L2.

Moreover, if a blur kernel can be expressed as

H =


h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

...
...

hn1 hn2 · · · hnn


n∗n

,

then the maximal diagonal entry of K∗K is
∑n
i,j=1 h

2
i,j and the corresponding largest sum of off-

diagonal entries of K∗K is
∑n
i,j=1

∑n
k,l=1,k 6=i,l 6=j hi,jhk,l. Based on the construction of K, we are

able to choose a proper B.

Here, we provide two types of blur operators used in our numerical experiments.

(1) A motion blur example with 90 degree (support size =5× 5) given by the kernel

1

5


0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

 .
(2) A truncated Gaussian blur given by the mask (support size=5× 5)

h(x, y) =

{
ce−τ(x2+y2), if |x|, |y| ≤ 2

L ,
0, otherwise,

Here the strength of the blur depends on parameters τ, c . Stronger blurs correspond to smaller

values of τ or larger values of c. For example, the original images contain 256×256 pixels. Then

L = 256, |x|, |y| ≤ 1
128 is equal to |i| ≤ 2, |j| ≤ 2 of the first blur operator.
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We have

h ∗ f(x, y) =

∫ 1
128

− 1
128

∫ 1
128

− 1
128

ce−τ((x−z)2+(y−w)2)f(x,w)dzdw

=

∫ 2

−2

∫ 2

−2

c

L2
e−

τ
L2 ((X−Z)2+(Y−W )2)f(

Z

L
,
W

L
)dZdW.

Then, we take τ ′ = τ
L2 and

c′ =
c
L2

2∑
i,j=−2

e−τ
′(i2+j2)

.

Analogously, let

H = (e−22τ ′ , e−τ
′
, 1, e−τ

′
, e−22τ ′),

then K can be considered as an operator defined by the kernel c′HTH.

The performance is assessed by comparing with the lagged diffusivity fixed-point iteration (i.e.,

(2.10), denoted by TV) in terms of convergence, recovered image qualities measured in peak signal-

to-noise ratio (PSNR) and the computational time. To the best of our knowledge, these algorithms

have not been applied to the image deblurring problems so far. Hence, it is interesting to see some

good results and particularly how the methods can be applied to restore images of large size.

By default, the pixel values of all images lie in the interval [0, 255], and the Gaussian white noise

is generated in MATLAB by using the command imnoise(I,‘gaussian’, M, σ) (i.e., the mean

M and variance σ). In our tests, we use PSNR in [2] to measure the restored image quality, which

is defined as in the logarithmic decibel scale:

PSNR = 10 log10

2552

1
mn

∑
i,j(ui,j − zi,j)2

, (4.1)

where u is the restored image, and z is the original one. Typical values for the PSNR in lossy image

and video compression are between 30dB and 50dB. The higher the PSNR, the better the quality of

the image is. We use the relative error between two consecutive iterations as the stopping criterion:

‖uk − uk−1‖2
‖uk‖2

< ε, (4.2)

where ε is a prescribed tolerance.

We test the methods on four images: shape-128 × 128, map-256 × 256, lena-512 × 512, boat-

1024× 1024 (See Figure 4.1). To simulate the noisy blurry observed images, we add the zero mean

Gaussian noise with the standard deviation ε = 10−4, and apply the Gaussian blur and the motion

blur to the clean test images. Regarding the efficiency comparison, we compute the ratio of the

elapsed time in the DD method to that in the TV method.

4.1. Algorithm I TV-Deblurring v.s. Algorithm IDD TV DD-Deblurring. In Figure 4.2,

we seek a good choice of the parameter λ in the TV and DD methods with different noise levels,

where the left image uses σ = 10−4, and the right one uses σ = 10−3. From the result of Figure

4.2, one can see that λ = 0.1 is an ideal choice for two testing images. To make the comparison

fair, we select the best restored image for each method in terms of PSNR. In Table 4.1, we look for

a good overlapping size δ. Here we fix the subdomain size d = 32. One can see that the three

supporting sizes yield the same results. In particular, δ = 1 gives the best results no matter what
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the supporting size is. The running time of the DD method with δ = 1 is less than 10% of that of

the TV method while the corresponding PSNR is even higher than that of the TV method. The

running time grows as the δ increases. All the running time of the DD mehod is less than 23% of the

TV method. In addition, we test the different subdomain size under different blur kernel operators

in Table 4.2 for the 512 × 512 lena image and Table 4.3 for the 1024 × 1024 lena image. We find

the best choice is d = 32 for the running time, which is under 7% in the 512× 512 lena image and

15% in the 1024×1024 boat image. Although it certainly takes more running time for both the DD

method and the TV method for larger images, the time that the DD method saves actually grows

as the image size increases based on Table 4.2 and Table 4.3. The results from the Gaussian blur is

same as those for the motion blur. When dealing with the image of size 2048× 2048 or even larger,

the TV method is easily prone to fail due to the limited computer memory while the proposed DD

method always works by shrinking the subdomains. More detailed results are shown in Table 4.1 to

4.3. Using the optimal λ, overlapping size, and subdomain size from the tests, Figure 4.3 and 4.4

illustrate the compared performance of Algorithm I and Algorithm IDD. Here we also use Figure

4.5, 4.6 and 4.7 to show that the image features of the DD results are the same as them in the result

obtained from the original TV model, while it can reduce the running time significantly.

4.2. Algorithm II TV-ALM Deblurring v.s. Algorithm IIDD TV-ALM DD-Deblurring.

Under the same tests with different parameters, we test the 512×512 lena image and get the results

directly from the server using matlabpool in jackfruit-sever with 4 Intel(R) Xeon(TM)MP CPU

3.33GHz, 16G RAM. The results are in Table 4.4.
We use matlabpool in the parallel computing toolbox of MATLAB. Our server owns four com-

puting cores (P=4). Speed-up ratio refers to how much a parallel algorithm is faster than the
corresponding sequential algorithm. We see that the speed-up ratio is about 2 ∼ 3.5 so the parallel
efficiency E(E = SP

P ) is about 0.5 ∼ 0.87. Parallel efficiency usually takes a value between zero and
one, estimating how well-utilized the processors are in solving the problem, compared to how much
effort is wasted in communication and synchronization. In the realization of parallel computing,
we use one core for saving data and the other 3 left cores to compute the subproblem. Then the
parallel efficiency is getting larger when setting P = 3, that is close to 1.

One can see that the proposed methods have been successfully applied to the image deblurring
and lead to significant time and memory saving. Moreover, they are not sensitive to the image size.

Table 4.1. Different overlapping size δ using image lena512 with tolerance ε =
10−4, σ = 10−4, λ = 0.1 and β = 10−5, sub-domain size d = 32, Gaussian blur
with support size S = 52, 72, 92. We compute the ratio of the elapsed time in the
DD method to that in the TV method.

S δ k PSNR Time S k PSNR Time S k PSNR Time

TV 0 124 37.8835 839.2698 131 38.2565 915.5855 135 38.3278 738.2279

1 120 38.1716 8.09% 128 38.5557 8.02% 132 38.5601 9.97%
2 124 37.8219 9.43% 130 38.2328 9.10% 137 38.0984 11.64%

52 3 124 37.7878 10.41% 72 130 38.2147 10.04% 92 138 38.0054 12.90%
4 124 37.7392 11.96% 131 38.1424 11.62% 137 38.0591 14.62%
5 124 37.7187 13.34% 131 38.1340 12.96% 139 37.9877 16.44%
6 124 37.7318 14.48% 131 38.1503 14.12% 140 37.9686 18.05%
7 125 37.7114 16.53% 132 38.0911 15.77% 141 37.9388 20.50%
8 125 37.7175 18.02% 133 38.0659 17.09% 140 37.9323 22.30%
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Figure 4.1. Original images.

Table 4.2. For 512 × 512 image, different subdomain size with stopping residual
ε = 10−4, σ = 10−4, λ = 0.1, and β = 10−5, δ = 2, S = 52. Each percentage in the
“time” column for DD is the ratio of the CPU time of the DD algorithm to that of
the algorithm without DD.

image type d k PSNR Time type d k PSNR Time

lena512 Gaussian TV 147 36.5751 1391.7 motion TV 127 34.5532 1324.1

8 143 36.4930 15.69% 8 142 34.6034 12.13%
lena512 Gaussian 16 149 36.4378 8.07% motion 16 128 34.5034 7.23%

32 146 36.4967 6.62% 32 128 34.4894 5.99%
64 147 36.5066 9.77% 64 128 34.5777 8.96%
128 142 36.7895 11.54% 128 127 34.5374 10.85%

5. Conclusion.

In this paper, we propose two fast domain decomposition based algorithms for solving the clas-
sical total variation based image deblurring model. By partitioning the entire image domain into
overlapping subdomains, we are able to solve a sequence of boundary value problems efficiently in
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Figure 4.2. Choosing a best λ for the different noise level

Table 4.3. For 1024×1024 image, different subdomain size with stopping residual
ε = 10−4, σ = 10−4 λ = 0.1 and β = 10−5, δ = 2, S = 52. The elapsed time of DD
is showed by the ratio of the time of DD to that of algorithm without DD.

image type d k PSNR Time type d k PSNR Time

boat1024 Gaussian TV 131 37.2863 2701.0 motion TV 116 35.7937 2527.1

8 127 37.3214 33.72% 8 111 35.8625 31.68%
boat1024 Gaussian 16 129 37.2895 16.88% motion 16 113 35.8325 15.72%

32 131 37.2536 14.47% 32 115 35.8342 13.53%
64 131 37.2718 16.52% 64 115 35.8156 15.38%
128 131 37.3504 23.13% 128 115 35.7767 21.52%

Table 4.4. : TV ALM DD-Deblurring-Different subdomain size with stopping
residual ε = 10−4, σ = 10−4, λ = 2, r = 2, and β = 0, and S = 52.

image type d k PSNR Time type d k PSNR Time

8 108 27.3327 289.73 8 134 28.3687 356.48
16 111 27.2767 152.03 16 138 28.3082 185.21

lena512 Gaussian 32 113 27.1485 131.00 motion 32 142 28.1691 158.78
64 115 26.8596 144.81 64 142 27.8753 176.96
128 110 26.8518 214.91 128 142 27.6761 276.06

parallel. More importantly, the proposed algorithms can even be extended to solve certain nonlinear
stiff differential equations corresponding to variational image processing models. Various numerical
experiments demonstrate that the proposed algorithms perform consistently more efficient than the
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Figure 4.3. 128 Gaussian blur: blur (left), restored by TV (middle), restored by
DD (right)

Figure 4.4. 128 Motion blur: blur (left), restored by TV (middle), restored by DD (right)

Figure 4.5. 256 Motion blur: blur (left), restored by TV (middle), restored by DD (right)

traditional method in terms of restored image quality and CPU time. Furthermore, this work has
large potential for a distributed and parallel computation in solving large scale problems in high
dimensions.
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Figure 4.6. Deconvolution results on the Lena image of size 512×512 with Gauss-
ian blur with support size=3: blur (left), restored by DD (right)

Figure 4.7. 1024 Gaussian blur with support size = 5: blur (left), restored by DD (right)

Table 4.5. matlabpool: the parallel efficiency (E) tests for the boat1024 image
with different subdomain size with tolerance ε = 10−4, σ = 10−4, λ = 0.1 and
β = 10−5, δ = 5.

type d k PSNR Time E type d k PSNR Time E

8 167 30.4235 1180.52 0.725 8 166 31.4299 1145.45 0.7175
16 174 30.2730 561.74 0.8 16 167 31.4690 515.74 0.85

Gaussian 32 173 30.4489 424.37 0.85 motion 32 171 31.4479 466.58 0.79
64 174 30.4364 482.82 0.85 64 174 31.3900 462.32 0.855
128 176 30.4092 639.38 0.8 128 173 31.3835 613.06 0.8325
256 177 30.5370 882.09 0.625 256 172 31.4625 846.09 0.7175
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