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THE LINEARIZED SPLIT BREGMAN ITERATIVE ALGORITHM
AND ITS CONVERGENCE ANALYSIS FOR ROBUST

TOMOGRAPHIC IMAGE RECONSTRUCTION †

CHONG CHEN ‡ AND GUOLIANG XU §

Abstract. The split Bregman iteration method has been successfully applied to solve a variety of
specially ℓ1-regularized problems, such as image denoising, image segmentation, magnetic resonance
imaging reconstruction, and so forth. There exists, however, a large-scale and unstructured linear
system demanding to be resolved in each iteration for the robust image reconstruction problem
in sparse-view X-ray computed tomography. Motivated by this, we propose a new linearized split
Bregman iterative algorithm, which is constructed by means of the thoughts of split and linearized
Bregman methods. Remarkably, our method can be generalized to efficiently resolve the robust
compressed sensing problem, as well as the total variation-ℓ1 and ℓ1-ℓ1 minimization problems. We
also give a rigorous proof for the convergence of the proposed method under appropriate condition,
in which the convergence does not depend on the selection of the regularization parameter. Along
with the proof idea, we further prove the convergence of the gradient-descent-based split Bregman
iteration, yet which relies on the value of the regularization parameter. Hence, our proposed method
is more flexible and stable than the split Bregman method. Experimental results demonstrate that
our algorithm has better performance in terms of reconstruction quality, effectiveness and robustness,
compared with some other frequently used methods for the robust image reconstruction in sparse-
view X-ray computed tomography.
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1. Introduction
In modern commercial X-ray computed tomography (CT) imaging, the projec-

tions are generally detected at a large number (more than 300) of views from the
patient for high-quality image reconstruction by currently analytic-based algorithms,
for instance, filtered back-projection (FBP) method [17, 39, 37, 24]. However, data
collection from so large number of views, meaning high doses of radiation, likely result
in radiation-induced cancer with high probability [16]. It is of practical interest and
meaningful, therefore, to develop imaging techniques that are capable of producing
high-quality reconstructions from sparse-view projection data. In recent years, the
optimization- or variation-based image reconstruction models and the algorithms of
interest have been investigated heavily owing to their ability to allow reducing scan-
ning views while maintaining or improving reconstructed image quality for robust
image reconstruction problem arising in sparse-view CT [13, 35, 31, 10, 24, 34]. The
rationale behind these studies is considerably similar to compressed sensing (CS),
though the non-random projection matrix of CT scanner may well be not satisfying
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the restricted isometry property which is required to accurately restore the original
signal via the CS theory [14, 4, 5, 3].

In a general formulation of the CT reconstruction problem, the reconstructed
image can be denoted as a weighted sum of the shifted basis functions (usually pix-
el/voxel basis) [12]. The discrete projection data g∈RM is related to these weights
via a linear equations as follows

Pf ≈g or g=Pf+ε, (1.1)

where f ∈RN is represented as the vector of weights, P ∈RM×N is the projection
matrix for modeling the X-ray transform and ε is the interference component. Due to
the data inconsistencies, introduced by the approximation to the coefficient elements
and the interference of the noise, error, and some other factors, (1.1) is often used
to simulate the CT-imaging process. In addition, we should note that both f and P
depend on the selection of the shifted basis functions to expand the image function and
the way to discrete the the X-ray transform. In this article, we choose the pixel/voxel
functions as the basis, and use the intersection length of the X ray with the image
pixel/voxel as the elements of the projection matrix.

Considering the image reconstruction in the sparse-view X-ray CT, we definitely
suffer from the severely under-sampling for M<N , in many cases, M≪N . In such a
case, the study on the optimization- or variation-based image reconstruction models
and the induced algorithms has begun to be in fashion. It is well-known that the iter-
ative tomographic reconstruction algorithms, for solving the optimizing or variational
models, are able to yield high-quality images from the limited data. That is because
they can take into account the prior knowledge about the solution to regularize the
under-determined problem. Often in medical and other applications, the tomograph-
ic images are relatively piecewise-constant over the extended volumes, for instance
within an organ. Rapid variation in the image may only occur at boundaries of in-
ternal structures. Thus an image itself might not be sparse, yet the image formed by
taking the magnitude of its gradient can be approximately sparse [33, 35, 31]. Hence,
the total variation (TV) based optimizing or variational image reconstruction models
were introduced (See [12, 9, 13, 35, 42, 10] and the references therein).

In this paper, we mainly concern the following model for such a problem

min
f

J(f), subject to ∥Pf−g∥2≤σ,

where J(f)=∥∇f∥1 denotes the TV semi-norm. The above constrained optimization
is equivalent to the following unconstrained optimization problem

min
f

J(f)+
λ

2
∥Pf−g∥22.

A brief proof on their equivalency can be found in Section 3. To solve above re-
construction models efficiently, a variety of algorithms have been proposed, such as
gradient descend method [33, 29], improved gradient descend method [38], adaptive-
steepest-descent projection onto convex sets method [35, 36], split Bregman iteration
[22], gradient-flow-based finite element methods [42, 10, 11], etc.

Although the split Bregman iteration is extremely efficient, it just can fast solve
the problems that have certain special structure in matrix P , for instance, TV de-
noising and segmentation (P is an identity matrix), magnetic resonance imaging re-
construction (P comprises a subset of the rows of the Fourier transform matrix), and
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so forth [22, 21]. For CT image reconstruction, the projection matrix P has not been
figured out the particular structure so as to fast deal with the inversion matrix of
PTP in each iteration. The details about this problem is given in Section 2.

In this work, we present a novel algorithm, called linearized split Bregman (LSB)
iteration, that can be well suited to efficiently solving the sparse-view CT image
reconstruction problem. Notably, the idea we provide can be generalized to solve
a variety of optimization or variation models, which are considerably significant in
practice and are hard to resolve by the existing methods. For instance, the robust CS
problem

min
f

∥f∥1+
λ

2
∥Pf−g∥22,

where P is a sensing matrix [6]. Recently, there exist many efficiently algorithms
to solve this model, for instance, fixed-point continuation [23], alternative direction
method (ADM) (See [19, 20, 44] and the references therein). Furthermore, our pro-
posed method is able to solve the models that use the ℓ1-norm as the measure of
fidelity [27, 8, 18, 41], such as the TV-ℓ1 minimization problem

min
f

∥∇f∥1+
λ

2
∥Pf−g∥1,

and the ℓ1-ℓ1 minimization problem

min
f

∥f∥1+
λ

2
∥Pf−g∥1.

We also give a rigorous proof on the convergence of the proposed method under
appropriate condition for each extension, in which the convergence does not depend
on the selection of the regularization parameter.

As a previous work, Cai et al. proved the convergence of the uncon-
strained/constrained split Bregman iterations in [2], while their proofs are merely
concerning the iterative schemes based on solving each subproblem exactly. Admit-
tedly, it is almost impossible to precisely or directly resolve the general large-scale
linear system in related subproblem. It means that the practically iterative algorithm-
s of interest must be applied, for instance, the gradient descent method, conjugate
gradient method, Gauss-Siedel method, etc. Along with our proof idea, we further
prove the convergence of the gradient-decent-based split Bregman (GDSB) method.

The rest of the paper is organized as follows. In Section 2, we first briefly review
the classical Bregman methods and point out the existing difficulties of them in solving
the robust CT image reconstruction problem. We then propose an LSB iterative
algorithm and generalize it to solve a variety of ℓ1-optimization problems in Section
3. In Section 4, we give the proof for the convergence of the proposed method, and
further analyze the convergence of the GDSB iteration. In Section 5, we apply our
algorithm to the robust image reconstruction in sparse-view X-ray CT imaging and
make several numerical comparisons with some other methods. Finally, we conclude
this paper in Section 6.

2. Classical Bregman iteration algorithms
In this section, we first consider the general optimization problem of a convex

function on the n-dimensional (nD) Euclidean space Rn. Let J :Rn→R be a convex
function. A vector p∈Rn is called a subgradient of J at a point v∈Rn if

J(u)−J(v)−⟨p,u−v⟩≥0, ∀u∈Rn. (2.1)
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The subdifferential ∂J(v) is the set of all subgradients of J at v [32]. The Bregman
distance associated with J at v is defined as

Dq
J (u,v)=J(u)−J(v)−⟨q,u−v⟩, (2.2)

where p is a subgradient of J at v, namely, p∈∂J(v). Obviously, Dq
J(u,v)≥0, and

Dq
J(u,v)≥Dq

J (w,v) for any w∈Rn on the line segment between u and v. Note that
Dq

J(u,v) ̸=Dq
J (v,u) in general, namely, the symmetry is not met so that Dq

J(u,v) is
not a distance in the usual sense [1, 28].

2.1. Bregman iteration algorithm
Considering the following optimization problem

min
f

J(f), subject to Pf =g, (2.3)

where if J(f)=∥∇f∥1, this model is often applied to image deblurring and tomo-
graphic image reconstruction; if J(f)=∥f∥1, that is frequently solved in basis pursuit
problem or compressed sensing [28, 40, 22, 46]. Notice that the observational data g
are not corrupted by noise in (2.3).

The Bregman iteration was first applied in image processing in [28], and then used
to solve the ℓ1-minimization problem with application to compressed sensing, which is
equivalent to the well-known augmented Lagrangian method [46, 20]. We summarize
the Bregman iteration for solving the minimization problem (2.3) as follows

fk+1=argmin
f

Dqk

J (f,fk)+
λ

2
∥Pf−g∥22, (2.4)

qk+1= qk−λPT (Pfk+1−g). (2.5)

As shown in [46, 25], the above seemingly complicated Bregman iteration is e-
quivalent to the following simplified iterative scheme

fk+1=argmin
f

J(f)+
λ

2
∥Pf−bk∥22, (2.6)

bk+1= bk+g−Pfk+1. (2.7)

The main advantages of the Bregman iteration include that the convergent rate
is very fast when it is employed to certain types of optimization problems and the
value of the penalty factor λ is not required to tend to infinity during computation.

2.2. Split Bregman iteration algorithm
When J(f)=∥∇f∥1, the unconstrained optimization subproblem (2.6) has no

closed-form solution and is difficult to solve since the cost function contains the ℓ1
and ℓ2 portions simultaneously. To overcome this problem, Goldstein and Osher pre-
sented an algorithm called split Bregman method to solve this optimization problem
effectively [22]. The key idea of their algorithm is that they decoupled the ℓ1 and
ℓ2 terms of the cost function in (2.6). The splitting thought is also proposed in [40]
with application to ℓ1-regularized deconvolution. Hence, they considered the following
minimization problem

min
f,d

∥d∥1+
λ

2
∥Pf−g∥22, subject to d=∇f. (2.8)
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In what follows the split Bregman iteration algorithm to solve above problem is pre-
sented.

(fk+1,dk+1)=argmin
f,d

∥d∥1+
λ

2
∥Pf−g∥22+

µ

2
∥d−∇f−sk∥22, (2.9)

sk+1=sk+∇fk+1−dk+1. (2.10)

Note that the subproblem (2.9) should be precisely resolved. Hence a lot of inner
iterations are needed. The concrete implementation, with the inner iteration number
fixed to be 1, is given as the following Algorithm 2.1.
Algorithm 2.1. Split Bregman Iteration Algorithm
Step 1. Given initial points f0=0, d0=0, s0=0, 0<ϵ≪1 and an integer K>0. Set

k :=0.
Step 2. Update d:

dk+1=argmin
d

∥d∥1+
µ

2
∥d−∇fk−sk∥22. (2.11)

Step 3. Update f :

fk+1=argmin
f

λ

2
∥Pf−g∥22+

µ

2
∥dk+1−∇f−sk∥22. (2.12)

Compute rk=∥fk+1−fk∥2. If rk<ϵ or k+1>K, stop the iteration, other-
wise go to the next step.

Step 4. Update s:

sk+1=sk+∇fk+1−dk+1.

Step 5. Set k :=k+1, return to Step 2.
Notably, the Step 2 and Step 3 should be precisely resolved to guarantee the

convergence of the algorithm (See [2]). Fortunately, one can explicitly figure out the
minimum dk+1 in Step 2 by using the generalized shrinkage formula as follows

dk+1=max(hk− 1

µ
,0)

∇fk+sk

hk
, (2.13)

where

hk=∥∇fk+sk∥2. (2.14)

For the purpose of solving the minimization problem in Step 3 of Algorithm 2.1, one
can easily obtain the first-order optimality condition

(λPTP +µ∇T∇)fk+1=λPT g+µ∇T (dk+1−sk). (2.15)

Obviously, to solve fk+1, the inversion of λPTP +µ∇T∇ needs to be computed, or a
number of iterations require to be implemented for solving the large-scale linear sys-
tem. Thus this step is time-consuming and one can hardly obtain the exact solution.
In practice, we are able to apply the gradient descend, conjugate gradient or Newton-
type methods, etc. to solve (2.12). For instance, by gradient descend method, we
have

fk+1=fk−α(λPT (Pfk−g)+µ∇T (∇fk−dk+1+sk)). (2.16)
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In addition, (2.11) is equivalent to

qk+1
d +µ(dk+1−∇fk−sk)=0, qk+1

d ∈∂J(dk+1). (2.17)

Hence, summarizing the GDSB iterative algorithm leads to
qk+1
d +µ(dk+1−∇fk−sk)=0,

fk+1=fk−α(λPT (Pfk−g)+µ∇T (∇fk−dk+1+sk)),

sk+1=sk+∇fk+1−dk+1.

(2.18)

2.3. Linearized Bregman iteration algorithm
The linearized Bregman iteration algorithm is used for solving the image deblur-

ring or CS problem

min
f

J(f), subject to Pf =g, (2.19)

where J(f)=∥∇f∥1 or ∥f∥1, the matrix P is a projection operator or sensing matrix,
and g is a known measurements without noise, respectively [46, 30]. The procedure
of linearized Bregman iteration consists of

fk+1=argmin
f

Dqk

J (f,fk)+
λ

2α
∥f−(fk−αPT (Pfk−g))∥22, (2.20)

qk+1= qk+
λ

α
(fk+1−(fk−αPT (Pfk−g))), (2.21)

where α is positive and can be thought as the step size in each iteration.
In order to solve (2.20), we give its equivalent form as follows

fk+1=argmin
f

J(f)+
λ

2α
∥f−(fk+α(

1

λ
qk−PT (Pfk−g))∥22. (2.22)

Supposing J(f)=∥f∥1, we can easily use the shrinkage operator to obtain the explicit
solution of (2.22) as (2.11). However, assuming J(f)=∥∇f∥1, as a result of the special
formulation and nondifferential of ∥∇f∥1, we cannot obtain the closed formula of
fk+1 from (2.22). Hence, the linearized Bregman iteration has limitations to solve
the problems appeared in tomographic image reconstruction.

3. Linearized split Bregman iteration algorithm
In practice, the observational data are often contaminated by noise. Therefore,

the general model for treating problems appeared in robust tomographic image re-
construction is presented as the following constrained optimization problem

min
f

J(f), subject to ∥Pf−g∥2≤σ, (3.1)

or the equivalently unconstrained optimization problem

min
f

J(f)+
λ

2
∥Pf−g∥22, (3.2)

where J(f)=∥∇f∥1, σ is the standard deviation of the noise in observational data
g which is blind in usual situation, the positive value λ stands for the regularization
parameter which is utilized to trade off the fitting term and the regularized term.
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Actually, the aforementioned two optimization problems are equivalent under
appropriate condition. This result can be immediately given by the following lemma.
Lemma 3.1. Let λ≥0 and fλ the minimum of (3.2). Then fλ is also the minimum
of (3.1) with σ=∥Pfλ−g∥2.

Proof. Since fλ is the minimum of model (3.2), for any f satisfying the constraint
in model (3.1) we have

J(fλ)+
λ

2
∥Pfλ−g∥22≤J(f)+

λ

2
∥Pf−g∥22. (3.3)

Then by rearranging the terms in (3.3), we obtain

J(fλ)+
λ

2
(∥Pfλ−g∥22−∥Pf−g∥22)≤J(f). (3.4)

Using

σ=∥Pfλ−g∥2, (3.5)

and σ≥∥Pf−g∥2, we obtain the following formula immediately

J(fλ)≤J(f). (3.6)

Hence, fλ is also the minimum of optimization problem (3.1).
Assume that the optimization problems (3.1) and (3.2) both have unique solu-

tions, by Lemma 3.1, we can know that if σ=∥Pfλ−g∥2 is satisfied, the optimization
problems (3.1) and (3.2) are equivalent. Moreover, because the algorithm solving for
the constrained optimization problem (3.1) is more difficult than that for the uncon-
strained optimization problem (3.2), so we can solve (3.2) in stead of (3.1). However,
the parameter λ is impossible to figure out since the inverse function of (3.5) is incal-
culable. An important problem is how to choose the proper regularization parameter
λ in an effective way. Here the methods of how to choose regularization parameter is
out of the scope of our discussion. The attention of the remaining part in this section
is concentrated on developing efficient algorithm for solving (3.2).

Motivated by the limitations of split Bregman method to solve the ℓ1-regularized
problem arising in tomographic image reconstruction, we present an innovative com-
putational method called LSB algorithm.

Rather than considering the minimization problem (3.2) with J(f)=∥∇f∥1, we
treat the other optimization problem

min
f,d,b

∥d∥1+
λ

2
∥b∥22, subject to d=∇f, b=Pf−g. (3.7)

Problem (3.7) is clearly equivalent to problem (3.2). Here is the distinction between
our method and the classical split Bregman method. In addition, the natural idea of
splitting two terms has been found in [15, 45].

For simplicity, let

E(f,d,b)=∥d∥1+
λ

2
∥b∥22. (3.8)

Clearly, E(f,d,b) is separable with respect to d, b and f . Let

E(f,d,b)=E1(f)+E2(d)+E3(b), (3.9)

Dq
E(f,f̃ ,d,d̃,b, b̃)=D

qf
E1

(f,f̃)+Dqd
E2

(d,d̃)+Dqb
E3

(b,b̃), (3.10)
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where q=(qf ,qd,qb) and

E1(f)≡0, E2(d)=∥d∥1, E3(b)=
λ

2
∥b∥22. (3.11)

Let F k=(fk,dk,bk) and qk=(qkf ,q
k
d ,q

k
b ). In order to penalize the equality constraints,

we solve the optimization problem (3.2) by the Bregman iterative algorithm as follows.

F k+1=argmin
f,d,b

Dqk

E (f,fk,d,dk,b,bk)+
β1

2
∥d−∇f∥22+

β2

2
∥b−(Pf−g)∥22, (3.12)

qk+1
f = qkf −β1∇T (∇fk+1−dk+1)−β2P

T (Pfk+1−g−bk+1), (3.13)

qk+1
d = qkd −β1(d

k+1−∇fk+1), (3.14)

qk+1
b = qkb −β2(b

k+1−Pfk+1+g). (3.15)

To simplify the formulation (3.12), we have to consider fk+1, dk+1 and bk+1 respec-
tively. By (3.7)–(3.12), we compute

bk+1=argmin
b

D
qkb
E3

(b,bk)+
β2

2
∥b−Pfk+g∥22

=
qkb +β2Pfk−β2g

λ+β2
. (3.16)

Also according to (3.7)–(3.12), we obtain

dk+1=argmin
d

D
qkd
E2

(d,dk)+
β1

2
∥d−∇fk∥22

=max(hk− 1

β1
,0)

∇fk+
qkd
β1

hk
, (3.17)

where hk=∥∇fk+
qkd
β1
∥2.

We now focus on the update of fk+1 and qk+1
f . The subproblems (3.12) and (3.13)

for solving fk+1 and qk+1
f are equivalent to the following Bregman iteration.

fk+1=argmin
f

D
qkf
E1

(f,fk)+
β1

2
∥dk+1−∇f∥22+

β2

2
∥bk+1−(Pf−g)∥22, (3.18)

qk+1
f = qkf −β1∇T (∇fk+1−dk+1)−β2P

T (Pfk+1−g−bk+1). (3.19)

As a result of E1(f)≡0 by (3.11), we obtain ∂E1(f)≡0 so that

qkf ≡0. (3.20)

Hence through simple calculations, it is easy to find that the minimization problem
(3.18) and (3.19) are equivalent. Namely, they are both introducing

(β1∇T∇+β2P
TP )fk+1=β1∇T dk+1+β2P

T bk+1+β2P
T g. (3.21)

In general, the matrix β1∇T∇+β2P
TP is considerably large-scale and dense in to-

mographic image reconstruction. It is, hence, very time-consuming and likely to be
unstable to compute fk+1 by (3.21). In order to solve the subproblems for updating
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fk+1 and qk+1
f efficiently, we can convert the Bregman iteration (3.18)–(3.19) into the

linearized Bregman iteration as follows.

fk+1=argmin
f

[
D

qkf
E1

(f,fk)+
β1

2α1
∥f−(fk−α1∇T (∇fk−dk+1))∥22

+
β2

2α2
∥f−(fk−α2P

T (Pfk−g−bk+1))∥22
]
, (3.22)

qk+1
f = qkf −

β1

α1
(fk+1−(fk−α1∇T (∇fk−dk+1)))

−β2

α2
(fk+1−(fk−α2P

T (Pfk−g−bk+1))). (3.23)

Using the properties of E1(f) and qkf in (3.11) and (3.20), we can combine (3.22)–

(3.23) into just one step of updating fk+1 as

fk+1=fk− β1∇T (∇fk−dk+1)+β2P
T (Pfk−g−bk+1)

ω1+ω2
, (3.24)

where ω1=
β1

α1
and ω2=

β2

α2
. Note that the parameters ω1 and ω2 of interest can be

combined into one parameter.
To sum up, in what follows we conclude our LSB iteration for Robust Tomographic

Image Reconstruction with J(f)=∥∇f∥1.
Algorithm 3.1. LSB Iterative Algorithm
Step 1. Given initial points f0=0, d0=0, b0=0, q0=0, 0<ϵ≪1 and an integer

K>0. Set k :=0.
Step 2. Update b:

bk+1=
qkb +β2Pfk−β2g

λ+β2
.

Step 3. Update d:

dk+1=max(hk− 1

β1
,0)

∇fk+
qkd
β1

hk
,

where hk=∥∇fk+
qkd
β1
∥2.

Step 4. Update f :

fk+1=fk− β1∇T (∇fk−dk+1)+β2P
T (Pfk−g−bk+1)

ω1+ω2
.

Compute rk=∥fk+1−fk∥2. If rk<ϵ or k+1>K, stop the iteration, other-
wise go to the next step.

Step 5. Update qd:

qk+1
d = qkd −β1(d

k+1−∇fk+1).

Step 6. Update qb:

qk+1
b = qkb −β2(b

k+1−Pfk+1+g).

Step 7. Set k :=k+1, return to Step 2.
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Remark 3.2. We can also directly apply linearized Bregman iteration to (3.12)–
(3.15) with replacing the implementation just to (3.18)–(3.19) and then obtain the
following iterative scheme

F k+1=argmin
f,d,b

[
Dqk

E (f,fk,d,dk,b,bk)+
β1

2
∥d−∇fk∥22+

β2

2
∥b−(Pfk−g)∥22

+
β1

2α1
∥f−(fk+α1(∆fk−divdk))∥22

+
β2

2α2
∥f−(fk−α2P

T (Pfk−g−bk))∥22
]
,

qk+1
f = qkf −

β1

α1
(fk+1−(fk+α1(∆fk−divdk)))

−β2

α2
(fk+1−(fk−α2P

T (Pfk−g−bk))),

qk+1
d = qkd −β1(d

k+1−∇fk),

qk+1
b = qkb −β2(b

k+1−Pfk+g).

It is easy to find that the updating of bk+1 and dk+1 is the same as that in Algorithm
3.1, nevertheless, the updating of fk+1, qk+1

d and qk+1
b is deferent. Since the latest

bk+1 and dk+1 are not used in updating fk+1, and the latest fk+1 is not used to update
qk+1
d and qk+1

b .

Remark 3.3. We cannot directly apply the similarly linearized idea onto (2.12) in
split Bregman iteration, i.e., Algorithm 2.1. Since the term ∥dk+1−∇f−sk∥22 can be
linearized with respect to f . Nevertheless, the term ∥Pf−g∥22 cannot be linearized,
for which is not concerning an equality constraint as the above term. This is why we
split two terms in our algorithm.

Remark 3.4. The linearization and fixed point techniques have been successfully
applied to various inverse problems, including robust CS problem, nuclear-norm min-
imization, matrix rank minimization, constrained linear least-squares problem and so
forth [23, 26, 7, 43]. We further generalize these techniques to deal with more com-
plicated problems. The proposed method can simultaneously address two split terms
in the robust tomographic image reconstruction, which is the main difference with the
above cases.

Remark 3.5. The computational cost of Algorithm 3.1 comes mainly from Step 3,
in particular, the matrix-vector multiplication PTPf . Suppose that the dimension
of f is N(=nc, c=2 or 3), the number of projection views is m and each view has
O(nc−1) bins. Correspondingly, the projection matrix P is sparse and each row of P
has O(n) non-zero components at most. Hence the computational complexity of Pf is
O(mnc). Furthermore, the computational cost of PTPf is O(mnc). To summarize,
the computational complexity of each iteration of Algorithm 3.1 is O(mnc).

3.1. Equivalent form

The LSB iteration can be reformulated into an equivalent form. As in Algorithm
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3.1, let q0=0, then by (3.13–3.15) we immediately have

qk+1
f =−

k+1∑
i=1

(β1∇T (∇f i−di)+β2P
T (Pf i−g−bi)), (3.25)

qk+1
d =−β1

k+1∑
i=1

(di−∇f i), (3.26)

qk+1
b =−β2

k+1∑
i=1

(bi−Pf i+g). (3.27)

For ease of description, let

sk=
k∑

i=1

(di−∇f i), (3.28)

tk=
k∑

i=1

(bi−Pf i+g), (3.29)

then we obtain

qkf =β1∇T sk+β2P
T tk, (3.30)

qkd =−β1s
k, (3.31)

qkb =−β2t
k. (3.32)

Because E1(f)≡0, we have qkf ≡0, namely,

β1∇T sk+β2P
T tk≡0. (3.33)

Replacing the qkf , q
k
d , q

k
b in (3.12) by (3.30)–(3.32), the equivalent form of (3.12)–(3.15)

can be written as

F k+1=argmin
f,d,b

E1(f)+E2(d)+E3(b)

+
β1

2
∥d−∇f+sk∥22+

β2

2
∥b−(Pf−g)+ tk∥22, (3.34)

sk+1=sk+(dk+1−∇fk+1), (3.35)

tk+1= tk+(bk+1−Pfk+1+g). (3.36)

To solve the optimization problem (3.34), we can apply alternatively the strategy as
follows. Like the procedure of our algorithm, we first update b:

bk+1=argmin
b

E3(b)+
β2

2
∥b−(Pfk−g)+ tk∥22

=
−β2t

k+β2Pfk−β2g

λ+β2
. (3.37)

Then, update d:

dk+1=argmin
d

E2(d)+
β1

2
∥d−∇fk+sk∥22

=max(hk− 1

β1
,0)

∇fk−sk

hk
, (3.38)
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where hk=∥∇fk−sk∥2. Finally, update f by solving the following minimization
subproblem

fk+1=argmin
f

β1

2
∥dk+1−∇f+sk∥22+

β2

2
∥bk+1−(Pf−g)+ tk∥22, (3.39)

for E1(f)≡0. We also use the linearization as our algorithm, namely,

fk+1=argmin
f

[ β1

2α1
∥f−(fk−α1∇T (∇fk−dk+1−sk))∥22

+
β2

2α2
∥f−(fk−α2P

T (Pfk−g−bk+1− tk))∥22
]
. (3.40)

Hence by the fact (3.33), in what follows we obtain the updating of f

fk+1=fk− β1∇T (∇fk−dk+1)+β2P
T (Pfk−g−bk+1)

ω1+ω2
. (3.41)

Therefore, we convert our algorithm into the following equivalent form.

bk+1= −β2t
k+β2Pfk−β2g

λ+β2
,

dk+1=max(hk− 1
β1
,0)∇fk−sk

hk ,

fk+1=fk− ∇T (∇fk−dk+1)+β2P
T (Pfk−g−bk+1)

ω1+ω2
,

sk+1=sk+(dk+1−∇fk+1),

tk+1= tk+(bk+1−Pfk+1+g).

(3.42)

3.2. Extensions
On the other hand, we will consider the issue of robust CS with J(f)=∥f∥1, in the

constrained minimization problem (3.1). By Lemma 3.1, we can treat the following
equivalent problem

min
f,b

∥f∥1+
λ

2
∥b∥22, subject to b=Pf−g. (3.43)

For simplicity, let

Ê(f,b)=∥f∥1+
λ

2
∥b∥22. (3.44)

Also, the Ê(f,b) is separable with respect to f and b. Let

Ê(f,b)= Ê1(f)+ Ê2(b), (3.45)

Dq̂k

Ê
(f,fk,b,bk)=D

q̂kf

Ê1
(f,fk)+D

q̂kb
Ê2

(b,bk), (3.46)

where q̂k=(q̂kf , q̂
k
b ), q̂

k
f ∈∂Ê1(f

k), q̂kb ∈∂Ê2(b
k) and

Ê1(f)=∥f∥1, Ê2(b)=
λ

2
∥b∥22. (3.47)
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By Bregman iteration, (3.43) can be resolved by

min
f,b

Dq̂k

Ê
(f,fk,b,bk)+

β

2
∥b−(Pf−g)∥22, (3.48)

q̂k+1
f = q̂kf −βPT (Pfk+1−g−bk+1), (3.49)

q̂k+1
b = q̂kb −β(bk+1−Pfk+1+g). (3.50)

In order to efficiently resolve the subproblem involving f , we solve the optimization
problem by our LSB iterative algorithm as follows.
Algorithm 3.2. LSB Iterative Algorithm for Robust Compressed Sensing
Step 1. Given initial points f0=0, b0=0, q̂0=0, 0<ϵ≪1 and an integer K>0. Set

k :=0.
Step 2. Update b:

bk+1=
q̂kb +βPfk−βg

λ+β
. (3.51)

Step 3. Update f :

fk+1=argmin
f

D
q̂kf

Ê1
(f,fk)+

β

2α
∥f−(fk−αPT (Pfk−g−bk+1))∥22. (3.52)

Compute rk=∥fk+1−fk∥2. If rk<ϵ or k+1>K, stop the iteration, other-
wise go to the next step.

Step 4. Update q̂f :

q̂k+1
f = q̂kf −

β

α
(fk+1−(fk−αPT (Pfk−g−bk+1))). (3.53)

Step 5. Update q̂d:

q̂k+1
b = q̂kb −β(bk+1−Pfk+1+g). (3.54)

Step 6. Set k :=k+1, return to Step 2.
Note that the minimization problem (3.52) in Step 3 of Algorithm 3.2 is easy to

solve by the shrinkage or soft-threshold operator. As in Subsection 3.1, we can obtain
the equivalent form of Algorithm 3.2 as follows.

q̂k+1
b +β(bk+1−Pfk+g− tk)=0,

q̂k+1
f + β

α (f
k+1−fk+αPT (Pfk−g−bk+1+ tk))=0,

tk+1= tk+(Pfk+1−g−bk+1),

(3.55)

where tk=−
∑k

i=1(b
i−Pf i+g)= q̂kb /β and q̂kf =−βPT tk.

We can further extend our proposed method to effectively solve the following
problem

min
f

J(f), subject to ∥Pf−g∥1≤σ, (3.56)

where J(f)=∥∇f∥1 or ∥f∥1. Model (3.56) can be used to solve the problem in
robust tomographic image reconstruction or robust compressed sensing, respectively.
The corresponding unconstrained optimization problem is

min
f

J(f)+λ∥Pf−g∥1, (3.57)
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which can be asserted by the following lemma.
Lemma 3.6. Let λ≥0 and fλ the minimum of (3.57). Thus fλ is also the minimum
of (3.56) with σ=∥Pfλ−g∥1.

Proof. The proof is the same as that of Lemma 3.1.
If J(f)=∥f∥1, (3.56) is an ℓ1-ℓ1 problem and equivalent to

min
f,b

∥f∥1+λ∥b∥1, subject to b=Pf−g. (3.58)

Redefining Ê2(b)=λ∥b∥1, we can resolve (3.58) along with the thought of Algorithm
3.2, where the difference is just the updating of b. Here we need to use the shrinkage
operator to update b. The equivalent iterative scheme is the same as (3.55).

On the other hand, if J(f)=∥∇f∥1, (3.56) is a TV-ℓ1 problem, and equivalent to

min
f,b,d

∥d∥1+λ∥b∥1, subject to d=∇f, b=Pf−g. (3.59)

Assume E3(b)=λ∥b∥1. Besides the first step of updating b by the shrinkage operator,
the following steps are the same as those in Algorithm 3.1. The equivalent iterative
scheme is the same as (4.1) in the next section.

4. Convergence analysis
In this section, we study the convergence of the proposed algorithms as applied

to the robust tomographic image reconstruction and the other extensional cases. In
addition, the convergence analysis of the GDSB method will be involved.

4.1. Convergence of the linearized split Bregman iterative algorithm

In this subsection, we give the convergence analysis of the LSB iterative algorithm
for the robust tomographic image reconstruction and the other extensional cases. It
is well-known that if the convergence of the equivalent form is proved, then we obtain
the convergence of the originally iterative algorithm. Hence we first consider the
convergence of the iterative scheme in (3.42). The proof idea is inspired by [2].

Admittedly, the first and second formulas of (3.42) can be rewritten as

qk+1
b +β2(b

k+1−(Pfk−g)+ tk)=0, qk+1
b ∈∂E3(b

k+1),

qk+1
d +β1(d

k+1−∇fk+sk)=0, qk+1
d ∈∂E2(d

k+1).

Then (3.42) can be translated into

qk+1
b +β2(b

k+1−(Pfk−g)+ tk)=0,

qk+1
d +β1(d

k+1−∇fk+sk)=0,

fk+1=fk− β1∇T (∇fk−dk+1)+β2P
T (Pfk−g−bk+1)

ω1+ω2
,

sk+1=sk+(dk+1−∇fk+1),

tk+1= tk+(bk+1−Pfk+1+g).

(4.1)

The following theorem gives the convergence of the LSB iteration under the ap-
propriate condition.
Theorem 4.1. Let J(f)=∥∇f∥1. Suppose that there exists a unique solution f∗

of (3.2), and β1>0, β2>0, α>0, I−(αβ1∇T∇+αβ2P
TP ) is positive semi-definite



C. CHEN AND G. XU 15

where I is an identity operator. Then we have the convergence results for the iterative
scheme (4.1), namely,

lim
k→+∞

(∥∇fk∥1+
λ

2
∥Pfk−g∥22)=∥∇f∗∥1+

λ

2
∥Pf∗−g∥22, (4.2)

and

lim
k→+∞

∥fk−f∗∥2=0, (4.3)

where α=1/(ω1+ω2).
Proof. By the assumption that f∗ is the unique solution of (3.2), we have the

following first-order optimality condition

∇T q∗d+PT q∗b =0, (4.4)

where q∗d ∈∂E2(d
∗) with d∗=∇f∗ and q∗b ∈∂E3(b

∗) with b∗=Pf∗−g.

Then we introduce s∗=− q∗d
β1

and t∗=− q∗b
β2
. Obviously,

β1∇T s∗+β2P
T t∗=0. (4.5)

Next it is also easy to obtain the following equations

q∗b +β2(b
∗−(Pf∗−g)+ t∗)=0,

q∗d+β1(d
∗−∇f∗+s∗)=0,

f∗=f∗− β1∇T (∇f∗−d∗)+β2P
T (Pf∗−g−b∗)

ω1+ω2
,

s∗=s∗+(d∗−∇f∗),

t∗= t∗+(b∗−Pf∗+g).

(4.6)

Let

fk
e =fk−f∗, tke = tk− t∗, ske =sk−s∗,

dke =dk−d∗, qkde
= qkd −q∗d,

bke = bk−b∗, qkbe = qkb −q∗b .

Subtracting the third equation of (4.6) from the third equation of (4.1), and then
multiplying by (fk+1

e −fk
e ) on the two sides of the result, we obtain

−∥fk+1
e −fk

e ∥22+αβ1∥∇fk+1
e −∇fk

e ∥22+αβ2∥Pfk+1
e −Pfk

e ∥22
=αβ1⟨∇fk+1

e −dk+1
e ,∇fk+1

e −∇fk
e ⟩+αβ2⟨Pfk+1

e −bk+1
e ,Pfk+1

e −Pfk
e ⟩, (4.7)

and then multiplying by (fk+1
e +fk

e ) on the two sides of the same result, we have

−∥fk+1
e ∥22+∥fk

e ∥22+αβ1(∥∇fk+1
e ∥22−∥∇fk

e ∥22)+αβ2(∥Pfk+1
e ∥22−∥Pfk

e ∥22)
=αβ1⟨∇fk+1

e −dk+1
e ,∇fk+1

e +∇fk
e ⟩+αβ2⟨Pfk+1

e −bk+1
e ,Pfk+1

e +Pfk
e ⟩. (4.8)

Adding (4.7) to (4.8) leads to

1

2α
(∥Afk

e ∥22−∥Afk+1
e ∥22−∥A(fk+1

e −fk
e )∥22)

=β1∥∇fk+1
e ∥22+β2∥Pfk+1

e ∥22−β1⟨dk+1
e ,∇fk+1

e ⟩−β2⟨bk+1
e ,Pfk+1

e ⟩,(4.9)
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where A=
√

I−(αβ1∇T∇+αβ2PTP ). By the positive semi-definite assumption of
I−(αβ1∇T∇+αβ2P

TP ), we know that A is well defined and also positive semi-
definite.

Then, subtracting the first equation of (4.6) from the first equation of (4.1), and
then multiplying by bk+1

e on the two sides of the result, we obtain

⟨qk+1
be

,bk+1
e ⟩+β2∥bk+1

e ∥22−β2⟨Pfk
e ,b

k+1
e ⟩+β2⟨tke ,bk+1

e ⟩=0. (4.10)

Similarly,

⟨qk+1
de

,dk+1
e ⟩+β1∥dk+1

e ∥22−β1⟨∇fk
e ,d

k+1
e ⟩+β1⟨ske ,dk+1

e ⟩=0. (4.11)

From the left hands of (4.10) and (4.11) plus the right hand of (4.9), we have

1

2α
(∥Afk

e ∥22−∥Afk+1
e ∥22−∥A(fk+1

e −fk
e )∥22)

= ⟨qk+1
be

,bk+1
e ⟩+⟨qk+1

de
,dk+1

e ⟩
+β1(∥∇fk+1

e ∥22+∥dk+1
e ∥22−⟨∇fk+1

e +∇fk
e ,d

k+1
e ⟩+⟨ske ,dk+1

e ⟩)
+β2(∥Pfk+1

e ∥22+∥bk+1
e ∥22−⟨Pfk+1

e +Pfk
e ,b

k+1
e ⟩+⟨tke ,bk+1

e ⟩).(4.12)

Subtracting the fourth equation of (4.6) from the fourth equation of (4.1), we have

sk+1
e =ske +dk+1

e −∇fk+1
e , (4.13)

then squaring the both sides of (4.13) and rearranging the terms, we get

⟨ske ,dk+1
e ⟩= 1

2
(∥sk+1

e ∥22−∥ske∥22−∥dk+1
e −∇fk+1

e ∥22)+⟨ske ,∇fk+1
e ⟩. (4.14)

Similarly, for the fifth equations of (4.1) and (4.6), we have

⟨tke ,bk+1
e ⟩= 1

2
(∥tk+1

e ∥22−∥tke∥22−∥bk+1
e −Pfk+1

e ∥22)+⟨tke ,Pfk+1
e ⟩. (4.15)

For the facts of (3.33) and (4.5), we have

β1∇T ske +β2P
T tke =0. (4.16)

In (4.12), we can rewrite

∥∇fk+1
e ∥22+∥dk+1

e ∥22−⟨∇fk+1
e +∇fk

e ,d
k+1
e ⟩

=
1

2
(∥∇fk+1

e −dk+1
e ∥22+∥∇fk

e −dk+1
e ∥22+∥∇fk+1

e ∥22−∥∇fk
e ∥22),(4.17)

∥Pfk+1
e ∥22+∥bk+1

e ∥22−⟨Pfk+1
e +Pfk

e ,b
k+1
e ⟩

=
1

2
(∥Pfk+1

e −bk+1
e ∥22+∥Pfk

e −bk+1
e ∥22+∥Pfk+1

e ∥22−∥Pfk
e ∥22). (4.18)

Substituting (4.14)–(4.18) into (4.12), we obtain the following equation

1

2α
(∥Afk

e ∥22−∥Afk+1
e ∥22)+

β1

2
(∥ske∥22−∥sk+1

e ∥22)+
β2

2
(∥tke∥22−∥tk+1

e ∥22)

=
1

2α
∥A(fk+1

e −fk
e )∥22+⟨qk+1

be
,bk+1

e ⟩+⟨qk+1
de

,dk+1
e ⟩

+
β1

2
(∥∇fk

e −dk+1
e ∥22+∥∇fk+1

e ∥22−∥∇fk
e ∥22)

+
β2

2
(∥Pfk

e −bk+1
e ∥22+∥Pfk+1

e ∥22−∥Pfk
e ∥22). (4.19)
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Summing (4.19) from k=0 to K, we have

1

2α

K∑
k=0

∥A(fk+1
e −fk

e )∥22+
K∑

k=0

⟨qk+1
be

,bk+1
e ⟩+

K∑
k=0

⟨qk+1
de

,dk+1
e ⟩

+
β1

2

K∑
k=0

∥∇fk
e −dk+1

e ∥22+
β2

2

K∑
k=0

∥Pfk
e −bk+1

e ∥22+
β1

2
∥∇fK+1

e ∥22

+
β2

2
∥PfK+1

e ∥22+
1

2α
∥AfK+1

e ∥22+
β1

2
∥sK+1

e ∥22+
β2

2
∥tK+1

e ∥22

=
1

2α
∥Af0

e ∥22+
β1

2
∥s0e∥22+

β2

2
∥t0e∥22+

β1

2
∥∇f0

e ∥22+
β2

2
∥Pf0

e ∥22<C, (4.20)

where K is an arbitrary positive integer and C is a positive constant.
Since for any convex function J , the Bregman distance (2.2) is nonnegative. Then

the following formula is satisfied

Dp
J(u,v)+Dq

J(v,u)= ⟨q−p,u−v⟩≥0, ∀p∈∂J(v),∀q∈∂J(u). (4.21)

Hence, by (4.21), we get

D
q∗d
E2

(dk,d∗)+D
qkd
E2

(d∗,dk)= ⟨qkd −q∗d,d
k−d∗⟩= ⟨qkde

,dke⟩≥0, (4.22)

for ∀q∗d ∈∂E2(d
∗),∀qkd ∈∂E2(d

k). Similarly,

D
q∗b
E3

(bk,b∗)+D
qkb
E3

(b∗,bk)= ⟨qkb −q∗b ,b
k−b∗⟩= ⟨qkbe ,b

k
e⟩≥0, (4.23)

for ∀q∗b ∈∂E3(b
∗),∀qkb ∈∂E3(b

k).
From (4.20), (4.22) and (4.23), we have

K∑
k=0

⟨qk+1
be

,bk+1
e ⟩<C, ∀K>0, (4.24)

K∑
k=0

⟨qk+1
de

,dk+1
e ⟩<C, ∀K>0. (4.25)

According to (4.22)–(4.25), we obtain

lim
k→+∞

D
q∗d
E2

(dk,d∗)= lim
k→+∞

(E2(d
k)−J2(d

∗)−⟨q∗d,dk−d∗⟩)=0, (4.26)

lim
k→+∞

D
q∗b
E3

(bk,b∗)= lim
k→+∞

(E3(b
k)−J3(b

∗)−⟨q∗b ,bk−b∗⟩)=0. (4.27)

Applying (4.20), and β1>0, β2>0, we easily get

K∑
k=0

∥∇fk
e −dk+1

e ∥22<C, ∀K>0, (4.28)

K∑
k=0

∥Pfk
e −bk+1

e ∥22<C, ∀K>0. (4.29)
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Therefore,

lim
k→+∞

∥∇fk
e −dk+1

e ∥22=0, (4.30)

lim
k→+∞

∥Pfk
e −bk+1

e ∥22=0. (4.31)

By the known relations of d∗=∇f∗ and b∗=Pf∗−g, using (4.30) and (4.31), the
following formulas are satisfied

lim
k→+∞

∥∇fk−dk+1∥22=0, (4.32)

lim
k→+∞

∥Pfk−g−bk+1∥22=0. (4.33)

As a result of the continuity of E2 and E3, by (4.26), (4.27), (4.32) and (4.33), we
have

lim
k→+∞

(E2(∇fk)−E2(∇f∗)−⟨q∗d,∇(fk−f∗)⟩)=0, (4.34)

lim
k→+∞

(E3(Pfk−g)−E3(Pf∗−g)−⟨q∗b ,P (fk−f∗)⟩)=0. (4.35)

Applying (4.4), then (4.34) plus (4.35) leads to

lim
k→+∞

(E2(∇fk)+E3(Pfk−g)−E2(∇f∗)−E3(Pf∗−g))=0,

in other words,

lim
k→+∞

(∥∇fk∥1+
λ

2
∥Pfk−g∥22)=∥∇f∗∥1+

λ

2
∥Pf∗−g∥22.

Hence, (4.2) is proved.
Now, we prove (4.3) by contradiction. If (4.3) is false, there exists a subsequence

{fki} such that ∥fki −f∗∥2>ε, ∀ki>0, for certain small positive number ε. Let
f̃ki be the intersection of the sphere {f :∥f−f∗∥2=ε} and the line segment from f∗

to fki . Then there is only a t∈ (0,1) such that f̃ki = tf∗+(1− t)fki on the above

sphere. Let J0(f)=∥∇f∥1+ λ
2 ∥Pf−g∥22, and f̂ =argminf{J0(f) :∥f−f∗∥2=ε}. As

J0 is convex and f∗ is a unique solution of (3.2), hence,

J0(f
∗)<J0(f̂)≤J0(f̃

ki)=J0(tf
∗+(1− t)fki)≤ tJ0(f

∗)+(1− t)J0(f
ki)<J0(f

ki).
(4.36)

Taking the limit of (4.36) leads to

J0(f
∗)<J0(f̂)≤ lim

k→+∞
J0(f

ki)=J0(f
∗). (4.37)

Hence, the contradiction is yielded, that is to say, (4.3) is proved.
Remark 4.2. It is easy to verify that the updating order of bk+1, dk+1 and fk+1

of Algorithm 3.1 can be changed into any other combinational order, which has no
bearing on the convergence of the algorithm.
Theorem 4.3. Let J(f)=∥f∥1. Suppose that there exists a unique solution f∗ of
(3.2), and α>0, β>0, I−αPTP is positive semi-definite. Then we have the following
convergence results for the iterative scheme (3.55)

lim
k→+∞

(∥fk∥1+
λ

2
∥Pfk−g∥22)=∥f∗∥1+

λ

2
∥Pf∗−g∥22, (4.38)
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and

lim
k→+∞

∥fk−f∗∥2=0. (4.39)

Proof. Let

b∗=Pf∗−g, βt∗= q̂∗b , βPT t∗=−q̂∗f .

Hence,

PT q̂∗b + q̂∗f =0. (4.40)

Then there exist the following equations
q̂∗b +β(b∗−(Pf∗−g)− t∗)=0,

q̂∗f +
β
α (f

∗−f∗+αPT (Pf∗−g−b∗+ t∗))=0,

t∗= t∗+(Pf∗−g−b∗).

(4.41)

Taking the same operations for the second equations of (3.55) and (4.41) as those in
Theorem 4.1, we obtain

β

2α
(∥Âfk

e ∥22−∥Âfk+1
e ∥22−∥Â(fk+1

e −fk
e )∥22)

= ⟨q̂k+1
fe

,fk+1
e ⟩+β∥Pfk+1

e ∥22−β⟨bk+1
e − tke ,Pfk+1

e ⟩, (4.42)

where Â=
√
I−αPTP and Â is positive semi-definite.

Subtracting the first equation of (4.41) from the first equation of (3.55), and then
multiplying by bk+1

e on the two sides of the above result, we have

⟨q̂k+1
be

,bk+1
e ⟩+β∥bk+1

e ∥22−β⟨Pfk
e ,b

k+1
e ⟩−β⟨tke ,bk+1

e ⟩=0. (4.43)

The third equation of (3.55) minus the third equation of (4.41) is

tk+1
e = tke +Pfk+1

e −bk+1
e , (4.44)

then squaring the both sides of (4.44) and rearranging the terms, we obtain that

⟨tke ,Pfk+1
e −bk+1

e ⟩= 1

2
(∥tk+1

e ∥22−∥tke∥22−∥Pfk+1
e −bk+1

e ∥22). (4.45)

By (4.42), (4.43) and (4.45), we have

K∑
k=1

⟨q̂k+1
fe

,fk+1
e ⟩+

K∑
k=1

⟨q̂k+1
be

,bk+1
e ⟩+ β

2

K∑
k=1

∥Pfk
e −bk+1

e ∥22+
β

2
∥PfK+1

e ∥2

+
β

2
∥tK+1

e ∥22+
β

2α

K∑
k=1

∥Â(fk+1
e −fk

e )∥22+
β

2α
∥ÂfK+1

e ∥22

=
β

2α
∥Âf0

e ∥22+
β

2
∥Pf0

e ∥22+
β

2
∥t0e∥22<C. (4.46)
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As the derivation of Theorem 4.1, we obtain

lim
k→+∞

D
q̂∗f

Ê1
(fk,f∗)= lim

k→+∞
(Ê1(f

k)− Ê1(f
∗)−⟨q̂∗f ,fk−f∗⟩)=0, (4.47)

lim
k→+∞

D
q̂∗b
Ê2

(bk,b∗)= lim
k→+∞

(Ê2(b
k)−Ê2(b

∗)−⟨q̂∗b ,bk−b∗⟩)=0. (4.48)

By (4.46) and b∗=Pf∗−g, we get

lim
k→+∞

∥Pfk−g−bk+1∥2=0. (4.49)

Then combining (4.48) and (4.49) gives

lim
k→+∞

(Ê2(Pfk−g)−Ê2(Pf∗−g)−⟨q̂∗b ,Pfk−Pf∗⟩)=0. (4.50)

Utilizing (4.40), (4.47) plus (4.50) leads to (4.38).
Relation (4.39) can be proved by the method in the proof of Theorem 4.1.

Theorem 4.4. Let J(f)=∥∇f∥1. Suppose that there exists a unique solution f∗ of
(3.57), and α1>0, α2>0, β1>0, β2>0, I−(αβ1∇T∇+αβ2P

TP ) is positive semi-
definite. Then in what follows we have the convergence results for the iterative scheme
(4.1), namely,

lim
k→+∞

(∥∇fk∥1+λ∥Pfk−g∥1)=∥∇f∗∥1+λ∥Pf∗−g∥1, (4.51)

and

lim
k→+∞

∥fk−f∗∥2=0, (4.52)

where α=1/(ω1+ω2).
Proof. The proof procedure is the same as that of Theorem 4.1.

Theorem 4.5. Let J(f)=∥f∥1. Suppose that there exists a unique solution f∗

of (3.57), and α>0, β>0, I−αPTP is positive semi-definite. Then we have the
following results for the iterative scheme (3.55)

lim
k→+∞

(∥fk∥1+λ∥Pfk−g∥1)=∥f∗∥1+λ∥Pf∗−g∥1, (4.53)

and

lim
k→+∞

∥fk−f∗∥2=0. (4.54)

Proof. The proof of Theorem 4.3 can be used directly here.

4.2. Convergence of the gradient-descent-based split Bregman itera-
tion

In this subsection, we provide the convergence analysis of the GDSB algorithm
for robust tomographic image reconstruction. In [2], the authors presented a con-
vergence on ideal unconstrained/constrainied split Bregman methods with updating
fk+1 accurately. In practice, the accurate update is impossible to attain since one
cannot solve a general large-scale linear system exactly and frequently turns to certain
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iterative method. Here we recall the practical unconstrained split Bregman method
in Subsection 2.2 as follows.

qk+1
d +µ(dk+1−∇fk−sk)=0,

fk+1=fk−α(λPT (Pfk−g)+µ∇T (∇fk−dk+1+sk)),

sk+1=sk+∇fk+1−dk+1.

(4.55)

Theorem 4.6. Suppose that there exists a unique solution f∗ of (3.2), and α>0, λ>
0, µ>0, I−(αµ∇T∇+αλPTP ) is positive semi-definite. Then we have the following
convergence results for the iterative scheme (4.55)

lim
k→+∞

(∥∇fk∥1+
λ

2
∥Pfk−g∥22)=∥∇f∗∥1+

λ

2
∥Pf∗−g∥22. (4.56)

In particular,

lim
k→+∞

∥∇fk∥1=∥∇f∗∥1, (4.57)

lim
k→+∞

∥Pfk−g∥2=∥Pf∗−g∥2. (4.58)

Moreover,

lim
k→+∞

∥fk−f∗∥2=0. (4.59)

Proof. By the assumption that f∗ is the unique solution of (3.2), we have the
following first-order optimality condition

∇T q∗d+λPT (Pf∗−g)=0, (4.60)

where q∗d ∈∂E2(d
∗) with d∗=∇f∗. Let s∗= q∗d/µ. Hence, we have
q∗d+µ(d∗−∇f∗−s∗)=0,

f∗=f∗−α(λPT (Pf∗−g)+µ∇T (∇f∗−d∗+s∗)),

s∗=s∗+∇f∗−d∗.

(4.61)

Taking the same operations for the second equations of (4.55) and (4.61) as those in
the proof of Theorem 4.1, we obtain

1

2α
(∥Bfk

e ∥22−∥Bfk+1
e ∥22−∥B(fk+1

e −fk
e )∥22)

=µ∥∇fk+1
e ∥22+λ∥Pfk+1

e ∥22−µ⟨dk+1
e −ske ,∇fk+1

e ⟩, (4.62)

where B=
√
I−(αµ∇T∇+αλPTP ) and B is positive semi-definite by assumption.

Subtracting the first equation of (4.61) from the first equation of (4.55), and then
multiplying by dk+1

e on the two sides of the above result, we have

⟨qk+1
de

,dk+1
e ⟩+µ∥dk+1

e ∥22−µ⟨∇fk
e ,d

k+1
e ⟩−µ⟨ske ,dk+1

e ⟩=0. (4.63)

Adding the left-hand side of (4.63) onto the right-hand side of (4.62), we get

1

2α
(∥Bfk

e ∥22−∥Bfk+1
e ∥22−∥B(fk+1

e −fk
e )∥22)

=µ∥∇fk+1
e ∥22+λ∥Pfk+1

e ∥22+⟨qk+1
de

,dk+1
e ⟩+µ∥dk+1

e ∥22
−µ⟨∇fk+1

e +∇fk
e ,d

k+1
e ⟩+µ⟨ske ,∇fk+1

e −dk+1
e ⟩. (4.64)
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Subtracting the third equation of (4.61) from the third equation of (4.55), we have

sk+1
e =ske +∇fk+1

e −dk+1
e . (4.65)

Then squaring the both sides of (4.65) and rearranging the terms, we obtain

⟨ske ,∇fk+1
e −dk+1

e ⟩= 1

2
(∥sk+1

e ∥22−∥ske∥22−∥∇fk+1
e −dk+1

e ∥22). (4.66)

The terms in (4.64)

∥∇fk+1
e ∥22+∥dk+1

e ∥22−⟨∇fk+1
e +∇fk

e ,d
k+1
e ⟩

=
1

2
(∥∇fk+1

e −dk+1
e ∥22+∥∇fk

e −dk+1
e ∥22+∥∇fk+1

e ∥22−∥∇fk
e ∥22). (4.67)

Substituting (4.66) and (4.67) into (4.64) and then summing from k=0 to K leads to

K∑
k=1

⟨qk+1
de

,dk+1
e ⟩+ µ

2

K∑
k=1

∥∇fk
e −dk+1

e ∥22+λ
K∑

k=1

∥Pfk+1
e ∥2

+
µ

2
∥∇fK+1

e ∥22+
µ

2
∥sK+1

e ∥22+
1

2α

K∑
k=1

∥B(fk+1
e −fk

e )∥22+
1

2α
∥BfK+1

e ∥22

=
1

2α
∥Bf0

e ∥22+
µ

2
∥∇f0

e ∥22+
µ

2
∥s0e∥22<C.

Hence,

lim
k→+∞

∥Pfk
e ∥2=0. (4.68)

Then

lim
k→+∞

∥Pfk−g∥2=∥Pf∗−g∥2. (4.69)

Namely, (4.58) is proved. By (4.68), we can also get

lim
k→+∞

⟨PT (Pf∗−g),fk−f∗⟩=0. (4.70)

As the proof of Theorem 4.1, we have

lim
k→+∞

(∥∇fk∥1−∥∇f∗∥−⟨∇T q∗d,f
k−f∗⟩)=0. (4.71)

By (4.60), combining (4.70) and (4.71) concludes (4.57).
Next, the proof of (4.59) is similar as that in the proof of Theorem 4.1. So here

we omit it.
Remark 4.7. The constrained split Bregman method in [2] can be treated as the
practical unconstrained case in this article. Also, the convergence of the practical
constrained split Bregman method can be easily obtained via the technique in the proofs
of Theorems 4.1 and 4.6.
Remark 4.8. Comparing Theorem 4.1 with Theorem 4.6, we conclude that the con-
vergence of the proposed method is independent of the selection of the regularization
parameter λ, whereas the convergence of the GDSB iteration depends. That is to
say, the parameter λ in our method has merely effect on the reconstructed quality;
In Theorem 4.6, however, not only does the parameter λ have bearings on the recon-
structed quality, but also on the convergence of the iterative scheme. Therefore, the
proposed algorithm should be more flexible and robust than the practical split Bregman
iteration.
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5. Numerical experiments

In this section, we present several numerical experiments using synthetic and
real data to illustrate that our LSB method can produce desirable image reconstruc-
tion results for the data detected from uniformly and sparsely distributed views and
contaminated by the additive Gaussian white noise. Suppose that the projection-
s from one view are uniformly spacing. Actually, this hypothesis is reasonable for
the real tomography. All the involved algorithms other than FBP are programmed
in C/C++ language and all the implementations ran on a desktop with Intel Xeon
X5550 2.67GHz CPU, Fedora 11 OS and GCC 4.3.2 compiler, and no any parallel
computing was conducted.

5.1. Comparisons with the FBP and the gradient-flow-based semi-
implicit finite element method

We first investigate the performance of our algorithm compared with the classical
FBP and the gradient-flow-based semi-implicit finite element method (SFEM). For
this numerical simulation, the test image is taken to be a synthetic Shepp-Logan
phantom as shown in Fig. 5.1, which is discretized on a 257×257 pixel grid within
the gray interval [0,1]. This phantom is often utilized in evaluating tomographic
reconstruction algorithms. A set of uniformly spacing 257 parallel projections from
each sampled view is obtained. The totally used angles is 60, namely, projecting once
every 3◦. Obviously, the sampling is severely insufficient. Then the additive Gaussian
white noise is added onto the projection data from each view resulting in a set of
corrupted data with signal-to-noise (SNR) (=24.7dB), where the SNR in decibels is
defined to be

SNR=10log10

∑Nv

nv=1

∑Mp

np=1

∣∣Pfnv,np −Pf
∣∣2∑Nv

nv=1

∑Mp

np=1 |εnv,np −ε|2
, (5.1)

where Nv is the number of total angles, Mp is the number of total projections from
each angle, Pf is the average of totally noiseless measured data, ε is the added noise
and ε is the average of ε.

By Theorem 4.1, we recall that just the parameters β1, β2 and α have effect on the
convergence of our algorithm, and λ has impact on the reconstructed quality. Under
this guidance, selecting these parameters is, hence, relatively easy. Here we choose the
parameters λ=0.1, β1=0.06, β2=3×10−5, α=10/3 in our algorithm. The iteration
number is 1500. In addition, different filters (such as Ramp, Shepp-Logan, Hamming
and Hann) and different interpolation schemes (such as nearest, linear, cubic spline)
can be used in FBP. However, the performance of FBP has no evident improvement
when we choose different combinations in terms of filters and interpolations. Without
loss of generality, we only display in Fig. 5.1 the image reconstructed by FBP using
a ramp filter and linear interpolating technique. In SFEM, we choose the modified
parameter ϵ=0.001, the temporal step size τ =0.01 and regularization parameter
λ=2. The iteration number is 50 for the SFEM.

As shown in Fig. 5.1, in terms of reconstruction quality, the LSB and the SFEM
are much better than FBP; yet the SFEM is a little more blurry on edges than the
LSB, which can be clearly figured out by Fig. 5.2. From the view of computational
time, the new method is totally 73.8s for 1500 iterations, and the SFEM is about
1831s for 50 iterations, where the iterations are almost the least demanded steps for
the two methods.
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Fig. 5.1. The SNR = 24.7dB. From left to right, reconstructed images by FBP, the proposed

method, SFEM, and the original image with gray scale over [0.0, 1.0].

Fig. 5.2. The cross sections of the images, as shown in Fig. 5.1, along the centers are plotted in

the horizontal direction. The solid lines denote the cross sections of the original image. The dashed

line and the dash-dotted line denote the cross sections of the reconstructed images by the SFEM (left)

and the LSB (right), respectively.

5.2. Comparison with the gradient-descent-based split Bregman itera-
tion

As described in Subsection 2.2, we can directly apply the GDSB method to resolve
the concerned optimization model (3.2). What is more, in this paper we have proved
that the GDSB method is convergent under the proper condition. So why we do not
use it but turn to propose the LSB method? The theoretical reason can be refer to
Remark 4.8. The numerical aspect will be presented in this subsection.

Here we consider a real CT image within the gray interval [0,1] as show in Fig.
5.3. The size of this image is also 257×257. We obtain uniformly spacing 257 parallel
projections along each sampled view. The totally used views is 60. Then the additive
Gaussian white noise is added onto the projection data along each view, which leads
to a set of corrupted data with SNR=29.6dB.

As the size of the original image and the projection views are the same as the above
experiment, so the parameters β1, β2 and α can be selected as before to guarantee
the LSB iterative convergence, namely, 0.06, 3×10−5 and 10/3, respectively. The
regularization parameter λ is chosen as 1.0. In addition, we select the same λ as the
LSB method to assure good reconstructed quality in the GDSB method. According
to Theorems 4.1 and 4.6, to assure convergence of the GDSB method, we should
sufficiently reduce the step size α for the relatively large λ replacing the small β2 in
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the convergence condition. Here the α=2×10−6, µ=0.06. The rate of convergence
of the GDSB method is, therefore, slower than that of the LSB method, which can be
indicated by the decreasing amount of the objective energy as the iteration progressing
as shown in Fig. 5.3.

Fig. 5.3. The star dashed and circle dash-dotted lines denote the values of the objective energy of

the LSB and GDSB methods as the increase of the iteration number, respectively.

After 2000 iterations, the reconstructed images are shown in Fig. 5.4. It is easy
to figure out that the performance of the LSB method is much better than that
of the GDSB method. Remarkably, the latter introduces a lot of artifacts in the
background, and leads to the blurry result. We further select another λ=20 in both
methods. Then, the LSB method produces the pretty near image as λ=1, whereas
the GDSB method is not convergent.

Fig. 5.4. The SNR = 29.6dB. From left to right, reconstructed images by the GDSB method,

the LSB method with λ=1, the LSB method with λ=20, and the original image with gray scale over

[0.0, 1.0].

6. Conclusions
In this work, we have presented a novel linearized split Bregman iterative algo-

rithm which is constructed by means of the thoughts of split and linearized Bregman
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methods. We also have given the rigorous proof for the convergence of the proposed
method under appropriate condition, where the convergence does not depend on the
selection of the regularization parameter. Using the idea of the proof, we further
proved the convergence of the GDSB method, yet which relies on the value of regular-
ization parameter. In other words, our proposed method is more flexible and robust
than the GDSB method. Notably, our method can be generalized to efficiently resolve
the robust CS problem, as well as the TV-ℓ1 and ℓ1-ℓ1 minimization problems.

Finally, we have evaluated the performance of our algorithm in dealing with the
sparse-view X-ray CT reconstruction problem using the synthetic and real data. As
the results in these numerical comparisons, our algorithm yields high quality and
almost accurate tomographic reconstructions in the above difficult problem. The
numerical results presented in this paper also suggest that our algorithm greatly out-
performs the classical FBP method in the reconstructed quality. Also, our algorithm
possesses a bit better reconstructed performance and more effective than the earlier
proposed SFEM method. Moreover, based on the numerical experiments, we can fig-
ure out that our method has much faster convergent rate and better reconstructed
quality compared with the popular split Bregman method. Besides the advantages as
the split Bregman method, such as efficient to solve several special ℓ1 problems, easy
to program, simple to parallelize, saving memory, etc., our algorithm is more suitable
for dealing with the general ℓ1-regularized problems, for instance, the tomographic
image reconstruction, and so forth.
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