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Abstract. We propose fast Huygens sweeping methods for Schrödinger equations in the semi-
classical regime by incorporating short-time Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) propaga-
tors into Huygens’ principle. Even though the WKBJ solution is valid only for a short time pe-
riod due to the occurrence of caustics, Huygens’ principle allows us to construct the global-in-time
semi-classical solution. To improve the computational efficiency, we develop analytic approximation
formulas for the short-time WKBJ propagator by using the Taylor expansion in time. These analytic
formulas allow us to develop two classes of fast Huygens sweeping methods, among which one is posed
in the momentum space, and the other is posed in the position space, and both of these methods are
of computational complexity O(N logN) for each time step, where N is the total number of sampling
points in the d-dimensional position space. To further speed up these methods, we also incorporate
the soft-thresholding sparsification strategy into our new algorithms so that the computational cost
can be further reduced. The methodology can also be extended to nonlinear Schrödinger equations.
One, two, and three dimensional examples demonstrate the performance of the new algorithms.

Key words. fast Huygens sweeping method, eikonal equation, WKBJ, convolution, fast Fourier

transform, Schrödinger equation.

1. Introduction

Consider the Schrödinger equation for a particle with unity mass
(

i~
∂

∂t
−H

)

U ≡ i~Ut−V (x)U+
~
2

2
∆U =0, x∈Rd, t> t0, (1.1)

U(x,t0)=Ut0(x) (1.2)

where H=−~
2

2 ∆+V (x), the potential V is real and smooth, and ~≡h/2π with h a
small (scaled) Planck’s constant. When ~ is small, the wave function U(x,t) for the
Schrödinger equation is highly oscillatory, and it is very costly to apply direct methods
such as finite-difference methods to compute these wave functions as such methods
require very fine meshes to resolve oscillations generated by the equation. Therefore,
alternative methods such as asymptotic methods are sought to resolve these highly
oscillatory wave functions in the semi-classical regime, where semi-classical refers to an
asymptotic theory in which one part of a system is described quantum-mechanically
whereas the other, such as a particle trajectory, is treated classically. In this paper,
we propose novel methods, called fast Huygens sweeping methods, for solving the
Schrödinger equation in the semi-classical regime by incorporating the short-time
Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) propagator into Huygens’ principle.

To develop these new methods, we utilize the following WKBJ ansatz for the
quantum wave function,

U(x,t)≈A(x,t)exp

(

i τ(x,t)

~

)

, (1.3)

where A(x,t) is the amplitude function and τ(x,t) is the phase function. Applying this
ansatz to the Schrödinger equation and considering the leading order singularities, we
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2 Fast Huygens sweeping methods for Schrödinger

have the following eikonal equation for the phase function and the transport equation
for the amplitude function,

τt+V (x)+
1

2
|∇τ |2=0, (1.4)

At+∇τ ·∇A+
1

2
∆τA=0. (1.5)

The transport equation for the amplitude is weakly coupled to the eikonal equation in
the sense that one must first solve the eikonal equation to provide related coefficients
for the transport equation. Because the eikonal equation is a non-linear first-order
equation, in general there does not exist a global smooth (classical) solution for the
equation. The concept of viscosity solution singles out a unique Lipschitz continuous
solution for the eikonal equation among many possible generalized solutions. How-
ever, the gradient of the resulting viscosity solution for the eikonal equation can be
discontinuous at so-called kinks so that the needed eikonal-related coefficients in the
transport equation are not well-defined; consequently, the WKBJ ansatz (1.3) might
not be valid globally in time in terms of globally smooth eikonal and amplitude.

On the other hand, we do observe that under suitable initial conditions the eikonal
equation (1.4) always has a smooth solution for a short-time period, and this obser-
vation in turn implies that the WKBJ ansatz will be valid for a short-time period.
Therefore, the question is: “Can we obtain globally valid semi-classical solutions for
the Schrödinger equation by making use of the short-time valid WKBJ solutions?”
The answer lies in Huygens’ principle, which states that at each instant in time, each
point in a wave field acts as a source for radiating new waves, which interfere in such
a way as to create the wave field at a later time. Mathematically, such an interfer-
ence is achieved by an integration with respect to those source locations, and the
kernel of the integration is the Green function parameterized by these sources for the
Schrödinger equation. Then a natural question is: “how to compute the Green func-
tion for the Schrödinger equation?” We propose to utilize the short-time valid WKBJ
ansatz to construct short-time valid Green functions. Finally, by partitioning a large
time period into several short-time periods, Huygens’ principle allows us to sweep
through the global-in-time period to obtain a globally valid semi-classical solution for
the Schrödinger equation.

We develop novel approaches for computing semi-classical solutions by using this
new idea from different perspectives. At first, we can construct short-time valid ap-
proximate asymptotic Green functions either numerically or analytically by using the
Taylor expansion in time. Secondly, we can carry out interference integration either
in the position space or in the momentum space. These different perspectives lead to
at least four different implementations for constructing the semi-classical solution for
the Schrödinger equation. Naturally, analytic Green functions result in much more
efficient interference integration. Furthermore, interference integration carried out
in the momentum space can be speed up by using FFTs directly while interference
integration in the spatial domain can be speed up by FFT-based fast discrete convolu-
tions. Eventually, analytic Green functions plus FFT based interference integrations
lead to O(N logN) algorithms for each time step which eventually yield global-in-time
semi-classical solutions to the Schrödinger equation, where N is the total number of
sampling points of the wave field in the d-dimensional position space. Therefore, we
have named our new algorithms fast Huygens sweeping methods for the Schrödinger
equation in the semi-classical regime. To further speed up the proposed new algo-
rithms, we also incorporate recently developed sparse dynamics into our algorithms.
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We also extend our methodology to a nonlinear Schrödinger equation.

1.1. Related work Fast Huygens sweeping methods have been first proposed
in [18] for Helmholtz equations in inhomogeneous media in the high-frequency regime,
in which Huygens’ principle is characterized by the Kirchhoff-Huygens integral, and
the integration is carried out efficiently by constructing low-rank matrix approxima-
tions. We remark that the “sweeping” here has different meaning from that in the
“fast sweeping methods” for solving static Hamilton-Jacobi equations in the literature.

Our methodology for developing fast Huygens sweeping method for the
Schrödinger equation in the semi-classical regime is analogous to that for Helmholtz
equations in the high frequency regime in that both methods try to take care of
caustics automatically without identifying where caustics are, both appeal to Huy-
gens’ principle to obtain interference effects in wave fields, and both have very low-
computational complexity. Therefore, we use the identical name for the two methods.

In terms of treating caustics, a popular approach is the Gaussian beam summation
method [1, 26, 23, 13, 11, 9, 10, 31], and many efforts have been made to develop both
efficient Lagrangian and Eulerian Gaussian beam methods[16, 20, 30, 14, 15, 17, 24,
25]. The first Eulerian Gaussian beam method has been proposed in [16], which was
further developed in [14, 15, 17]. Efficient Lagrangian Gaussian beam methods based
on fast wavepacket transforms have been proposed in [24] for Schrödinger equations
and in [25] for wave equations. Convergence analysis of Gaussian beam summation
methods has been carried out in [5, 2] in different contexts. Although they can
treat caustics automatically, computationally Gaussian beam summation methods
have some shortcomings related to exponential growth of beam width and expensive
summation.

In terms of sparse dynamics for time-dependent PDEs, the general idea is to view
the PDE solution in a transformed domain, where the information of the solution
is encoded into coefficients corresponding to the transform basis. By choosing an
appropriate basis the critical information of the solution can be concentrated into
a few significant coefficients related to those crucial modes capturing the important
behavior of the solution. If that is the case, then we may carry out a thresholding
process to keep only those significant coefficients and throw away those insignificant
ones so that the overall behavior of the solution is captured and the computational
cost is reduced. In general, there are two approaches for carrying out the thresholding
process: hard thresholding and soft thresholding. Hard thresholding has been used in
Gaussian beam summations for Schrödinger equations [14, 15, 24] and wave equations
in [25], resulting in accurate and efficient summation methods. Soft thresholding has
been first used for time dependent PDEs in [27], and the resulting sparse dynamics
leads to efficient and accurate representations of computed numerical solutions in the
spectral domain.

Because the Schrödinger equation generates new scales during the evolution pro-
cess, the methodology of [27] cannot be applied here. On the other hand, we may
still replace the hard-thresholding process as used in [14, 15, 24, 25] with the soft-
thresholding in the evolution process; consequently, although we are using the soft-
thresholding strategy to sparsify the solution in the spectral (frequency/momentum)
space, our methodology is different from the one in [27]. Nevertheless, such sparsifi-
cation still results in significant speedup in the computation.

The rest of the paper is organized as follows. In Section 2, we summarize Huygens’
principle and incorporate the short-time WKBJ propagator into the superposition
principle. In Section 3, we develop fast Huygens sweeping methods to implement
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Huygens’ principle in both momentum and position spaces in the semi-classical regime
for linear and nonlinear Schrödinger equations. In Section 4, we show numerical
examples to demonstrate the efficiency and accuracy of the new algorithms.

2. Semi-classical Green’s Function and Huygens’ Principle

The Green function G(x,t;x0,t0) satisfies the following partial differential equa-
tion [28]

(

i~
∂

∂t
−H

)

G(x,t;x0,t0)= i~δ(x−x0)δ(t− t0), x∈R
d, t≥ t0, (2.1)

G(x,t;x0,t0)=0, x∈R
d, t< t0, (2.2)

where (x0,t0) are parameters, and the Hamiltonian operator H takes the form of

kinetic-plus-potential form: H=−~
2

2
∂2

∂x2 +V (x). By using Duhamel’s principle, the
above inhomogeneous formulation can be reduced to the following homogeneous initial
value problem:

(

i~
∂

∂t
−H

)

G(x,t;x0,t0)=0, x∈R
d, t> t0, (2.3)

lim
t→t+0

G(x,t;x0,t0)= δ(x−x0), x∈R
d, (2.4)

G(x,t;x0,t0)=0, x∈R
d, t< t0. (2.5)

Therefore, G(x,t;x0,t0) can be seen as the response at position x and time t due to
a point source at position x0 and time t0. According to Huygens’ principle, the wave
function U(x,t) for t> t0 for the Schrödinger equation can be written as

U(x,t)=

∫

Rd

G(x,t;x0,t0)U(x0,t0)dx0, t> t0, (2.6)

which formalizes the fact that the superposition of waves radiating from each point
of an old wave creates a new wave at a later time, and the Green function provides
appropriate weighting factors for the superposition. The above facts are well known
in quantum mechanics; see [28].

To utilize Huygens’ principle, we need to know the Green function, which requires
solving the initial value problem (2.3) for the Schrödinger equation. Since we are inter-
ested in semi-classical solutions for the Schrödinger equation, we propose to compute
the Green function asymptotically. It is well known that the δ-function admits the
following plane wave decomposition,

δ(x−x0)=

(

1

2π~

)d∫

Rd

e
i(x−x0)·ξ

~ dξ; (2.7)

namely, the initial condition for the Green’s function is actually a superposition of
plane waves. Hence to obtain needed ingredients in the asymptotic form of Green’s
functions, we will solve the following eikonal and transport equations:

τt+V (x)+
1

2
|∇τ |2=0, t> t0, (2.8)

τ(x,t0;ξ)=x ·ξ, (2.9)

At+∇τ ·∇A+
1

2
∆τA=0, t> t0, (2.10)

A(x,t0;ξ)=1, (2.11)
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where ξ∈Rd is a parameter, which can be viewed as a momentum variable as corre-
sponding to x as a position variable. According to the PDE theory on Hamilton-Jacobi
equation, the eikonal equation (2.8) has a unique smooth solution for a short period
of time; we denote this short period of time as [t0,t0+T ], where T >0 is a constant.

As a result, the eikonal τ(x,t;ξ) and the amplitude A(x,t;ξ) exist and are smooth
for t0≤ t≤ t0+T ; accordingly,

G̃(x,t;ξ)≡A(x,t;ξ)ei
τ(x,t;ξ)

~

is a valid asymptotic solution for the Schrödinger equation with the plane wave initial
condition,

(

i~
∂

∂t
−H

)

G̃(x,t;ξ)=0, x∈R
d, t≥ t0, (2.12)

G̃(x,t;ξ)= eix·ξ, x∈R
d. (2.13)

Next, to obtain the asymptotic Green function G (without confusion still denoted as
G), we assemble these computed ingredients into the following formula,

G(x,t;x0,t0)=

(

1

2π~

)d∫

Rd

A(x,t;ξ)e
i(τ(x,t;ξ)−x0·ξ)

~ dξ . (2.14)

It is easy to check that the so-defined G(x,t;x0,t0) satisfies the Schrödinger equation
asymptotically in the time period t0≤ t≤ t0+T and satisfies the corresponding point-
source initial condition.

With the asymptotic Green function at our disposal, we can propagate an arbi-
trary initial wave function U(x,t0) for a short period of time,

U(x,t)=

∫

Rd

G(x,t;x0,t0)U(x0,t0)dx0, t0<t≤ t0+T. (2.15)

Now since the Hamiltonian is time-independent, the Green function satisfies the fol-
lowing property,

G(x,t;x0,t0)=G(x,t1;x0,t2) if t− t0= t1− t2>0. (2.16)

This implies that the short-time-valid Green function can be repeatedly used to prop-
agate the wave function for long time,

U(x,t)=

∫

Rd

G(x,t;x0,tk)U(x0,tn)dx0, tk<t≤ tk+T, (2.17)

where tk= t0+k T for k=0,1,2, · · · . This way we may sweep through a long period of
time so that we may obtain global-in-time asymptotic solutions for the Schrödinger
equation.

The formulas (2.15) and (2.17) are formulated in the position space. We may also
obtain equivalent formulas posed in the momentum space,

U(x,t)=

∫

Rd

G(x,t;x0,t0)U(x0,t0)dx0

=

(

1

2π~

)d∫

Rd

∫

Rd

A(x,t;ξ)e
i(τ(x,t;ξ)−x0·ξ)

~ U(x0,t0)dξdx0

=

(

1

2π~

)d∫

Rd

A(x,t;ξ)e
iτ(x,t;ξ)

~

[
∫

Rd

U(x0,t0)e
−ix0·ξ

~ dx0

]

dξ

=

∫

Rd

G̃(x,t;ξ)Û(ξ,t0)dξ , (2.18)
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where

G̃(x,t;ξ)=A(x,t;ξ)e
iτ(x,t;ξ)

~ , (2.19)

Û(ξ,t0)=

(

1

2π~

)d∫

Rd

U(x0,t0)e
−ix0·ξ

~ dx0 . (2.20)

These equivalent formulations lead to different algorithms as we develop next.
We notice that if the initial condition U0(x,t0)∈S(Rd) (the Schwartz class), the am-
plitude function A(x,t;ξ)∈L∞, and the phase function τ(x,t;ξ) is real, then the in-
tegrals defined in (2.15) and (2.18) converge absolutely and define functions in L∞;
consequently, we may truncate the integral on R

d to be an integral on a bounded
domain. Thus to avoid unnecessary technicality we will make these assumptions in
the algorithmic development.

3. Fast Huygens Sweeping Methods: Algorithms

3.1. Straight-forward Implementation in the Position Space

We first consider the computational complexity of determining the solution
U(x,T ) using (2.15), and a straight-forward implementation involves a phase-space
integral which is expensive.

Let n be the number of computational mesh on each physical (x) and frequency
(ξ) dimension, m be the number of secondary sources (x′) in each dimension, and d
be the dimension of the problem. Let N =nd and M =md. A naive implementation
is as follows.

Algorithm 1 (Straight-forward implementation):
1. τ and A are discretized in the physical space (x) with O(nd) mesh points.
2. Since ∆t=O(∆x), the computational complexity for obtaining τ and A for each

initial condition (2.9) and (2.11) is O(nd+1).
3. Obtain τ(x,t;ξ) and A(x,t;ξ): There are ξ=O(nd) initial conditions. The total

number of operations is O(n2d+1).
4. Construct G in (2.14): we need O(nd) operations for each x (O(nd) in total)

and x′ (O(md) in total). The total number of operations is O(n2dmd).
5. Construct U in (2.15): we need O(md) operations for each x (O(nd) in total).

The total number of operations is O(ndmd).

Numerically, the eikonal equation and the amplitude equation can be solved effi-
ciently using any well-developed high order numerical methods like WENO5-TVDRK3
[21, 12] or Power-ENO [29]. So, to conclude, the total number of operations for pre-
processing (steps 1-4) is O(n2dmd)=O(n3d) if m=O(n). To compute U(x,kT ) for
each k=1,2,3, · · · we require extra O(n2d) operations (step 5). Concerning the storage
requirement, the algorithm requires declaring explicitly a matrix variable G which re-
quires O(ndmd)=O(n2d) bytes. Once we have constructed the variable, we can store
it in the order of x′ in the hard-drive. In the post-processing step when we construct
U , we only need to declare a variable of O(nd) corresponding to G associated to one
x0. For a typical two-dimensional computation, the preprocessing step requires O(n4)
operations, while each post-processing step takes extra O(n2) operations. This simple
calculation shows that the complexity of this straight-forward implementation is too
high which makes it impractical for three-dimensional computation.
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3.2. Improved Implementation in the Momentum Space

In the straight-forward implementation we discussed above, one has to construct
the matrix G according to (2.14) which is the most expensive part of the method in
terms of both computation and memory. Instead of performing this explicitly, we first
note that the integral (2.15) can be re-written in the form (2.18). In other words,
instead of formulating the problem by computing the propagator directly and then
performing the integral in x0, we can express the propagator in the frequency space
and compute the integral in the ξ-variable.

Since the formula (2.18) only involves an integral in the momentum space, it
provides us with an improved implementation. Because in the momentum space we
have the fast Fourier transform (FFT), one advantage of such an approach is that
it drops the computational complexity from O(n2d) to O(nd logn). We consider the
computational complexity of determining the solution U(x,T ). To use FFT, we take
n=m.

Algorithm 2 (Improved implementation in the momentum space):
1. τ and A are discretized in the x space with O(nd) mesh points.
2. Since ∆t=O(∆x), the computational complexity for obtaining τ and A for each

initial condition (2.9) and (2.11) is O(nd+1).
3. Obtain τ(x,t;ξ) and A(x,t;ξ): there are O(nd) initial conditions in terms of ξ.

The total number of operations is O(n2d+1).
4. Construct G̃ in (2.19): the total number of operations is O(n2d).
5. Construct Û in (2.20): the total number of operations is O(nd logn) if FFT is

used. Otherwise, O(n2d) operations are needed.
6. Construct U in (2.18): we need O(nd) operations for each x (O(nd) in total).

The total number of operations is O(n2d).

So, to conclude, this simple rearrangement of integration can drop the total num-
ber of operations for preprocessing (steps 1-4) from O(n3d) to O(n2d+1). To compute
U(x,kT ) for each k=1,2,3, · · · we require extra O(n2d) operations (steps 5-6).

Besides the computational efficiency, another advantage of such a formulation is in
the memory requirement of the overall algorithm. Since the integral in (2.18) is done
with respect to ξ, we can output G̃ to the memory right away for each individual ξ.
This implies that we require only O(nd) bytes for the variables A and τ , even though
G itself takes O(n2d) bytes.

3.3. Analytic Approximation to Eikonals and Amplitudes

Apparently, the most expensive part corresponds to the computation of eikonals
and amplitudes in carrying out Huygens’ principle asymptotically. We propose to use
analytic formulas to approximate eikonals and amplitudes. The idea is based on a
short-time Taylor expansion, and similar ideas have been used for eikonals only in
different contexts in [19, 8].

Assuming that ∆t is small, we can expand both amplitude and phase functions
using the Taylor series in ∆t,

A(x,∆t;ξ)=1+A1(x,ξ)∆t+A2(x,ξ)∆t2+O(∆t3),

τ(x,∆t;ξ)=x ·ξ+τ1(x,ξ)∆t+τ2(x,ξ)∆t2+O(∆t3) . (3.1)

Now, we plug in these expressions into (1.4) to (1.5) and collect the same order terms
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to obtain

A1(x,ξ)=0 , A2(x,ξ)=
1

4
∆V ;

τ1(x,ξ)=−V (x)− 1

2
|ξ|2 , τ2(x,ξ)=

1

2
∇V ·ξ .

Since these formulas are linked to the potential and the momentum directly, they
provide us with a set of analytic approximation formulas for eikonals and amplitudes.
With these at our disposal, we develop more efficient algorithms in Huygens’ super-
position in either the momentum or position space.

3.4. Taylor-Expansion Based Spectral Method in the Momentum

Space

Taking only the zeroth order term of A and the linear term of τ , (2.18) becomes

U(x,∆t)=

(

1

2π~

)d∫

Rd

G̃(x,ξ,∆t)Û(ξ,0)dξ

≃
(

1

2π~

)d∫

Rd

exp

[

i

~

{

x ·ξ−
[

V (x)+
1

2
|ξ|2

]

∆t

}]

Û(ξ,0)dξ

=

(

1

2π~

)d

exp

[

− i

~
V (x)∆t

]
∫

Rd

exp

[

i

~

(

x ·ξ−∆t

2
|ξ|2

)]

Û(ξ,0)dξ

=

(

1

2π~

)d

exp

[

− i

~
V (x)∆t

]
∫

Rd

exp

[

i

~
(x ·ξ)

]

exp

[

− i∆t

2~
|ξ|2

]

Û(ξ,0)dξ

≃ exp

[

− i

~
V (x)∆t

]

F−1

[

exp

(

− i∆t

2~
|ξ|2

)

F(U)

]

. (3.2)

Similarly, the higher order version is as follows:

U(x,∆t)≃
(

1+
∆t2

4
∆V

)

exp

[

− i

~
V (x)∆t

]

F−1

[

exp

(

− i∆t

2~
|ξ|2

)

F(U)

](

x+
∆t2

2
∇V

)

. (3.3)

Note that the lower order version of our scheme is essentially the same as the
first order time-splitting spectral scheme discussed in [22, 3]. However, there are at
least two differences between these two frameworks. The first is that our algorithm
is derived based on the approximation of the WKBJ propagator, while the first order
time-splitting spectral scheme was derived by applying the operator splitting to the
equation itself. Moreover, these methods are generalized to higher order by different
mechanisms. The first order time-splitting spectral scheme in [22, 3] was general-
ized to high-order by Strang’s splitting, while our approach extends to high-order by
incorporating more terms in the Taylor’s expansion.

3.5. Taylor-Expansion based Convolution Methods in the Position

Space

3.5.1. Low-order and High-order Methods
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Next, we use (2.15) in the position space. We approximate the asymptotic Green
function by

G(x,∆t;x′,0)≃
(

1

2π~

)d∫

Rd

e
i
~ [x·ξ−(V (x)+ 1

2 |ξ|
2)∆t−x′·ξ]dξ

=
1

(i2π~∆t)
d/2

exp

[−i

~
V (x)∆t

]

exp

[

i

2~∆t
|x−x′|2

]

. (3.4)

As a result, the integral (2.15) can be approximated by

U(x,∆t)

=

∫

Rd

G(x,∆t;x′,0)U(x′,0)dx′

≃ 1

(i2π~∆t)
d/2

exp

[−i

~
V (x)∆t

]
∫

Rd

exp

[

i

2~∆t
|x−x′|2

]

U(x′,0)dx′ . (3.5)

We can take advantage of the special structure to compute the convolution efficiently
using FFT. For simplicity we only discuss the numerical procedure in 1D and it is
straight-forward to extend the approach to higher dimensions.

We first approximate the integral on a uniform mesh xi using the Trapezoidal
rule, i.e.

U(xi,∆t)=
1

(i2π~∆t)
1/2

exp

[−i

~
V (xi)∆t

]

∆x
∑

j

exp

[

i

2~∆t
|xi−xj |2

]

U(xj ,0) .

(3.6)
In the form of matrix-vector multiplication, we denote the summation by a symmetric
Toeplitz matrix W with each entry given by Wi,j =exp

[

i
2~∆t |xi−xj |2

]

. To efficiently
compute the multiplication in (3.6), we extend the n-by-n symmetric Toeplitz matrix
into a 2n-by-2n cyclic Toeplitz matrix W̃ with the first row given by

W̃1=[W1,1 W1,2 · · · W1,n 0W1,n W1,n−1 · · · W1,3 W1,2] ,

and also extend the vector U=[U1 U2 · · · Un]
T to Ũ=[U1 U2 · · · Un 0 · · · 0]T ∈R

2n.
Since the cyclic matrix can be diagonalized by the discrete Fourier matrix, the product

WU is the first n elements of F−1
[

F(W̃1) ·F(U)
]

, where F is the Fourier transform

operator and F−1 denotes the inverse Fourier transform.
The computational complexity for obtaining U(xi,∆t) in (3.6) is summarized

here:

Algorithm 3 (Low-order Taylor-Expansion Based Convolution Method):
1. Set k=0 and compute the Fourier coefficients F(W̃1): the total number of

operations is O(nd logn).
2. k=k+1.
3. Compute F(Ũ) and determine the product F(W̃1) ·F(Ũ): the total number of

operations is O(nd logn).

4. Apply the inverse FFT F−1
[

F(W̃1) ·F(Ũ)
]

and keep only the first n elements:

the total number of operations is O(nd logn).
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5. Multiply the result by (i2π~∆t)
−d/2

exp
[

−i
~
V (xi)∆t

]

(∆x)d: the total number
of operations is O(nd).

6. Go to step 2 until tk= tf .

We can regard step 1 as an preprocessing step which takes only O(nd logn) oper-
ations. Considering the propagation step to obtain each U(x,k∆t) for k=1,2, · · · , we
find that this method drops the computational complexity from O(n2d) in Algorithm
2 to only O(nd logn).

Numerically, ∆t in this approximation cannot be arbitrarily chosen. To resolve
the oscillations in the coefficients of Wi,j , we require that the phase difference between
W1,n−1 and W1,n should be less than 2π, i.e. we require

[(n−1)2−(n−2)2]∆x2

2~∆t
=α2π

for some 0<α<1, which implies that

∆t=
(2n−3)∆x2

α4π~
=O

(

∆x

~

)

. (3.7)

Note that this constraint imposes a lower bound on the marching step size ∆t. For
a given ~ and ∆x, the method requires one to pick a large enough ∆t in order to
resolve the oscillations in Wi,j . Indeed the larger the value of ∆t, the faster we reach
the final solution. However, we have to control the error introduced in the Taylor
approximation at the same time. Therefore, we pick α close to, but smaller than, 1.

High-order generalization of our approach is possible as well. We can simply
add in more terms in the Taylor approximation. For example, we consider again the
one-dimensional case in detail. Taking the second order Taylor expansion for both
amplitude and phase functions, we have the Green function,

G(x,∆t;x′)≃
(

1

i2π~∆t

)1/2(

1+
∆t2

4
V ′′

)

exp

[−i

~
∆tV

]

exp

[

i

2~∆t

∣

∣

∣

∣

x−x′+
∆t2

2
V ′

∣

∣

∣

∣

2
]

(3.8)

=

(

1

i2π~∆t

)1/2(

1+
∆t2

4
V ′′

)

exp

[−i

~

(

∆tV −∆t3

8
|V ′|2

)]

exp

[

i

2~∆t
|x−x′|2

]

exp

[

i∆t

2~
(x−x′) ·V ′

]

(3.9)

Note, however, that the extra term (x−x′) ·V ′ destroys the Toeplitz property of the
n-by-n matrix W and we cannot directly apply the FFT to construct U according to
(2.15).

To develop efficient numerical algorithm for the convolution, we first introduce a
new variable

y=x+
∆t2

2
V ′(x)

so that the solution at ∆t is now given by

U(x,∆t)≃ 1√
i2π~∆t

(

1+
∆t2

4
V ′′

)

exp

[−i

~
V∆t

]
∫

x′

exp

[

i

2~∆t
|y−x′|2

]

U(x′,0)dx′ .
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Numerically, we first obtain the integral

I(y)=

∫

x′

exp

[

i

2~∆t
|y−x′|2

]

U(x′,0)dx′

on a uniform mesh y=yi using the same FFT algorithm as in the Algorithm 3. Next

we interpolate the solution onto the non-uniform mesh X∗
i =xi+

∆t2

2 V ′(xi) and then
finally we assign the solution

U(xi,∆t)=
1√

i2π~∆t

(

1+
∆t2

4
V ′′(xi)

)

exp

[−i

~
V (xi)∆t

]

I(X∗
i ) . (3.10)

To summarize, we have the following algorithm based on the high-order Taylor
expansion:

Algorithm 4 (High-order Taylor Expansion Based Convolution Method):
1. Set k=0 and compute the Fourier coefficients F(W̃1): the total number of

operations is O(nd logn).
2. k=k+1.
3. Compute F(Ũ) and determine the product F(W̃1) ·F(Ũ): the total number of

operations is O(nd logn).

4. Apply the inverse FFT F−1
[

F(W̃1) ·F(Ũ)
]

and keep the first n elements: the

total number of operations is O(nd logn).

5. Interpolate the solution on the mesh X∗
i =xi+

∆t2

2 ∇V (xi): the total number of
operations is O(n).

6. Multiply the result by (i2π~∆t)
−d/2

(

1+ ∆t2

4 ∆V (xi)
)

exp
[

−i
~
V (xi)∆t

]

(∆x)d:

the total number of operations is O(nd).
7. Go to step 2 until tk= tf .

3.5.2. Energy Conservation

One important physical quantity is the position density of the wave function
which can be interpreted as the probability density function of locating a particle. In
particular, we have

∫

x∈Rd

|U(x,t)|2dx=1

for all t≥0. In this section, we consider the above low-order scheme (3.5) and the
high-order scheme (3.10) and discuss the convergence to this quantity.
Theorem 3.1. The low-order Taylor-approximation based scheme Algorithm 3 (3.5)
and the high-order Taylor-approximation based scheme Algorithm 4 (3.10) satisfy

∫

x

|U(x,∆t)|2dx=
∫

x

|U(x,0)|2dx and

∫

x

|U(x,∆t)|2dx=
[

1+O
(

∆t4
)]

∫

x

|U(x,0)|2dx,

respectively.
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Proof. We consider one-dimensional cases. Let α=(i2π~∆t)−1/2 so that |α|2=
αᾱ=(2π~∆t)−1.

∫

x

|U(x,∆t)|2dx=
∫

x

U(x,∆t)U(x,∆t)dx

=

∫

x

|α|2
{

exp

[−i

~
V (x)∆t

]
∫

x′

exp

[

i

2~∆t
|x−x′|2

]

U(x′,0)dx′

}

{

exp

[

i

~
V (x)∆t

]
∫

y′

exp

[

− i

2~∆t
|x−y′|2

]

U(y′,0)dy′
}

dx

= |α|2
∫∫

x′×y′

exp

[

i

2~∆t
(|x′|2−|y′|2)

]

{
∫

x

exp

[

− i

~∆t
|x′−y′| ·x

]

dx

}

U(x′,0)U(y′,0)dx′dy′

=

∫∫

x′×y′

exp

[

i

2~∆t
(|x′|2−|y′|2)

]

δ(x′−y′)U(x′,0)U(y′,0)dx′dy′

=

∫

x

|U(x,0)|2dx.

For the high-order scheme (3.10), we have X∗(x)=x+ ∆t2

2 V ′ and

∫

x

|U(x,∆t)|2dx=
∫

x

U(x,∆t)U(x,∆t)dx

=

∫

x

|α|2
(

1+
∆t2

4
V ′′

)2{∫

x′

exp

[

i

2~∆t
|X∗−x′|2

]

U(x′,0)dx′

}

{
∫

y′

exp

[

− i

2~∆t
|X∗−y′|2

]

U(y′,0)dy′
}

dx

= |α|2
∫∫

x′×y′

exp

[

i

2~∆t
(|x′|2−|y′|2)

]

{

∫

x

(

1+
∆t2

4
V ′′

)2

exp

[

− i

~∆t
|x′−y′| ·X∗

]

dx

}

U(x′,0)U(y′,0)dx′dy′ .

Now, since

|α|2
∫

x

(

1+
∆t2

4
V ′′

)2

exp

[

− i

~∆t
|x′−y′| ·X∗

]

dx

= |α|2
∫

x

(

1+
∆t2

2
V ′′

)

exp

[

− i

~∆t
|x′−y′| ·X∗

]

dx+O
(

∆t4
)

= |α|2
∫

X∗

exp

[

− i

~∆t
|x′−y′| ·X∗

]

dX∗+O
(

∆t4
)

= δ(x′−y′)+O
(

∆t4
)

,
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we obtain
∫

x

|U(x,∆t)|2dx=
∫

x

U(x,∆t)U(x,∆t)dx

=

∫∫

x′×y′

exp

[

i

2~∆t
(|x′|2−|y′|2)

]

[

δ(x′−y′)+O
(

∆t4
)]

U(x′,0)U(y′,0)dx′dy′

=
[

1+O
(

∆t4
)]

∫

x

|U(x,0)|2dx.

Now, at t= tf =k∆t, we have
∫

x

|U(x,tf )|2dx=
[

1+O
(

∆t4
)]tf/∆t

∫

x

|U(x,0)|2dx.

Since ∆t=O(∆x), as ∆x→0, we have

lim
∆x→0

[

1+O
(

∆t4
)]tf/∆t

=1

and so
∫

x
|U(x,tf )|2dx→

∫

x
|U(x,0)|2dx=1.

3.6. Sparse Approximations

Motivated by recent works in [14, 15, 24, 25, 27], we develop sparse evolution
approaches to further speed up the above algorithms. To develop a sparse evolution
approach, one needs to view the solution in the transformed domain, where the original
solution has a sparse representation in the sense that only a few significant coefficients
suffice to capture the overall behavior of the solution.

In [14, 15, 24, 25] the high frequency wave solutions are first represented in phase
space by using a phase space transform, such as the wavepacket transform, then
a hard-thresholding process is applied to the phase space representation so that a
few modes in the phase space suffice to capture the solution; this strategy results in
efficient high-frequency wave propagation.

In [27], the authors have proposed a new framework to efficiently approximate
solutions to PDEs by sparse dynamics. The idea is to soft-threshold the solution
in a certain basis in which the solution is sparse. Therefore, the complexity of the
whole algorithm will depend on the number of non-zero terms retained in the sparse
approximation which would be almost independent of the number of mesh points in
representing the solution in the physical space. In all numerical examples demon-
strated in that paper, the authors have considered solving various PDEs using the
Fourier transform; i.e. one first applies the Fourier transform directly to the equation,
then soft-thresholds those updated spectral coefficients and updates the Fourier co-
efficients according to the PDE in the spectral space, and finally inverse-transforms
them back to the physical space.

Because the Schrödinger equation generates new scales during the evolution pro-
cess, the methodology of [27] cannot be applied here. On the other hand, we may
still replace the hard-thresholding process as used in [14, 15, 24, 25] with the soft-
thresholding in the evolution process; consequently, although we are using the soft-
thresholding operator, our methodology is different from the one in [27].

In the following, we adopt the soft-thresholding process to both the Taylor-
expansion based spectral methods and the Taylor-expansion based convolution meth-
ods. Indeed, hard-thresholding like [14, 15, 24, 25] might also be used to improve the
computational complexity but we will explore the idea in a future work.
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To start with, we apply the soft-thresholding to the low-order expansion based
Taylor spectral method, and this yields

U(x,∆t)≃ exp

[

− i

~
V (x)∆t

]

F−1

[

exp

(

− i∆t

2~
|ξ|2

)

F̃λ(U)

]

, (3.11)

where F(U)= [û1 û2 · · · ûn]
T is the Fourier transform of U ,

F̃λ(U)= [Sλ(û1)Sλ(û2) · · · Sλ(ûn)]
T and Sλ[ûi]=max(|ûi|−λ,0)

ûi

|ûi|
.

Here Sλ is the so-called soft-thresholding operator which is applied to each of the
Fourier coefficients, and the exponential factor is applied only to those non-zero
Ũ(ξj ,0).

For high-order generalization, the procedure is similar to what we proposed in

the previous section. One only needs to correct the magnitude by
(

1+ ∆t2

4 ∆V
)

and

interpolate the Fourier coefficients at X∗=x+ ∆t2

2 ∇V , i.e.

U(x,∆t)≃
(

1+
∆t2

4
∆V

)

exp

[

− i

~
V (x)∆t

]

F−1

[

exp

(

− i∆t

2~
|ξ|2

)

F̃λ(U)

](

x+
∆t2

2
∇V

)

. (3.12)

Here, we summarize Taylor expansion based algorithms in terms of sparse ap-
proximations.

Algorithm 5 (High-order Taylor-Expansion Based Spectral Methods With Sparse Approx-
imation):

1. Set k=0.
2. k=k+1.
3. Compute Sλ[F(U)]: the total number of operations is O(nd logn+nd)=

O(nd logn).
4. Multiply by exp

(

− i∆t
2~ |ξ|2

)

: the total number of operations is O(J) where J is
the number of non-zero elements in Sλ[F(U)].

5. Construct the solution at tk by applying inverse FFT and interpolating at X∗=

x+ ∆t2

2 ∇V : the number of operations is min[O(ndJ),O(nd logn)].

6. Multiply the result by
(

1+ ∆t2

4 ∆V
)

exp
[

−i
~
V (xi)∆t

]

: the total number of op-

erations is O(nd).
7. Go to step 2 until tk= tf .

For some applications where the Fourier representation of the solution is sparse,
i.e. J≪n, we found that one could obtain an approximated solution in a similar
precision as from Algorithm 3 using a J as small as 0.2% of n. In practice on the other
hand, high frequency modes can be generated in the Schrödinger equation so that the
number of Fourier coefficients in the representation could grow in time. This implies
that the constant J or the parameter λ has to be determined in an experiment-by-
experiment fashion.
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Application to the Taylor expansion convolution method is similar. We can simply
apply the soft-thresholding to those Fourier coefficients. Note however that we are
not applying the Fourier transform to the partial differential equation as in [27], but
instead, these Fourier coefficients come from a convolution operator.

Algorithm 4’ (High-order Taylor-Expansion Based Convolution Methods with Sparse Ap-
proximation):

1. Set k=0 and compute the Fourier coefficients F(W̃1): the total number of
operations is O(nd logn).

2. k=k+1.
3. Compute Sλ[F(Ũ)] and determine the product F(W̃1) ·Sλ[F(Ũ)]: the total

number of operations is O(nd logn+J), where J is the number of non-zero
elements in Sλ[F(Ũ)].

4. Compute the inverse FFT F−1 and keep only the first nd elements: the total
number of operations is min[O(ndJ),O(nd logn)].

5. Interpolate the solution on the mesh X∗
i =xi+

∆t2

2 ∇V (x): the total number of
operations is O(nd).

6. Multiply the result by (i2π~∆t)
−d/2

(

1+ ∆t2

4 ∆V (xi)
)

exp
[

−i
~
V (xi)∆t

]

(∆x)d:

the total number of operations is O(nd).
7. Go to step 2 until tk= tf .

3.7. Extension to Nonlinear Schrödinger Equations

In this section, we propose a generalization of our above approach to approximate
the solution to the nonlinear Schrödinger equation

i~Ut−V (x)U+
~
2

2
∆U+ |U |2U =0, x∈Rd, t>0,

U(x,0)=A0(x)exp

(

i τ0(x)

~

)

.

To obtain the solution at t= tk, the idea is to treat the nonlinear term semi-implicitly
by freezing |U |2 at t= tk−1. This implies that we modify the potential by a time-
dependent potential V (x)−|U(x,tk−1)|2 and directly apply the above algorithm. For
example, the low-order Taylor expansion scheme can be easily applied to the nonlinear
Schrödinger equation and it is summarized as follows.

Algorithm 6 (Nonlinear Schrödinger Equation):
1. Set k=0 and compute the Fourier coefficients F(W̃1): the total number of

operations is O(nd logn).
2. k=k+1.
3. Compute F(Ũ) and determine the product F(W̃1) ·F(Ũ): the total number of

operations is O(nd logn).

4. Apply the inverse FFT F−1
[

F(W̃1) ·F(Ũ)
]

and keep only the first n elements:

the total number of operations is O(nd logn).

5. Multiply the result by (i2π~∆t)
−d/2

exp
[

−i
~
{V (xi)−|U(xi,tk)|2}∆t

]

(∆x)d:
the total number of operations is O(nd).
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Fig. 4.1. (Section 4.1.1 Caustic with ~=1/1024) Position density. Red dash line: Strang
splitting spectral solution on a fine mesh. Blue solid line: Solution by the proposed method Algorithm

2. τ and A are solved on a mesh with (a) nx=nξ =513 and (b) nx=nξ =1025.

6. Go to step 2 until tk= tf .

4. Numerical Examples

In this section, we will discuss the performance of various algorithms we proposed
in section 3.2 to section 3.5 and in section 3.6. In all experiments below, for simplicity,
we perform the numerical computations in a domain large enough such that the
solution is of compact support. Therefore when computing the integrals, we need not
worry about the influence from the wave function from outside the computational
domain.

4.1. Algorithm 2 from Section 3.2

4.1.1. Caustics

We first consider a simple one-dimensional example which leads to caustics using
the usual WKBJ asymptotic ansatz. The background potential is given by V (x)=10
and the initial wave function has the form

U0(x)=exp
(

−25x2
)

exp

[

iτ0(x)

~

]

, (4.1)

and the initial phase function τ0(x) is given by

τ0(x)=
−1

5
ln[exp(5x)+exp(−5x)] . (4.2)

Figure 4.1 shows our computed solutions using Algorithm 2 comparing to the solutions
obtained by the Strang splitting spectral solution (red dash line) using a fine spatial
mesh and a very small time stepping.

4.1.2. A Gaussian in a cosine potential field

We consider the following challenging example taken from [15] where the potential
function is given by the cosine function

V (x)=
1

8
cos(2πx) . (4.3)
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Fig. 4.2. (Section 4.1.2 Cosine potential with ~=1/256π) Position density. Red dash line:
Spectral solution on a fine mesh. Blue solid line: Solution by the proposed method Algorithm 2. (a)
τ and A are solved on a mesh with nx=nξ =2049. (b) Zoom-in of (a). (c) τ and A are solved on
a mesh with nx=nξ =4097. (d) Zoom-in of (c).

The initial profile is a Gaussian of standard deviation σ0=0.1 centered at x=0 with
the zero initial momentum p0=0:

U0(x)=
1

√

σ0

√
2π

exp

(

− x2

4σ2
0

)

exp

(

− ixp0
~

)

. (4.4)

Since the potential is a hill at x=0, the Gaussian will be separated into two parts and
each of them will fall into one of the potential wells centered at x=±0.5, respectively.

In our previous work [15], we have demonstrated that it is important to reinitialize
the Gaussian-beam propagation to control the exponential growth of beams. In the
current work, the propagator defined by the short-time asymptotic Green function
allows one to construct the long time valid solution. In figure 4.2, we compare our
solutions from Algorithm 2 with the spectral solution with ~=1/256π at t=8. As we
increase the number of mesh points in each dimension of the computation space, our
computed solution matches with the exact solution very well.

4.1.3. Simple harmonic oscillator

We first solve the two-dimensional simple harmonic oscillator problem where the
potential is given by V (x)= 1

2ω
2‖x‖22 with a wavepacket initial condition

U0(x)=
( ω

π~

)1/2

exp

(

−ω‖x−x0‖22
2~

)

exp

(

ip0 ·x
~

)

. (4.5)
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Fig. 4.3. (Section 4.1.3 Two-Dimensional SHO with ~=1/100, Algorithm 2) Real part of the
wave function at time (a) 30∆T , (b) 60∆T and (c) 90∆T with ∆T =0.025, nx=nξ =33. Real part
of the wave function at time (d) 30∆T , (e) 60∆T and (f) 90∆T with ∆T =0.025, nx=nξ =65. Real
part of the wave function at time (g) 30∆T , (h) 60∆T and (i) 90∆T with ∆T =0.025, nx=nξ =129.

The natural angular frequency of oscillation ω is chosen to be 2. The packet is initially
centered at the origin (x0=(0,0)) with the initial momentum p0=

1
2 (−1,−1).

In figure 4.3 to figure 4.5, we have shown the real part of our computed solutions at
various times with ~=1/100, ~=1/200, and ~=1/400, respectively. For each of these
figures, we compute the solution using three different sets of computational meshes,
such that the coarsest solution is found on a mesh with 33 points in each dimension
while the most refined solution is found on a mesh with 129 points in each dimension.
As ~ decreases, we found that one has to proportionally increase the number of mesh
points in order to resolve the oscillations better and obtain a more accurate solution.
For comparison, we have also plotted reference solutions in figure 4.6.

We also pose the problem in the three-dimensional space and the solutions with
~=1/100 at various times are plotted in figure 4.7.

4.2. Algorithm 3 and Algorithm 4 from Section 3.5

4.2.1. One-dimensional examples

In this section, we consider Algorithm 3 from Section 3.5 based on the Taylor
approximations in the amplitude function and the phase function. We first consider
the simple one-dimensional Harmonic oscillator with ~=1/256 and we compute the
solution for t=2π. We compare our solutions with the exact solution and Table 4.1
shows the errors in the wave function using different norm measurements in Table 4.1,
and the approximation converges to the exact solution in the second order.
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Fig. 4.4. (Section 4.1.3 Two-Dimensional SHO with ~=1/200, Algorithm 2) Real part of the
wave function at time (a) 30∆T , (b) 60∆T and (c) 90∆T with ∆T =0.025, nx=nξ =33. Real part
of the wave function at time (d) 30∆T , (e) 60∆T and (f) 90∆T with ∆T =0.025, nx=nξ =65. Real
part of the wave function at time (g) 30∆T , (h) 60∆T and (i) 90∆T with ∆T =0.025, nx=nξ =129.

s: Mesh n=2s 1-norm Rate 2-norm Rate ∞-norm Rate
13 4.41×10−1 - 1.12×100 - 4.00×100 -
14 1.17×10−1 1.91 2.97×10−1 1.91 1.06×100 1.92
15 2.94×10−2 1.99 7.45×10−2 2.00 2.67×10−1 1.99
16 7.37×10−3 2.00 1.87×10−2 1.99 6.68×10−2 2.00
17 1.84×10−3 2.00 4.67×10−3 2.00 1.67×10−2 2.00
18 4.61×10−4 2.00 1.12×10−3 2.06 4.18×10−3 2.00
19 1.15×10−4 2.00 2.92×10−4 1.94 1.04×10−3 2.01
20 2.89×10−5 1.99 7.29×10−5 2.00 2.61×10−4 1.99

Table 4.1. (Section 4.2) SHO solutions with ~=1/256 using Algorithm 3.

We have also repeated the computations for the caustic example from section
4.1.1 and we have shown the solution in figure 4.8. It is worth noticing that we are
using only n=212=4096 points in the computations, and this number is significantly
less than the total number of grid points that Algorithm 2 used for the same example
with nx=nξ =1025.

Figures 4.9 and 4.10 show the solutions for the cosine potential example that we
used in section 4.1.2. In figure 4.10, we plot the solution using various mesh points
in discretizing the physical space. Indeed, in order to obtain a reasonably accurate
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Fig. 4.5. (Section 4.1.3 Two-Dimensional SHO with ~=1/400, Algorithm 2) Real part of the
wave function at time (a) 30∆T , (b) 60∆T and (c) 90∆T with ∆T =0.025, nx=nξ =33. Real part
of the wave function at time (d) 30∆T , (e) 60∆T and (f) 90∆T with ∆T =0.025, nx=nξ =65. Real
part of the wave function at time (g) 30∆T , (h) 60∆T and (i) 90∆T with ∆T =0.025, nx=nξ =129.
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Fig. 4.6. (Section 4.1.3 Two-Dimensional SHO) Reference solutions at t=2.25 for (a) ~=
1/100, (b) ~=1/200 and (c) ~=1/400.

(a) (b) (c)

Fig. 4.7. (Section 4.1.3 Three-Dimensional SHO with ~=1/100, Algorithm 2) Position density
at time (a) 30∆T , (b) 60∆T and (c) 90∆T with ∆T =0.025, nx=nξ =33.
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Fig. 4.8. (Section 4.2) The one-dimensional example with caustics. ~=1/1024 with n=212

using Algorithm 3.
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Fig. 4.9. (Section 4.2) Solutions under the cosine potential with ~=1/256π with (a) n=217

and (d) n=220. The red-dashed curves are the intensities obtained by the spectral method, while the
blue-solid lines are computed using the proposed algorithm Algorithm 3.

solution, one needs to use as many as n=220=1048576 points in the approximation,
figure 4.10(d). However, the number is still smaller than 40962=224, which is needed
in obtaining the solution in figure 4.2(d). Moreover, since the computational com-
plexity for the algorithm is low, the total CPU time required is less than 4 minutes.

We have applied the higher-order Taylor expansion based approximation to the
same example. The solutions are shown in figure 4.11. The phase is correctly com-
puted when n=218 as shown in figure 4.11 (b). And the computed solution is almost
indistinguishable from the reference solution when we further double the number of
mesh points. Concerning the extra computation effort, the total CPU time for ob-
taining the solutions are 4.57s, 20.28s, 87.66s and 358.20s for n=217, 218, 219, and
220, respectively.

To further check with the computational complexity, we have plotted the CPU
times in figure 4.12. To determine the solution at a fixed final time, the number of
time marching steps is inversely proportional to ∆x, and therefore is proportional to
n. Therefore, the total computational complexity for the whole algorithm to reach the
final time is O(n2 logn). In figure 4.12, we have collected the CPU running time for the
above example using both Algorithm 3 (in red circles) and Algorithm 4 (in red squares)
and have drawn the fitted lines in solid. We found that the total CPU running time
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Fig. 4.10. (Section 4.2) Zoom-in solutions under the cosine potential with ~=1/256π with (a)
n=217, (b) n=218, (c) n=219 and (d) n=220. Solutions are computed in (a) 2.35s, (b) 10.94s,
(c) 49.42s and (d) 207.51s. The number of iterations are (a) 122, (b) 244, (c) 487 and (d) 973.
The red-dashed curves are the intensities obtained by the spectral method, while the blue-solid lines
are computed using the proposed algorithm Algorithm 3.

matches very well with the expected n2 logn trend, where the total number of time
steps is proportional to O(n).

In Figure 4.13, we have demonstrated several convergence tests for both the low-
order Taylor scheme Algorithm 3 (3.5) and the high-order Taylor approximation Algo-
rithm 4 (3.10). In figures 4.13(a)(b), we show the errors in the quantity

∫

|U(x,t)|2dx
for various meshes under the same cosine potential with ~=1/256π. As demon-
strated in Section 3.5.2, the low-order scheme (3.5) preserves the value up to the
machine epsilon, shown in figure 4.13(a). In figure 4.13(b), we found that the error
increases in time. As we double the number of mesh points, the error at a fixed time
is approximately halved. To check with the error bound in Theorem 3.1, we plot in
figure 4.13(c) the error in

∫

|U(x,∆t)|2dx for various ∆t using a fixed number of mesh
points n=218. The slope of the least-squares fitting of the log-log data is 4.009 which
matches well with the theoretical prediction O(∆t4). In figure 4.13(d), we consider
the infinity-norm error in the intensities between the time-splitting spectral solution
and our numerical solutions from Algorithm 3 and Algorithm 4, respectively, i.e.

E∆x=max
x

|Iexact(x)−I∆x(x)| .

The solutions from our high-order scheme are in general more accurate than those
from the low-order version with the rate of convergence to Uexact approximately of
order two.
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Fig. 4.11. (Section 4.2) Zoom-in solutions under the cosine potential with ~=1/256π using
the higher order Green’s function approximation (3.8) with (a) n=217, (b) n=218, (c) n=219 and
(d) n=220. The CPU times are 4.57s, 20.28s, 87.66s and 358.20s, respectively. The number of
iterations are (a) 122, (b) 244, (c) 487 and (d) 973. The red-dashed curves are the intensities
obtained by the spectral method, while the blue-solid lines are computed using the proposed algorithm
Algorithm 4.

4.2.2. Two-dimensional cosine potential

In this example, we consider the evolution of a Gaussian wave function

U(r,0)=
1

σ
√
2π

exp

[

−x2+y2

4σ2

]

(4.6)

under a cosine potential

V (x,y)=
1

8
cos(2πx)cos(2πy)

with σ=0.1 and ~=1/32π. The number of mesh points along each direction is n=
2048 and we are looking for the solution at t=4. Figures 4.14 and figure 4.15 show
the solutions using the low-order Taylor-expansion based Green function (3.4) and the
high-order one (3.8), respectively. The complicated wave structure can be observed
in figure 4.14 and figure 4.15 (c-f), where we have plotted the real part of the wave
function at t=1 to t=4. To better distinguish the solutions, we also plot the cross-
sections of these solutions in figure 4.16.

4.2.3. Two-dimensional and three-dimensional Gaussian potentials

In the next example, we consider another complicated two-dimensional case where
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Fig. 4.12. (Section 4.2) Computational complexities of Algorithm 3 (red circles) and Algorithm

4 (red squares). The solid line is the fitting line for n2 logn which is the overall complexity including
the total number of time steps, where N =n in this one-dimensional example, the cost for each time
step is O(n logn), and the total number of time step is O(n).
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Fig. 4.13. (Section 4.2) Numerical error in
∫
|U(x,t)|2dx under the cosine potential with

~=1/256π using (a) the low order Taylor approximation scheme Algorithm 3 (3.5) and (b) the
high order Taylor approximation scheme Algorithm 4 (3.10) for various n. (c) Numerical error
in

∫
|U(x,∆t)|2dx for various ∆t with n=218 using Algorithm 4. The slope of the log-log graph

is 4.009. (d) Numerical error in
∫
|U(x,tf )|

2dx with tf =8 for various n using Algorithm 3 (blue
circles) and Algorithm 4 (red squares). The slope of the upper- and the lower- dashed lines are 1 and
2, respectively.
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Fig. 4.14. (Section 4.2) Two-dimensional example using the approximated propagator Algorithm
3. Cosine potential with initial Gaussian wavepacket centered at the origin ~=1/32π. Intensities
using n=2048 at (a) 1.0 and (b) 4.0. Real part of the wave function at (c) 1.0, (d) 2.0, (e) 3.0 and
(f) 4.0. The total CPU time is approximately 31s.

the potential has a Gaussian hump given by

V (x,y)=exp

[

−x2+y2

2σ2
v

]

,

with σv =0.2. The initial condition is given by a Gaussian wave packet with the
standard deviation σ=0.2, momentum p0=(1,1) and mean position centered at
(x0,y0)=(−1.5,−1.5). We compute the solutions up to t=2. In figure 4.17 we have
plotted some ray trajectories under the potential from locations within the support
of the initial Gaussian packet, where the initial location of each ray is plotted using
red circle and the trajectories are shown in solid blue lines. Because of the Gaussian
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Fig. 4.15. (Section 4.2) Two-dimensional example using the higher order Taylor expansion
approximated propagator Algorithm 4. Cosine potential with initial Gaussian wavepacket centered
at the origin ~=1/32π. Intensities using n=2048 at (a) 1.0 and (b) 4.0. Real part of the wave
function using n=2048 at (c) 1.0, (d) 2.0, (e) 3.0 and (f) 4.0. The total CPU time is approximately
56s.

barrier near the origin, caustics occur which can be clearly observed from the rays.
Figure 4.18 shows the numerical solutions using the approximated propagator (3.4).
We have also applied high-order Taylor approximation (3.8) as shown in figure 4.19.
To check the accuracy in our solutions, we compare them with the numerical solu-
tion obtained by the time-splitting spectral method with ∆t=∆x/4 with n=2048
in each physical direction. The real parts of these solutions along the cross section
y=0 are shown in figure 4.20. Note that we have gained a 20 times speedup in the
computational speed using the convolution method.

We also extend the Gaussian hump example to three-dimension by having the
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Fig. 4.16. (Section 4.2) Two-dimensional example using the low order Taylor expansion Algo-

rithm 3 (blue solid line) and the higher order Taylor expansion approximated propagator Algorithm 4

(red dashed line). Cosine potential with initial Gaussian wavepacket centered at the origin ~=1/32π.
Solutions using n=2048 at t=4.0. The intensities along (a) y=−1 and (b) y=0.
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Fig. 4.17. (Section 4.2) Ray tracing solution. Gaussian potential centered at the origin with
standard deviation σ=0.2. Initial Gaussian centered at (−1.5,−1.5) with p0=(1,1).

Gaussian potential centered at the origin with the standard deviation σv =0.025.
The initial condition is a Gaussian wave packet centered at (−0.5,−0.5,−0.5) with
momentum (1,1,1). In figure 4.21, we solve the problem with ~=1/128 using n=256.

4.3. Sparse Algorithms from Section 3.6

In this section, we first study the sparse-approximation based high-order Taylor
expansion spectral method, Algorithm 5. In figure 4.22, we have shown the final state
of a two-dimensional Gaussian wave function under a Gaussian potential centered at
the origin at t=2. The setup is the same as in figure 4.19. Using Algorithm 5, we
have repeated the experiment with various choices of regularization parameter λ in
the soft-thresholding. As we increase the value of λ, fewer Fourier coefficients are
kept in the calculation, and more information is lost in the evolution as expected.
In this example, the total number of Fourier coefficients is 222 and we obtain an
indistinguishable solution from the reference solution (using Strang’s splitting spectral
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Fig. 4.18. (Section 4.2) Two dimensional example using the approximated propagator Algo-

rithm 3. Gaussian potential centered at the origin with standard deviation σ=0.2. Initial Gaussian
centered at (−1.5,−1.5) with p0=(1,1) and ~=1/32. Intensities using n=2048 at (a) 0.8, (b) 1.2,
(c) 1.6 and (d) 2.0. Real part of the wave function using n=2048 at (e) 1.2 and (f) 2.0. The total
CPU time is 34.81s.

method in [22, 3]) by keeping only as little as 2000 of them, i.e. approximately 0.04%,
for λ=10−3.

It is also straight-forward to implement the sparse-approximation based high-
order Taylor expansion convolution method in Algorithm 4’. In figure 4.23 we have
repeated the same example as in figure 4.19 with various choices of regularization pa-
rameter λ in the soft-thresholding. In this case, the total number of Fourier coefficients
is (2×2048)2=224. For λ=1, the number of non-zero coefficients is roughly 6×104,
which accounts for 0.36% of all coefficients. We have also checked the computational
speed by looking at the CPU times for various λ’s. For example, the running time
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Fig. 4.19. (Section 4.2) Two dimensional example using the higher order Taylor expansion
approximated propagator Algorithm 4. Gaussian potential centered at the origin with standard de-
viation σ=0.2. Initial Gaussian centered at (−1.5,−1.5) with p0=(1,1) and ~=1/32. Intensities
using n=2048 at (a) 0.8, (b) 1.2, (c) 1.6 and (d) 2.0. Real part of the wave function using n=2048
at (e) 1.2 and (f) 2.0. The total CPU time is 63.38s.

for λ=10−4, 10−3, 10−2, 10−1 and 100 are 92.31s, 65.30s, 55.06s, 52.99s and 52.09s,
respectively. Comparing to the full implementation in which we need 63.38s to obtain
the final solution, the sparse algorithm does further reduce the computational time
for large λ by looking at only those Fourier coefficients with significant contributions
to the solution. Nevertheless, since the number of non-zero Fourier modes in the
solution might grow in time, it might be difficult to define an a priori estimate for λ.

For the three-dimensional example, we consider again the simple harmonic os-
cillator using n=27 mesh points in each physical dimension, which means that the
total number of Fourier coefficients in Algorithm 4 is (2n)3=224. The running time
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Fig. 4.20. (Section 4.2) Two dimensional example using the low order Taylor expansion Algo-

rithm 3 (blue solid line) and the higher order Taylor expansion approximated propagator Algorithm 4

(red dashed line). Gaussian potential centered at the origin with standard deviation σ=0.2. Initial
Gaussian centered at (−1.5,−1.5) with p0=(1,1) and ~=1/32. Solutions using n=2048 at t=2.0.
The real part of the wave function along the cross section y=0. The total CPU time for obtaining
the time-splitting spectral solution is 1333.97s which is approximately 38 times and 20 times of that
by Algorithm 3 and Algorithm 4, respectively.

(a) (b)

Fig. 4.21. (Section 4.2) Three dimensional example using the approximated propagator Algo-

rithm 3. Gaussian potential centered at the origin with standard deviation σ=0.05. Initial Gaussian
centered at (−0.5,−0.5,−0.5) with standard deviation σ=0.02 and p0=(1,1,1). We show (a) the
intensity and (b) the real part of the solution using n=256 at t=0.6 with ~=1/64.

for λ=10−4, 10−3, · · · up to 102 are 16.71s, 15.42s, 15.05s, 14.48s, 13.92s, 13.59s and
13.52s, respectively. Comparing to the full implementation which takes 20.75s, there
is now a significant gain in computational speed even for λ=10−4. Figure 4.24 (a)
shows the error in

∫

|U |2. Since we are considering the low-order approximation, the
physical quantity

∫

|U |2 should remain constant. Any deviation from unity is the
result of the soft-thresholding. Figure 4.24 (b) plots the number of non-zero Fourier
coefficients retained in the computations for various λ’s.

Figure 4.25 shows the solutions of the three-dimensional Gaussian hump example
using different λ’s in the sparse implementation of the low-order Taylor expansion
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Fig. 4.22. (Section 4.3) Two dimensional Gaussian under Gaussian potential centered at the
origin with standard deviation σ=0.2. Initial Gaussian centered at (−1.5,−1.5) with p0=(1,1)
and ~=1/32. Solutions using n=2048 at t=2.0. The real part of the computed wave function
using the sparse approximation higher order Taylor Expansion Spectral method Algorithm 5 along
the cross section (a) y=0 and (b) y=−1 with various λ’s. (c)

∫
|U(x,y,t)|2dxdy using various

regularization parameters λ and (d) J, the number of sparse coefficients for summation, using
various regularization parameters λ.

convolution algorithm. The computational times corresponding to various λ’s are
196.28s, 279.96s, 384.40s and 667.09s for λ=103, 102, 101 and 100, respectively. For
λ=103, we are keeping only 3.38% of Fourier coefficients at the final time step, figure
4.26, and the solution is still quantitatively acceptable.

4.4. Nonlinear Schrödinger equations

In this last section, we consider some numerical solutions of the nonlinear
Schrödinger equation. We consider an example from [7] to study the focusing ef-
fect in the nonlinear Schrödinger equation where the initial wave function is given
by U(x,0)= e−x2

and the potential is V (x,y)=0. We consider ~=0.1 and solve the
solution up to t= tf =1.2. Figure 4.27 shows the computed solution using various
∆x’s compared with the time-splitting spectral solution obtained by [22, 4] using
∆t=∆x/4. We are plotting this reference solution using the black dash line in figure
4.27. These solutions match pretty well. Considering the total CPU time, our numer-
ical approach Algorithm 6 takes approximately 9.94×102s, while the time-splitting
spectral method takes approximately 2.52×104s which is more than 25 times longer
than that of our approach.

5. Conclusions We propose fast Huygens sweeping methods for Schrödinger
equations in the semi-classical regime by incorporating short-time WKBJ propaga-
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Fig. 4.23. (Section 4.3) Two dimensional Gaussian under Gaussian potential centered at the
origin with standard deviation σ=0.2. Initial Gaussian centered at (−1.5,−1.5) with p0=(1,1) and
~=1/32. Solutions using n=2048 at t=2.0. The real part of the computed wave function using
the sparse approximation higher order Taylor Expansion Convolution method Algorithm 4’ along
the cross section (a) y=0 and (b) y=−1 with various λ’s. (c)

∫
|U(x,y,t)|2dxdy using various

regularization parameters λ and (d) J, the number of sparse coefficients for summation, using
various regularization parameters λ.
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Fig. 4.24. (Section 4.3) Three dimensional Harmonic oscillator. Solutions using the sparse
approximation lower order Taylor Expansion Convolution method with n=27 at t=2.25. (a)∫
|U(x,y,t)|2dxdy using various regularization parameters λ and (b) J, the number of sparse co-

efficients for summation, using various regularization parameters λ.
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Fig. 4.25. (Section 4.3) Three dimensional Gaussian under Gaussian potential centered at
the origin with standard deviation σ=0.2. Gaussian potential centered at the origin with standard
deviation σ=0.05. Initial Gaussian centered at (−0.5,−0.5,−0.5) with standard deviation σ=0.02
and p0=(1,1,1). Solutions using n=256 at t=0.6 with ~=1/64. (a) Real part of the solution
with λ=102. (b) Real part of the solution with λ=103. (c) Position density of the solution with
λ=102. (d) Position density of the solution with λ=103. (e) Cross section of the real part of the
solution along the direction (1,1,1) for various λ’s. (f) Cross section of the position density along
the direction (1,1,1) for various λ’s.

tors into Huygens’ principle. Even though the WKBJ solution is valid only for a
short time period due to the occurrence of caustics, Huygens’ principle allows us to
construct the global-in-time semi-classical solution. To improve the computational
efficiency, we develop analytical approximation formulas for the short-time WKBJ
propagator by using Taylor expansion in time. These analytical formulas allow us
to develop families of fast Huygens sweeping methods, among which one is posed in
the momentum space, and the other is posed in the position space, and both of these
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Fig. 4.26. (Section 4.3) Three dimensional Gaussian under Gaussian potential centered at the
origin with standard deviation σ=0.2. Solutions using the sparse approximation lower order Taylor
Expansion Convolution method with n=28 at t=0.6. (a)

∫
|U(x,y,t)|2dxdy using various regular-

ization parameters λ and (b) J, the number of sparse coefficients for summation, using various
regularization parameters λ.
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Fig. 4.27. (Section 4.4) Nonlinear Schrödinger equation with ~=0.1 and a zoom-in of the
solution at t=1.2. The total CPU times using our method Algorithm 6 and using the spectral method
in [22, 4] with n=219 are approximately 16 minutes and 420 minutes, respectively.

methods are of computational complexity O(N logN) for each time step, where N is
the total number of sampling points in the d-dimensional position space. To further
speed up these methods, we also incorporate the soft-thresholding sparse strategy
into our new algorithms so that the computational cost can be further reduced. The
methodology can also be extended to nonlinear Schrödinger equations. One, two, and
three dimensional examples demonstrate the performance of the new algorithms.

If one is interested in the wavefunction for the linear Schrödinger equation at
a single large time level g≫1, we can actually further improve the computational
complexity by using the phase flow method [6, 15] in this setting. However, in the
current work we are interested in the evolution of the wavefunction and we will leave
the idea as a future work. Since it is very important to the community to develop
more accurate numerical methods for nonlinear Schrödinger equation, we propose to
continue extending our method in Section 3.7 to accomplish that.
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