
SIAM J. IMAGING SCIENCES c© 2016 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000–000

A Theory of Optimal Flutter Shutter for Probabilistic Velocity Models�
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Abstract. Flutter shutter (coded exposure) is a new paradigm for cameras that allows for an arbitrary in-
crease of the exposure time when the relative camera/scene motion is uniform. The photon flux is
interrupted according to a flutter shutter code. For arbitrarily severe uniform motion blur a well
chosen code guarantees an invertible blur kernel. Yet, when the relative camera/scene velocity is a
known constant, a flutter shutter cannot gain more than a 1.17 factor in terms of root mean-squared
error compared to the optimal snapshot. In this paper, we prove that this optimality bound can
be relaxed under the realistic assumption that a random model for the velocities is available. We
give analytical formulae for the optimal flutter shutter code and the optimal snapshots associated
with a random velocity distribution. Conversely we also prove formulae that reveal the velocity
distribution underlying a given flutter shutter code.
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1. Introduction. Digital cameras count at each pixel sensor the number of photons emit-
ted by the observed scene during a time span called the exposure time. The photon count
follows a Poisson random variable. Its mean is the ideal (noiseless) pixel value. The difference
between this ideal pixel value and the observed sensor photon count is called (shot) noise. The
ratio of the mean of the photon count over its standard-deviation is called the signal-to-noise
ratio (SNR). In passive imaging systems there is no control over the scene lighting. Thus, the
only safe way to increase the SNR is to integrate more photons by increasing the exposure
time. Yet, when the scene or the camera moves during the exposure process, the resulting
images are degraded by a motion blur. If the support of a motion blur kernel exceeds two
pixels, the blur is no longer invertible. This limits the exposure time and therefore the image
quality of a snapshot. A setup solving this photography trade-off between noise and blur was
proposed in [3, 4, 6, 37, 38, 39] for uniform camera-scene motions. The authors of these papers
attached a flutter shutter to a camera to get an invertible motion blur kernel. A flutter shutter
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Figure 1. Illustration of the formulae proved in this paper. Left: Simulated observed (blurry and noisy)
image using the patented [39] code of Agrawal and coworkers (see [3], [38, p. 799]) with a 52 pixel code length.
Middle: The image reconstructed by direct deconvolution. Right: The formalism that we shall develop in this
paper allows us to deduce the probabilistic velocity distribution for which this code is near-optimal. The x-axis is
the motion (in signed pixels), and the y-axis represents the logarithm of the probability density (log�1� ρ�v��).
The probability that v � 0 is massive.

is described by a binary shutter sequence or flutter shutter code that gives the intervals when
the photon flux is interrupted. If the flutter shutter code is well chosen, invertibility of the
motion blur kernel can be guaranteed for arbitrarily high velocities. This fact can be checked
numerically in the online flutter shutter camera simulator [42] (see also Figure 1).

Since the flutter shutter allows for an arbitrarily long exposure time, does that mean that
one could indefinitely decrease the mean-squared error (MSE) of the deconvolved image? The
answer is negative, as proved in [48] for ideal observation conditions. The answer is still
negative, as proved in [46], which takes the observation conditions into account, i.e., lighting,
sensor readout, and obscurity noise of finite variances. More precisely, given a scene moving in
uniform translation at a known velocity v � �, the optimal flutter shutter strategy can gain no
more than a 1.17 factor compared to an optimal snapshot in terms of root mean-squared error
(RMSE). This 1.17 gain is significant, but clearly not massive. In addition, obtaining this
1.17 bound requires the technologically more demanding setup of a numerical flutter shutter
that allows for signed codes.

A numerical flutter shutter requires the acquisition of an image sequence, for example by
a high speed camera, which is numerically treated by a temporal filter. According to [20, 36]
an image sensor can have a duty ratio1 of nearly 100%. Thus, a sensor can integrate light
without interruption. Thus, a numerical flutter shutter without “dead time” is feasible from
a technological point of view.

Yet, in such a situation, there are better solutions than a temporal filter to increase the
SNR. The classic one consists of registering the images locally or globally and performing a
burst denoising [9]. The fusion of two images divides the MSE by two. This means that a flutter
shutter is useless unless the considered application has some strong physical or numerical
constraints preventing the separate acquisition and fusion of short exposure frames. In such
severely constrained situations, an analog flutter shutter becomes the only other option. Earth
observation satellites, for example, suffer from uniform motion blur that limits the exposure

1The duty ratio is the ratio of light integration time over readout, storage, or reset times—that is, the
percentage of useful time.
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Figure 2. This figure illustrates the setup proposed in this paper. In this experiment, we assume that the
relative camera/scene velocity is proportional to the (Gaussian-like) probability distribution depicted by the blue
curve. The formalism that we shall develop here allows us to deduce an optimal code and the optimal exposure
time for the snapshot taking the velocity distribution into account. The red (resp., green) curve depicts the
evolution of the RMSE of the optimal flutter shutter (resp., optimal snapshot) as a function of the relative
camera/scene velocity measured without loss of generality in pixels per Δt (Δt is the time step of the flutter
shutter). The optimization permits us to concentrate the gain for the most probable observed velocities (see also
Figure 3). For instance, with this model, the probability of observing a velocity smaller than 0.4 is larger than
0.89. This simulation is based on [42], using the “boat” image.

time and have limited transmission, storage, and computational resources.
A flutter shutter setup is also to be envisaged for the observation of very fast phenomena

like explosions, where the readout time is too long to ensure that the support of the motion
kernel is under two pixels/frame.

This paper proposes a framework that permits us to optimize flutter shutter cameras
beyond the aforementioned 1.17 bound [48] on the RMSE gain. This is possible, provided
that the velocity law in the scene is a priori known or can be learned. We prove a new
closed formula that permits one to compute optimal codes for any probability density of the
expected velocities (see Theorems 3.2 and 3.3, Figure 2). With this different setup we shall
give closed formulae for the RMSE gain (see section 5) and show that, depending on the
velocity distribution, it can exceed the 1.17 bound (see section 6.1).

In addition, we prove an inverse formula that deduces from each flutter shutter code its
associated velocity distribution (see Theorem 4.1, Figure 1, and section 6.2). This permits us
to review and interpret flutter shutter cameras and flutter shutter codes recently proposed in
the literature, including the patented ones. In short, these formulae permit one to associate
with any existing flutter shutter code the velocity distribution for which it is optimal.

In section 1.1 we start with an analysis of the literature on the flutter shutter. In section 1.2
we fix the terminology needed to justify the plan of the paper, which is given in section 1.3.

1.1. Related work. The simplest hardware setup to get invertible uniform motion blurs
was proposed by Agrawal, Raskar, and coworkers [3, 4, 6, 37, 38, 39]. The camera shutter
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(a) (b) (c)

Figure 3. This experiment shows three (crops) of the boat image used to generate the curve of Figure 2.
The three images at the top are the restored images using an optimal flutter shutter. The three at the bottom
are the restored images using the optimal snapshot. Both are optimized for the velocity distribution of Figure 2.
The considered velocities are v � 0 (column (a)), v � 0.1 (column (b)), and v � 0.75 (column (c)), measured
in pixels per Δt (Δt is the time step of the flutter shutter). With this velocity model the probability that the
velocity v satisfies �v� � 0.1 is larger than 0.3, while the probability that v satisfies �v� � 0.75 is lower than
0.0027. The optimal flutter shutter is less noisy than the optimal snapshot for the most probable velocities.

opens/closes according to a pseudorandom binary code called flutter shutter code. Following
the flutter shutter literature [3, 4, 6, 11, 17, 18, 19, 28, 29, 30, 31, 37, 38, 39, 43, 47, 48, 50, 56],
only well-posed deconvolution strategies will be compared. Indeed, if the flutter shutter code
is well chosen, arbitrarily severe uniform motion blurs are made invertible. As illustrated in
Figure 1, an image acquired by flutter shutter looks like a stroboscopic image. Nonetheless, one
can recover a neat image by a simple well-posed deconvolution. The flutter shutter camera
simulator developed in [42] permits one to test the code proposed in [38, p. 5] and patent
application [39] and several other classic flutter shutter codes from the literature.

In their recent paper [11], Cossairt, Gupta, and Nayar claimed that (1) an upper bound
for the gain of the flutter shutter with respect to a snapshot in terms of the RMSE is�
1� σ2

r�J [11, eq. (11), p. 5], where J is the mean photon emission and σ2
r is the sensor

readout variance, and (2) “gain for computational imaging is significant only when the aver-
age signal level J is considerably smaller than the read noise variance σ2

r” [11, p. 5]. These two
claims actually rely on an oversimplified acquisition model and have been proved incorrect
in [46].

In [30] the flutter shutter apparatus is applied to iris images, and in [28, 56] to bar-codes.
In [27] the authors propose to optimize the binary flutter shutter code as a function of the



FLUTTER SHUTTER—PROBABILISTIC VELOCITY MODELS 5

velocity of the scene. The optimization involves an accelerated random search among binary
sequences with fixed sum and length. The authors state in their conclusion that there exists no
universal flutter shutter code in the sense that “a shutter sequence will produce noninvertible
blur when the velocity is more than twice a nominal velocity” [27, section 7, p. 13]. This fact
is obvious when looking at the form of the Fourier transform of any flutter shutter code (see,
e.g., (B.4) below). Thus, the authors of [27] look for (binary) sequences that are optimal for a
certain known velocity. No sequence is optimal for all velocities at the same time. Indeed, for
a known maximal velocity v � � an optimal flutter shutter code in terms of MSE exists [48]
and is derived from a cardinal sine function of the form sinc�vt�. It is therefore neither binary
nor nonnegative and depends on v. In [41] the authors use a local deblurring user-driven
scheme on a flutter shutter embedded camera to deal with spatially varying blurs caused by
the presence of several velocities in the observed scene. In [40] the authors treat the question
of denoising an image taken by a flutter shutter camera. The authors also suggest a user-
assisted estimation of the blur. Their conclusion is that the denoising should be applied both
before and after deconvolution. In [12] the authors treat the question of a posteriori motion
estimation using a flutter shutter. In [15] a per pixel flutter shutter is used to build a camera
that permits a postcapture balance between spatial and temporal resolutions of movies. A
multicamera equipped with flutter shutters is investigated in [2] and used to increase the frame
rate of a single camera while having an increased number of photons captured compared to
the equivalent high-speed camera. A single camera equipped with a mask on the aperture and
an array of light sources is used in [21] to construct the visual hull of an object (shape from
silhouette).

Another solution for getting an invertible motion blur using only one image was found
in [23]. There Levin et al. suggested moving the camera with constant acceleration in the
direction of the motion during the exposure time. The resulting kernel is invertible, and its
approximated invariance with respect to the velocity is proved in [48], which also proves that
the resulting MSE is infinite. This approach, which requires an a priori knowledge of the
motion direction, has been generalized in [10] to the case of unknown directions. It requires
acquiring two images instead of one. In contrast, [48] proves that this setup is equivalent to
an analog flutter shutter, for which a flutter shutter code was proposed. This permits us to
avoid the burden of accelerating the camera and works in any motion direction, like any other
flutter shutter. In [32] the motion-invariant photography apparatus is implemented using the
lens of the camera. Note that the approaches that require moving the camera cause blur even
in static parts of the scene. Therefore, they cannot be optimal for every velocity in terms of
MSE.

In [7, 13, 22, 24, 26, 33, 35, 52] the authors use a temporally fixed and spatially varying
mask in order to estimate the depth, and/or they refocus the out-of-focus part to get an
always-in-focus (neat) image. In [16] the authors deal with the question of the optimal trade-off
between depth of field and exposure time. In [14] the authors take advantage of complementary
metal oxide semiconductor (CMOS) imaging sensors to implement a coded rolling shutter to
trade vertical resolution for an increased dynamic range. The authors of [51] also suggest
using a camera equipped with a mask on the aperture camera and to take purposely out-of-
focus images with a mask to increase the dynamic range. Their conclusion is rather negative,
since they state that “None of the possible combinations of aperture filter and deconvolution
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algorithm were able to consistently reduce the dynamic range of the captured image without
excessively degrading image quality” [51, section 8, p. 10]. Another computational camera
is designed in [34], where the aperture is equipped with a mask, and the sensor is moved
at a constant velocity during the exposure. The mask is used to control the depth of field,
creating bokeh or a depth-invariant blur size. Another camera prototype was designed in [25],
where the authors suggest a programmable aperture (mask), which is also used for depth
and digital refocusing. An interesting implementation, the Frankencamera, was proposed
in [1]. It permits “control and synchronization of the sensor and image processing pipeline
at the microsecond time scale, as well as the ability to incorporate and synchronize external
hardware like lenses and flashes” [1, abstract]. The authors of [1] investigate six computational
photography applications. An even more complex scheme involving a fixed mask close to the
sensor and a dynamic one on the aperture is investigated in [5], where the authors explore the
feasibility of postprocessing trade-offs between spatial, angular, and temporal resolutions.

Most of these works develop more complex hardware setups than the original flutter shut-
ter. However, the common denominator is obtaining a sharp image by an increased exposure
time. Thus, the ultimate criterion for this should be the MSE gain with respect to a standard
camera aperture strategy with optimal exposure time. The underlying model for all the setups
discussed above is an encoded exposure followed by a deconvolution. Therefore, the upper
bound of 1.17% [46, 48] of the gain in terms of RMSE is in principle applicable to all. It is
therefore important to discuss by which means and assumptions this performance might be
increased above the 1.17 bound, which applies as soon as the velocity is known. Our main
goal in this paper is to provide a mathematically founded answer to this question, along with
simple and new closed formulae linking velocity distributions and optimal flutter shutter codes
(see Theorems 3.2, 3.3, and 4.1).

1.2. The flutter shutter implementations and their optimization. There are three
different ways to implement a flutter shutter (coded exposure).

The first technical possibility consists of implementing the flutter shutter exposure function
with a shutter device that opens and closes on very short subintervals of the exposure time.
(In the following we denote the function describing the time exposure function of the flutter
shutter by “flutter shutter gain function.”) In [48] the authors proposed considering smoother
and/or nonbinary flutter shutter gain functions. A nonbinary flutter shutter gain function
requires the use of an optical filter in place of a simple shutter. As an example, this optical
filter can be implemented on the stages of a time delay and integration (TDI) device for remote
sensing applications. The optical filter opacity varies temporarily and controls the percentage
of photons that are allowed to travel to the sensor (like temporarily controlled sunglasses),
called the “gain.” When the gains are piecewise constant, the flutter shutter gain function
can be encoded by a “code” called flutter shutter code. If, in addition, the code is binary, we
retrieve the “historical” implementation considered by the inventors [3, 4, 6, 37, 38, 39]. Notice
that with this setup, the number of caught photons is reduced compared to those caught by a
snapshot with the same exposure time. This generalization is called analog flutter shutter [48].
For example, motion-invariant photography is equivalent to an analog flutter shutter [48]. An
analog flutter shutter camera allows in principle for any nonnegative, bounded from above by
1, and L1��� flutter shutter gain function.
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The second technical possibility for implementing a flutter shutter is the numerical flutter
shutter. In contrast to the analog flutter shutter, the numerical flutter shutter is a temporal
filter. It allows for nonbinary and even negative gains. The camera takes a burst of L images
using an exposure time Δt. The kth elementary image is assigned a numerical gain αk � �.
The final observed image is obtained as the weighted sum of elementary images with weights
�αk�k��0,...,L�1�. A numerical flutter shutter camera permits the use of any L2��� piecewise
constant function (code) for the weighted sum [48]. In addition, it does not require one to
attach a fast physical shutter device to the camera. Indeed, the “flutter shutter effect” that
guarantees the invertibility of the motion kernel is obtained by the numerical weights. Such
a setup can be easily implemented, for example, with a CMOS sensor.

The third kind of flutter shutter is the postprocessing flutter shutter, which consists of
applying a temporal filter on a sliding window to the frames of a video sequence. Thus,
in contrast to the numerical or analog flutter shutters, it offers no compression. The post-
processing flutter shutter can be used for video postprocessing, e.g., for blind motion blur
deconvolution [45, 49]. A well chosen filter blindly deconvolves any uniform motion blur if
the blur of each frame is less than or equal to 1 pixel/frame [45, 49]. Another example of
postprocessing flutter shutter is given in [55]; its goal is not a deconvolution, but to boost the
high temporal frequencies of videos to enhance the motion effects.

As proved in [48], the best performance for all flutter shutters of all sorts in terms of
MSE is attained with numerical flutter shutters. The argument is that, using the same flutter
shutter code, the numerical flutter shutter beats the analog flutter shutter in terms of MSE. In
consequence, any performance bound for numerical flutter shutters applies to analog flutter
shutters as well.

Table 1 summarizes the three possible flutter shutter setups, analog, numerical, and post-
processing flutter shutters.

Table 1
The three possible implementations of a flutter shutter.

Flutter shutter type Shutter modification Number of image(s) to store/transmit

Analog [3, 4, 6, 17, 18,
19, 28, 29, 30, 31, 37,
38, 39, 48, 56]

Fast physical shutter (or liquid
crystal device or flash light)

1

Numerical [48] None 1

Postprocessing [45, 49,
55]

None All, a temporal filter is applied as post-
processing

Table 2 provides, to the best of our knowledge, the state of the art concerning the op-
timization of a flutter shutter and points out the considered application fields. The quoted
papers limit their study to binary exposure sequences. Yet the current technology allows for
numerical flutter shutters (see, e.g., [20, 36]).

1.3. Plan of the paper. Section 2 recalls a common formalism proposed in [48] for analog,
numerical, and postprocessing flutter shutters and for motion-invariant photography. For each
of these flutter shutters, a closed formula for the MSE as a function of the flutter shutter code
and of the velocity probability density is given.
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Table 2
This table describes the state of the art concerning the optimization of a flutter shutter. Little is known

about optimal codes. In particular, most articles consider only binary codes.

Articles Shutter type Code type Optimization type Application

Agrawal, Raskar,
and colleagues [3,
4, 6, 37, 38, 39]

Analog Binary Random search Traffic surveillance

He, Huang, Mc-
Closkey, Jelinek,
Xu et al. [17, 18,
19, 28, 30, 31, 56]

Analog Binary Accelerated search
among binary codes

Traffic surveillance, iris
image deblurring (biomet-
ric), 2D bar-codes, remote
sensing, character recogni-
tion

Tendero et al. [45,
48, 49]

Numerical Real-valued
codes

Analytic, exact Video postprocessing

Section 3 proves analytical formulae for the optimal analytically continuous or piecewise
constant flutter shutter codes associated with a given probability density for the velocities (see
Theorems 3.2 and 3.3).

Not only does the proposed formalism permit a forward analysis from velocity densities
to flutter shutter codes, but also it proposes a backward analysis. Indeed, Theorem 4.1 in
section 4 states the conditions under which a given flutter shutter code is optimal for some
velocity distribution. It also gives a formula that associates its underlying velocity density to
each given optimal code.

This formalism is also applied in section 5 to compute the optimal exposure time of a
standard camera for a given velocity distribution (see Proposition 5.1). This new snapshot
theory allows us to compare optimal standard cameras and optimal flutter shutter cameras
for any velocity distribution.

All of these theoretical results are illustrated in section 6. Section 6.1 analyzes three nat-
ural stochastic velocity models. It provides the optimal codes and a performance comparison
between the numerical flutter shutter and the optimal snapshot for a centered-Gaussian, a
uniform, and a trimodal velocity distribution. As a last application, section 6.2 performs the
reverse engineering of several classic, often patented, flutter shutter codes by providing the
underlying velocity distribution for which each code is optimal.

This study will be conducted on numerical flutter shutters. It therefore also gives upper
bounds for the gain of any analog flutter shutter with respect to the optimal snapshot in terms
of RMSE. These upper bounds are sufficient to discuss the pros and the cons of the flutter
shutter method (section 7). A glossary of notation is available in Appendix E. (Latin numeral
references in the text refer to formulae listed there.)

2. A simple mathematical formalism for the flutter shutter [48]. The relative camera-
landscape motion can be associated with a one-dimensional (1D) box kernel. The support
of this kernel increases linearly with the exposure time Δt � 0 and the velocity v � � of
the motion. If the exposure time is too long and the blur support exceeds two pixels, its
deconvolution is an ill-posed problem [8]. Instead the flutter shutter, or coded exposure, en-
sures an invertible motion kernel for arbitrarily severe motion blur. There are two different
acquisition tools that implement a flutter shutter with a moving sensor (or scene). The flutter
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shutter gain function can be implemented as an optical (temporally changing) filter. This fil-
ter controls the percentage of incoming photons allowed to travel to the sensor. The filtering
function is generally assumed to be piecewise constant [3, 4, 6, 39, 37] with a flutter shutter
code �αk�k��0,...,L�1�, where L is the length of the code. This setup corresponding to the initial
technology of the inventors will be called the analog flutter shutter.

A more flexible setup, the numerical flutter shutter, is a mere temporal filter applied to a
sequence of L frames. The kth raw frame is assigned a numerical gain αk � �. The processed
frame is obtained as the weighted sum of the raw frames with weights �αk�k��0,...,L�1�. Analog
and digital flutter shutters are associated to a flutter shutter code, but the formulae for the
resulting image are not exactly the same, as summarized in Table 3.

Table 3
This table summarizes and compares the main formulae of numerical and analog flutter shutters. Using

the same code, the MSE of a numerical flutter shutter is lower than the MSE of an analog flutter shutter. All
codes usable with an analog flutter shutter are usable with a numerical flutter shutter, while the converse is not
true. See text.

Type of flutter shutter Numerical flutter shutter Analog flutter shutter

Flutter shutter gain func-
tion α�t�

α�t� �
�L�1

k�0 αk��kΔt,�k�1	Δt��t�
(with αk � � and Δt 	 0)

α�t� �
�L�1

k�0 αk��kΔt,�k�1	Δt��t�
(with αk � 
0, 1� and Δt 	 0)

Continuous flutter α�t� � L2��� α�t� � L1���, α�t� � 
0, 1�
shutter gain function α�t�

Observed samples obs�n� obs�n��
�L�1

k�0αkP
���k�1�Δt

kΔt
u�n
vt�dt

�
obs�n� � P

�
1

v


�
α
�

.
v

�
� u

�
�n�

�

� �obs�n�� (observed)
�

1

v


α
�

.
v

�
� u

�
�n� 1


v


�
α
�

.
v

�
� u

�
�n�

var�obs�n�� (observed)
�

1

v


α2
�

.
v

�
� u

�
�n� 1


v


�
α
�

.
v

�
� u

�
�n�

Inverse filter γ̂�ξ�
���π,π��ξ	

α̂�ξv	

���π,π��ξ	

α̂�ξv	

��ûest�ξ�� (deconvolved) û�ξ����π,π��ξ� û�ξ����π,π��ξ�

MSE (uest) (deconvolved) 1

2π

�
�

�α�2L2��	�u�L1��	

�α̂�ξv��2
���π,π��ξ	dξ

(2.1)

1

2π

�
�

�α�L1��	�u�L1��	

�α̂�ξv��2
���π,π��ξ�dξ

(2.2)

This flutter shutter study is performed as though the image were a 1D signal, recorded on
a line in the direction of the camera-landscape motion. The convolution and deconvolution
model is applied on each line of the image. From the mathematical viewpoint, the flutter
shutter therefore boils down to the 1D convolution of a flutter shutter gain function α with
a 1D stochastic observed landscape. The expected value at position x of this stochastic
landscape will be denoted by u�x�. In all statements, this ideal (noiseless) landscape u is
assumed to have finite energy, u � L1��� � L2���, and to be �	π, π
 band limited (thanks to
the combined camera and sensor frequency cut-off). Therefore, u is well sampled at a unit
rate.
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The whole formalism of the flutter shutter is summarized in Table 3. This table is self-
contained, and all formulae are straightforward except the MSE formulae of the last row; for
their proof we refer to [48]. The first row of the table indicates the kind of implementable flutter
shutter gain function α, depending on the flutter shutter type and with a discrete code. In the
second row, for the sake of simplicity in calculations, the flutter shutter formalism is extended
to deal with time-continuous as well as piecewise constant flutter shutter gain functions. The
flutter shutter gain function is α�t�, meaning that the gain can change continuously with time.
A formula proved in [48] permits us to convert a time-continuous flutter shutter gain function
into a classic code.

The third row of the table gives the exact formula of the observed samples. The notation
X � Y means that the random variables X and Y have the same law. The notation P�λ�
denotes a Poisson random variable with intensity λ. For the analog flutter shutter, the observed
digital image at pixel n is a Poisson noise with intensity 1

�v�

�
α
�
	
v

� � u��n�, where � denotes

the convolution in L1���; see (ix) of Appendix E. The scaling factor v � � corresponds to
the relative camera scene velocity, which for the formulae in this table is assumed to be
known. The formula of the observation obs�n� is identical for both numerical and analog
flutter shutters. In both cases the observed samples obs�n� are obtained for n � �. As shown
in the fourth row, the expected value of the (observed) image is also identical in both cases.
However, there is a significant difference in the variance formulae of the fifth row. The variance
of the observed value at a pixel n depends on the square of the flutter shutter gain function α
for the numerical flutter shutter, while the dependency is linear for the analog flutter shutter.
The fourth and fifth rows are immediately derived from the third by expectation and variance
calculations.

The sixth row gives the formula of the deconvolution filter. As usual in the literature on
the flutter shutter [3, 4, 6, 11, 17, 18, 19, 28, 29, 30, 31, 37, 38, 39, 48, 56], only well-posed
deconvolution strategies are considered. Thus, we always assume that the flutter shutter gain
function α does not vanish on �	π
v
, π
v

 and that the velocity v � � is a known constant.
Hereinafter f̂ denotes the classic continuous Fourier transform on �, and f̌ the inverse Fourier
transform on �; see (xx). Under this condition the deconvolution of the motion-blurred
observed image is a well-posed problem. This inverse filter is nothing but the inverse of the
Fourier transform of the convolution kernel, 1

�v�

�
α
�
	
v

� � sinc��n�. The sinc function ensures

that it is applied only on the �	π, π
 frequencies. Indeed, u is assumed to be �	π, π
 band
limited.

The seventh row gives the expected value of the deconvolved image. The inverse filter is
designed to give back the ideal landscape (in expectation) by simply inverting the invertible
flutter shutter kernel α.

The last row gives the main two formulae proved in [48], namely the MSE (or variance) of
the restored signal. These formulae give the MSE of the restored signal value with respect to
its expectation. In other words, this MSE is the expectation of the square of their difference,
and this difference is the deconvolved acquisition noise. Note that the observed landscape
u intervenes in the above formulae as a mere multiplication factor by the constant �u�L1
��.
Thus, optimizing a flutter shutter amounts to finding flutter shutter gain functions α that
minimize (2.1) or (2.2), which are different for the analog and numerical flutter shutter.
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It immediately follows from the MSE formulae (2.1) and (2.2) of the last row of Table 3
that if a flutter shutter gain function 0 � α�t� � 1 is implementable on both kinds of flutter
shutters, the MSE of the analog flutter shutter is bigger than the MSE of the numerical flutter
shutter. Indeed, these conditions on α�t� imply α2�t� � α�t� and therefore �α�2L2
�� � �α�L1
��.
Notice that the MSE of the numerical flutter shutter does not change by changing α for λα if
λ � ���0�. This is not true for the analog flutter shutter, where for evident physical reasons,
0 � α�t� � 1 and (e.g.) α

2 has a higher MSE than α.

3. From a velocity distribution to its optimal flutter shutter code. We now address
the subject of the present paper, which is to extend the above formalism to compute optimal
flutter shutter codes in the presence of a (known) velocity distribution. Our first step is to find
optimal, in the sense of the MSE of (2.1), real-valued, time-continuous flutter shutter gain
functions in L2���. Our second step is to find optimal, real-valued, piecewise constant flutter
shutter gain functions in L2��� that can be implemented with a numerical flutter shutter.

Step 1. Optimal time-continuous flutter shutter gain function. In what follows
we assume that the probability density ρ�v� for the relative camera/scene velocities is known,
and that the possible velocities are bounded; namely, ρ�v� � 0 for 
v
 � 
vmax
. The density
ρ is, for example, easily obtained from an optical flow algorithm.

The question is how to derive from ρ a real-valued flutter shutter gain function α � L2���
that gives a minimal MSE for the reconstructed signal. As we have seen in section 2, for a
given velocity v � � the MSE of the final deconvolved image of the numerical flutter shutter
is given by (see (2.1))

�
�

�α�2L2
���u�L1
�����π,π

ξ�


α̂�ξv�
2 dξ.(3.1)

Since by definition the optimum, if it exists, satisfies α � L2���, we can look for α̂ � L2���
without loss of generality (w.l.o.g.). In addition, from Plancherel’s identity (xx) we have
�α�2L2
�� � 1

2π �α̂�2L2
��. Thus, by a change of variables we deduce that, for a fixed v and

dropping the positive multiplicative constant
�u�L1��	

2π , minimizing (3.1) with respect to α �
L2��� is equivalent to minimizing

Ev�α̂� :� �α̂�2L2
��

�
�

���π�v�,π�v�
�ξ�dξ

v
 
α̂
2�ξ�(3.2)

with respect to α̂ � L2���. Taking the velocity distribution ρ�v� into account, from (3.2) we
deduce the functional that characterizes optimal flutter shutter gain functions

E�α̂� :�
�
�

Ev�α̂�ρ�v�dv �
�
�

�α̂�2L2
��

� �

��

���π�v�,π�v�
�ξ�dξ

v

α̂
2�ξ� ρ�v�dv

� �α̂�2L2
��

� �

��

1


α̂
2�ξ�
��

�

ρ�v�����v�π,�v�π
�ξ�

v
 dv

�
dξ,(3.3)

where we used Fubini’s theorem for the last equality. The relation (3.3) leads us to associate
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to the velocity distribution the function � � ξ �� w�ξ� defined by

w�ξ� :�
�
�

ρ�v�����v�π,�v�π
�ξ�

v
 dv �

�
��
�
�
ξ

π

, 
ξ

π

� ρ�v�
v
 dv.(3.4)

Remark 1. From (3.4), we deduce that w is even, that w � 0. In addition, from (3.4) we
deduce that the function �0,��� � ξ �� w�ξ� is nonincreasing. Indeed, the integrand is fixed,
but the integration interval decreases (in the sense of the inclusion) for ξ � 0. Furthermore,
it follows from (3.4) that w� is odd and satisfies for any ξ � 0

w��ξ� � 	π
ξ

�
ρ

�
ξ

π

�
� ρ

�	ξ
π

��
,

this derivative being understood in the distribution sense if ρ is just L1���. (In which case a
primitive of ρ is absolutely continuous, and its classic derivative is almost everywhere equal
to ρ.) In addition, from (3.4), we deduce that�

�


w�ξ�
 dξ �
�
�

2
v
πρ�v�
v
 dv � 2π.

Thus, w � L1��� and is compactly supported, so that 4
�
w � L1��� � L2���. By assumption,

we have that ρ�v� � 0 for any v � � such that 
v
 � 
vmax
. Therefore, from (3.4), we deduce
that w�ξ� � 0 for any ξ � � such that 
ξ
 � 
vmax
π.

With the help of the function w we can finally formulate the energy that minimizes (3.3)
in a closed form.

Definition 3.1. Given a velocity probability density ρ, we call optimal flutter shutter gain
function for ρ any function α � L2��� that minimizes

E�α̂� � �α̂�2L2
��

� �

��

w�ξ�

α̂
2�ξ�dξ,(3.5)

where w is linked to ρ by (3.4).
The energy (3.5) is invariant to arbitrary translations and scalings of α, i.e., satisfies

E�C1α̂���e�iC2	� � E�α̂�, for any constants C1 � ���0� and C2 � �. Therefore, minimizers
of (3.5) among functions α̂ � L2��� are not unique, assuming there is one.

Theorem 3.2 (optimal time-continuous flutter shutter gain functions). Let ρ be a probability
density supported on �	
vmax
, 
vmax

, and consider w obtained from ρ by (3.4). A flutter
shutter gain function α � L2��� is optimal in terms of MSE (3.5) iff, for some C � 0, α̂
satisfies 
α̂
 � C 4

�
w on the support of w, and α̂ � 0 outside the support of w.

Proof. See Appendix A for the proof.
Remark 2. Theorem 3.2 implies that optimal flutter shutter gain functions α � L2��� are

bounded, continuous, and band-limited. In addition, (3.4) implies that

w�ξ� �
�
��
�
�
ξ

π

, 
ξ

π

� ρ�v� � ρ�	v�
2
v
 dv.
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We deduce that optimal flutter shutter gain functions α � L2��� depend only on the even part
of ρ. Indeed, the choice of a positive direction for the velocities v is arbitrary and does not
change the MSE.

Step 2. Computing optimal flutter shutter codes. Theorem 3.2 gives the formula
of optimal time-continuous flutter shutter gain functions α � L2���. However, these time-
continuous flutter shutter gain functions must be turned into a piecewise constant function to
be implementable by a numerical flutter shutter.

Theorem 3.3 (optimal flutter shutter codes in terms of MSE). Let ρ, w be as in Theorem
3.2, and let Δt be such that 
vmax
Δt � 1. Consider a sequence �αk�k � �2��� and the L2���
piecewise constant flutter shutter gain function uniquely associated with �αk�k,

(3.6) α�t� �
	
k��

αk��kΔt,
k�1�Δt��t�,

where Δt � 0. A sequence �αk�k � �2��� is optimal with respect to the MSE (3.5) iff �αk�k
satisfies 




	

k��

αke
�ikξ






 � C

4

�
w
� ξ
Δt

��
sinc

� ξ
2π

�
for some fixed C � 0 and for any ξ � �	π, π
.

In addition, the real values αk, for k � �, explicitly given by

αk � 1

2π

� π�vmax�Δt

�π�vmax�Δt

4

�
w
�

ξ
Δt

�
cos �ks��

sinc
� ξ
2π

� dξ,

define an optimal flutter shutter gain function α � L2��� with respect to the energy (3.5),
among all real-valued functions in L2��� of the form (3.6).

Proof. See Appendix B for the proof.
This theorem directly links optimal flutter shutter codes with the distribution of the

camera-scene velocities. It produces flutter shutter codes that are implementable with a
numerical flutter shutter. However, in general nothing guarantees that the codes will be
nonnegative. Thus, in general one cannot expect the produced code to be implementable with
an analog flutter shutter.

4. The reverse path: From flutter shutter gain functions to their underlying
velocity distributions. By the formulae of the previous section we are now able to check
whether a flutter shutter gain function α � L2��� is optimal for some velocity distribution,
and to compute its underlying velocity distribution. Remark 2 above implies that from a given
optimal flutter shutter gain function α � L2���, associated with some unknown probability
density ρ, one can recover only the even part of ρ, namely ρ
	��ρ
�	�

2 . Indeed, the optimal
flutter shutter gain function α � L2��� depends only on the even part of ρ. Thus, throughout
this section we shall assume that ρ is even.

Theorem 4.1 (an optimality test for flutter shutter codes and a formula for their underlying
velocity distribution). Let α � L2��� be a flutter shutter gain function. If α is time-continuous
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(not of the form of (3.6)), then α is optimal in the sense of (3.5) for some velocity distribution
ρ�v� only if the function �0,��� � ξ �� 
α̂�ξ�
 is nonincreasing. Moreover, if �0,��� � ξ ��

α̂�ξ�
 is nonincreasing, then

(4.1) ρ�v� � 	v

2
w��πv� � 	vC

2π

�
α̂
4�� �πv�, v � 0,

where C is a positive constant, w is given by (3.4), and the derivatives in (4.1) are understood
in the distribution sense if ρ is just in L1���. Assume that α � L2��� has the form of (3.6)
and that 
vmax
Δt � 1. Then α is optimal in the sense of (3.5) only if�

0,
π

Δt



� ξ �� 
α̂�ξ�
4

sinc�ξΔt

2π

�

2
is nonincreasing. Moreover, if �0, π

Δt 
 � ξ �� �α̂
ξ��4


sinc� ξΔt
2π �
2

is nonincreasing, then

(4.2) ρ�v� � 	v

2
w��πv� � 	vC

2

�

α̂�ξ�
4

sinc� ξΔt

2π

�

2
��

�πv� for v �
�	1
Δt

,
1

Δt

�
� �0�,

where C is a positive constant, w is given by (3.4), and the derivatives in (4.2) are understood
in the distribution sense if ρ is just in L1���.

Proof. See Appendix C for the proof.
Note that for any discrete α of the form α�t� � �L�1

k�0 αk��kΔt,
k�1�Δt��t� we have α � L2���,
and therefore Theorem 4.1 applies. Moreover, Theorem 4.1 gives a direct algorithm that
computes ρ. This numerical method is detailed in Algorithm 1.

Remark 3. As we shall see in section 6.2, most classic codes do not strictly satisfy the
conditions of Theorem 4.1. Fortunately, for these codes the set where 
α̂
 is increasing has
small measure. In addition, 
α̂
 is small on this set. Thus, we can apply Algorithm 1 by
modifying α (or w) only slightly by replacing (4.2) by

(4.3) ρ�v� � 	 v

2π
w��πv����vw�
πv��0��v� for v � 0

and normalizing ρ so that
�
ρ � 1.

Algorithm 1, for which [44] also provides a peer-reviewed implementation and online demo,
will be applied in section 6.2 to several classic (patented or not) codes to uncover their un-
derlying velocity distribution ρ�v�.

5. Optimal snapshot and comparison flutter shutter/snapshot definitions. The
formulae that give the exposure time and MSE of an optimal snapshot are needed to com-
pare optimal flutter shutters with optimal snapshots for the same velocity distribution. The
framework of section 3 is applicable, a snapshot being a flutter shutter gain function of the
form α � ��0,Δt
.
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Algorithm 1. Pseudocode computing the velocity distribution associated with a
given code.

input : a flutter shutter code �αk�k��0,...,L�1�, Δt the time step of the flutter shutter.
output: underlying probability density ρ for which the code is optimal.

1. compute α̂�ξ� (� Δt sinc
� ξΔt

2π

�
e�

iξΔt
2
�L�1

k�0 αke
�ikξΔt; see Table 3);

2. compute the function w defined in (3.4) by

w�ξ� �
�


α̂�ξ�
4

sinc� ξΔt
2π

�

2
�
�ξ�

(see Theorem 3.2);

3. estimate w��x� by w��x� � w
x�h��w
x�
h ;

4. compute ρ�v� � 	 v
2πw

��πv����vw�
πv��0��v�, v �
�
�1
Δt ,

1
Δt

���0�;
5. normalize so that

�
�
ρ�v�dv � 1.

Following the formalism of section 3, given a probability density ρ�v� for the camera-scene
velocities v, we want to minimize the MSE (3.1) among all flutter shutter gain functions of
the form of α � ��0,Δt
. This leads to minimizing

E�Δt� �
� � π

�π

ξ2

sin2
�ξvΔt

2

� v2Δt

4
ρ�v�dξdv,

which therefore yields

E��Δt� �
� � π

�π

v2

4

ξ2
�
sin
� ξvΔt

2

�	 ξvΔt cos
� ξvΔt

2

��
sin3

� ξvΔt
2

� ρ�v�dξdv.

Notice that Δt � 2
�vmax�

is necessary for the invertibility of a snapshot for any velocity v

such that 
v
 � 
vmax
. The existence and uniqueness of such a snapshot is formalized in the
following proposition.

Proposition 5.1 (and definition: optimal snapshot). Let ρ be as in Theorem 3.2. We consider
the use of the unique Δt� that minimizes the MSE,

(5.1) E�Δt� �
� � π

�π

ξ2

sin2
�ξvΔt

2

� v2Δt

4
ρ�v�dξdv,

to be an optimal snapshot. In addition, when ρ�v� is uniform over �	
vmax
, 
vmax

, we have
that Δt�
vmax
 is constant (Δt�
vmax
 � 1.42).

Similarly, when ρ�v� is a truncated Gaussian, i.e., ρ�v�����4σ,4σ
�v� exp
�
�v2

2σ2

�
, then

Δt�
vmax
 is also constant (Δt�
vmax
 � 1.94).
Proof. See Appendix D for the proof.
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Figure 4. The energies E defined in (5.1). The x-axis is maximum blur (�vmax�Δt) in pixels, and the y-axis
the value of E, i.e., the MSE of the deconvolved image. Left: For a uniform velocity distribution U�

1, 1��, the
minimum is reached for a maximum blur of approximately 1.44 pixels. Right: For a truncated Gaussian velocity

distribution ρ�v�����1,1��v� exp
�

�v2

2�1
4	2

�
, the minimum is reached for a maximum blur of approximately 1.96

pixels.

Proposition 5.1 means that for a standard camera, assuming a uniform or a truncated
Gaussian motion model, the exposure time should be tuned so that the blur support never
exceeds the constant Δt�
vmax
. This constant depends on the motion model, as illustrated
in Figure 4. The zero of E��Δ� was computed numerically.

We now turn to the second goal of this section, namely, giving the definitions needed
to theoretically analyze the RMSE gain of the numerical flutter shutter with respect to the
snapshot.

Gain evaluation. The RMSE gain depends on the velocity v. Thus, it is useful for the
analysis to define the gain G�v� at velocity v of the optimal flutter shutter with respect to the
optimal snapshot in terms of RMSE by the ratio

G�v� � RMSE(snapshot)

RMSE(flutter)
�

�������
�π
�π

1

Δt�




2 sin�
ξvΔt�

2 	

ξvΔt�




2 dξ�π
�π

�α�2
L2��	

�α̂
ξv��2 dξ

,(5.2)

where v is the support of the velocity distribution ρ and Δt� is the exposure time of the
optimal snapshot. This optimal snapshot is defined in Proposition/definition 5.1. Recall
that a piecewise constant flutter shutter gain function α has the generic form (3.6), α�t� ��L�1

k�0 αk��kΔt,
k�1�Δt��t�. Moreover, its time step is Δt, and Δt � Δt� in general. The
coefficients αk of the flutter shutter code are explicitly given by Theorem 3.3 as a function of
the velocity distribution ρ. The average gain of the flutter shutter in terms of RMSE with
respect to the optimal snapshot is defined by�

�

G�v�ρ�v�dv,(5.3)
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and the associated standard deviation is��
�





G�v� 	 �
�

G�u�ρ�u�du




2 ρ�v�dv.(5.4)

6. Numerical experiments. Section 6.1 gives the optimal flutter shutter codes and com-
putes the gain of the optimal flutter shutter with respect to the optimal snapshot for three
natural velocity distributions: a (truncated) Gaussian velocity model, a uniform velocity
model, and a trimodal “traffic-like” velocity model. Section 6.2 gives the reverse engineering
of classic flutter shutter codes in the literature. We refer to [44] for a detailed pseudocode and
an implementation.

6.1. Simulations on optimized codes. The goal of this section is to numerically explore
three natural velocity distributions. For each velocity distribution, we give the corresponding
optimal code and compare its efficiency in terms of RMSE with the optimal snapshot.

Recall that the parameters of a flutter shutter are as follows: (1) L the length of the code
�αk�k��0,...,L�1�, (2) the velocity motion model ρ�v�, and (3) the time step Δt of the flutter
shutter gain function α, so that LΔt is the total exposure time of the flutter shutter. The
parameter for the optimal snapshot is only the velocity model ρ�v�. The optimal snapshot
provides Δt�, the optimal exposure time for a standard camera, i.e., without using a flutter
shutter. In order to simplify the comparison with the code of Agrawal et al. [6, 39, 37, 31, 3],
all experiments are made with the code length L � 52 used in those papers.

Three velocity motion models are considered and compared: a truncated Gaussian (in
section 6.1.1), a uniform velocity distribution model (in section 6.1.2), and a three modal
velocity distribution (in section 6.1.3). To facilitate the comparison of the flutter shutter with
the optimal snapshot, the time step Δt of the flutter shutter was chosen so that LΔt � cΔt�,
where c � ��.

The codes of Figures 5 and 7 are the optimal choices for the flutter shutter codes
�αk�k��0,...,L�1� in terms of MSE (see Theorem 3.3). These experiments compare two strategies
using a finite exposure time, which is mandatory for a practical solution. This comparison was
already performed in [48] for cases when the velocity v0 is known, i.e, ρ�v� � δv0�v�. In that
case the optimal numerical flutter shutter code is derived from a sinc function. The optimal
snapshot has an exposure time Δt� satisfying 
v0
Δt� � 1.0909, and the RMSE gain of the
optimal flutter shutter with respect to this optimal snapshot is a 1.17 factor [48]. In the case
of a probabilistic velocity distribution, the RMSE gains should therefore be compared to this
1.17 bound which optimizes the worst-case scenario, based on the maximal velocity. Without
loss of generality we shall normalize the maximal velocity to vmax � 1. Indeed, ceteris paribus
a scale change of the velocity model simply results in a scale change of the function w�ξ� and
therefore in a zoom of the code.

6.1.1. Optimal codes, Gaussian velocity model. This section provides the optimal codes
for a truncated Gaussian N �0, 14� velocity motion model explicitly given by

(6.1) ρ�v�����1,1
�v� exp
�
	v2
2
�
1
4

�2
�
.
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Optimal flutter shutter codes are explicitly depicted in Figures 5(a) and 5(c). The Fourier
transforms of the corresponding flutter shutter gain functions are given in Figures 5(b) and
5(d). In Figure 5 between the two plots at the top (Figures 5(a) and 5(b)) and the two
at the bottom (Figures 5(c) and 5(d)), the discretization step Δt of the flutter shutter gain
functions is adapted to meet a given value of the exposure time factor c. For Figures 5(a)
and 5(b) we have c � 5, while for Figures 5(c) and 5(d) we have c � 10. (Recall that in these
experiments we have 52Δt � cΔt�.) Thus, the support of the flutter shutter gain function
doubles between the top and bottom parts of Figure 5. The green curves show 4

�
w�ξ� to gauge

the quality of the finitely supported approximation of 4
�

w�ξ� by the flutter shutter code. The
function 4

�
w�ξ� does not change. Indeed, the function w�ξ� defined in (3.4) depends only

on the velocity motion model and is fixed. Notice that the approximation is slightly better
for the larger exposure factor c � 10, shown in the bottom part of Figure 5. This is no
surprise. Indeed, since w�ξ� has compact support, the ideal time-continuous flutter shutter

gain function �4�w�ξ� is supported on �.
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Figure 5. Codes obtained for a truncated Gaussian velocity density explicitly given in (6.1). Left: The
flutter shutter code coefficients αk, using an exposure time of 5 (a) or 10 (c) times larger than for the optimal
snapshot. Right: The modulus of the corresponding Fourier transforms (red), and the Fourier transforms of the
optimal time-continuous flutter shutter gain function 4

�
w�ξ� defined in (3.4) (green). The convergence is quite

good, even for small exposure time factors. The exact equality α̂�ξ� � 4
�

w�ξ� requires an infinitely supported
flutter shutter gain function because 4

�
w�ξ� has compact support.
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Figure 6. Red: The gain G�v� in terms of RMSE (defined by (5.2)) of the optimal flutter shutter code
with respect to the optimal snapshot for the truncated Gaussian velocity distribution. Results are shown for
exposure time factors of 5 (left) or 10 (right). The dotted blue curve represents the probability density of the
truncated Gaussian velocity distribution. The green curves show the average gain μ as it is defined in (5.3).
The optimization permits us to concentrate the gain on most probable velocities, as expected. On average the
gain is substantial compared to the bound of [48] that optimizes the maximal velocity (worst case).

Figure 6 provides the comparison with the optimal snapshot in terms of RMSE. For the
velocities v in the support of the velocity motion model, the red curves of Figure 6 show
the RMSE gain G�v� (see (5.2)) of the flutter shutter with respect to the optimal snapshot.
Figure 6(left) corresponds to an exposure factor c � 5, meaning that the flutter shutter
integrates five times longer than the optimal snapshot. Figure 6(right) corresponds to c � 10.

The dotted blue curve provides the probability of the velocity according to the velocity
distribution. It permits us to verify that the optimization concentrates the RMSE gain on
the most probable velocities. On the other hand, for higher but less likely velocities v the
optimized flutter shutter performs worse than the optimal snapshot. The green line shows the
expectation of G�v� (see (5.3)).

Table 4 provides both the average gain, defined by (5.3), and its associated standard
deviation, defined by (5.4). It permits us to measure “how risky” the optimization is, i.e.,
how the gain will vary when one observes velocities according to the motion model explicitly
given in (6.1). Notice that the asymptotic bound of [48] is beaten by approximately 50%.

Table 4
Average gain of the optimized flutter shutter compared to the optimal snapshot, assuming a truncated

Gaussian velocity distribution explicitly given in (6.1). As supposed from Figure 6, the gain is substantial, and
the increase is approximately 50% compared to the asymptotic of [48].

Exposure time factor c 5 10

Code length L 52 52

Average gain μ from (5.3) 1.2556 1.2721

Standard deviation σ from (5.4) 0.1700 0.1994

6.1.2. Optimal codes, uniform motion model. This section provides the optimal codes
for a U�	1, 1
 velocity motion model explicitly given by

(6.2) ρ�v� � 1

2
���1,1
�v�.
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The setup is exactly the same as in section 6.1.1. Optimal flutter shutter codes are explicitly
depicted in Figures 7(a) and 7(c). The Fourier transforms of the corresponding flutter shutter
gain functions are given in Figures 7(b) and 7(d). For Figures 7(a) and 7(b) we have c � 5,
while for the Figures 7(c) and 7(d) we have c � 10, as in section 6.1.1.
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Figure 7. Codes αk obtained assuming a uniform density for the velocities explicitly given in (6.2). Left:
The flutter shutter code coefficients αk, using an exposure time of 5 (a) or 10 (c) times larger than for
the optimal snapshot. Right: The modulus of their corresponding Fourier transforms (red), and the Fourier
transform of the optimal time-continuous flutter shutter gain function 4

�
w�ξ� defined in (3.4) (green).

Figure 8 provides the comparison with the optimal snapshot in terms of RMSE. The dotted
blue curve provides the probability of the velocity according to the velocity distribution. The
green line shows the average of G�v� (defined in (5.2)), taking the velocity motion model ρ
into account, as it is defined in (5.3).

Table 5 provides both the average gain, defined by (5.3), and its associated standard
deviation, defined by (5.4), as in section 6.1.1. The gain is negligible.

6.1.3. Optimal codes, trimodal motion model. This section provides the optimal codes
for a trimodal “traffic-like” velocity motion model explicitly given by

(6.3) ρ�v� � ρ0δ0�v� � 1	 ρ0
2

δ15�v� � 1	 ρ0
2

δ�15�v�.
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Figure 8. In red: The gain G�v� in terms of RMSE (defined by (5.2)) of the optimal flutter shutter code
with respect to the optimal snapshot for the uniform velocity distribution explicitly given in (6.2). Results are
shown for exposure time factors of 5 (left) and 10 (right). The dotted blue curve represents the probability
density ρ�v� � 1

2
���1,1��v� of the uniform velocity distribution. The green curves show the average gain μ as it

is defined in (5.3).

Table 5
Average gain of the optimized flutter shutter compared to the snapshot, assuming a uniform density for

the velocities explicitly given in (6.2). As could already be supposed from Figure 8, this gain is not significant.

Exposure time factor 5 10

Code length L 52 52

Average gain μ from (5.3) 1.0701 1.0715

Standard deviation σ from (5.4) 0.0416 0.0530

The setup is the same as in section 6.1.1, except for the exposure time factors c. We show
optimal flutter shutter codes in the case where ρ0 � 0.99. However, we provide the gains and
standard deviations for several values of the parameter ρ0 in Table 6.

Optimal flutter shutter codes are explicitly depicted in Figures 9(a) and 9(c). The Fourier
transforms of the corresponding flutter shutter gain functions are given in Figures 9(b) and 9(d).
For Figures 9(a) and 9(b) we have c � 9, while for Figures 9(c) and 9(d) we have c � 25.

Figure 10 provides the comparison with the optimal snapshot in terms of RMSE. The
dotted blue curve provides the probability of the velocity according to the velocity distribution.
The green line shows the average of G�v� (defined in (5.2)), taking the velocity motion model
ρ into account as it is defined in (5.3).

Table 6 provides both the average gain defined by (5.3) and its associated standard devi-
ation defined by (5.4), as in section 6.1.1. Notice that the 1.17 asymptotic bound of [48] that
optimizes the worst case, i.e., the maximal velocity, is largely beaten.

6.2. A reverse engineering of classic flutter shutter codes. This section provides
the underlying velocity distribution ρ of classicflutter shutter codes of the literature. However,
Algorithm 1 is applicable to any flutter shutter code. Algorithm 1, with the variant given by
(4.3), is used. We normalize Δt in the definition of the flutter shutter gain function (see
Table 3). This means that the velocities are expressed in pixels per Δt. Thus, the x-axis of
Figures 11, 12, and 13 has the range �	1, 1
.

We proceed first to the reverse engineering of the Agrawal et al. flutter shutter code [38,
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Figure 9. Codes obtained for a truncated Gaussian velocity density explicitly given in (6.3) with ρ0 � 0.99.
Left: The flutter shutter code coefficients αk, using an exposure time of 9 (a) or 25 (c) times larger than for
the optimal snapshot. Right: The modulus of their corresponding Fourier transform (red), and the Fourier
transform of the optimal time-continuous flutter shutter gain function 4

�
w�ξ� defined in (3.4) (green).
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Figure 10. In red: The gain G�v� in terms of RMSE (defined by (5.2)) of the optimal flutter shutter code
with respect to the optimal snapshot for the trimodal velocity distribution. Results are shown for exposure time
factors of 9 (left) and 25 (right). The dotted blue curve represents the probability density (6.3) with ρ0 � 0.99
of the trimodal velocity distribution considered. The green curves show the average gain μ as defined in (5.3).
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Table 6
Average gain of the optimized flutter shutter compared to the snapshot, assuming a trimodal velocity

model given by (6.3). As guessed from Figure 10, when ρ0 � 0.99, the gain is substantial and the increase is of
approximately 230% compared to the asymptotic of [48]. The standard deviation can be nonnegligible, depending
on the value of ρ0. Note that if ρ0 � 0 or ρ0 � 1, we retrieve the deterministic case, and the standard deviation
would therefore be equal to zero.

Exposure time factor 9 25 25 25 25 25 25

Code length L 52 52 52 52 52 52 52

Value of the parameter ρ0 0.99 0.99 0.9 0.8 0.7 0.6 0.5

Average gain (5.3) 2.7385 3.9501 2.9971 2.5841 2.2883 2.0073 1.7670

Standard deviation (5.4) 0.2220 0.3016 0.7966 0.8753 0.9221 0.8882 0.8125

p. 799] and patent application [39] in Figure 11(a). Note that the y-axis of this panel is log
scaled. This distribution means that there is a high probability that the scene is still, and that
more or less uniformly distributed velocity motions occur on a certain interval of velocities.
However, this is an unlikely model for a camera motion, due to the strange fluctuations of the
velocity distribution. The velocity distribution of another flutter shutter code of Agrawal and
Xu [6, p. 7] is given in Figure 11(b). It is mainly concentrated on small velocities.

The reverse engineering of the Agrawal et al. flutter shutter codes published in [4, p. 2566]
(resp., [3, p. 5]) is shown in Figure 12(a) (resp., Figure 12(b)).

Another example is the McCloskey code [27, p. 321], shown in Figure 13(a). The same
scheme can be applied to the “standardized” snapshot, i.e., α�t� � ��0,1
�t�, to estimate the
underlying probability density of a classic camera. This example is given in Figure 13(b),
where we deduce that it is optimal for relatively broad intervals centered at approximately

v
 � 1. Among the velocity densities of Figures 11(b), 13, and 12, the velocity distribution
of the snapshot shown in Figure 13(b) is the most convincing one.

7. Conclusion. Knowledge of a stochastic velocity model was shown to increase the ex-
pected RMSE gain of a flutter shutter with respect to an optimal snapshot. The use of this
stochastic velocity model allows us to beat the 1.17 bound of [46, 48] that was established
for known velocities. Indeed, the use of a stochastic velocity model permits us to optimize
the average case, in terms of MSE, at minimal risk. This is in contrast with [48], which opti-
mized only the worst case, i.e., in a practical situation the maximal velocity to guarantee the
invertibility for every v such that 
v
 � 
vmax
.

We proved a mathematical formula that allows us to perform a reverse engineering of
several classic and patented flutter shutter codes. It computes the underlying probability
density for which these codes are optimal.

Given any distribution for the expected velocities, the theory predicts, by closed formulae,
the gain in terms of MSE of the optimal flutter shutter compared to the optimal snapshot. The
combination of the forward, backward, and RMSE prediction provides a complete toolbox to
optimize, analyze, and predict the gain of the flutter shutter with respect to its corresponding
optimal snapshot in terms of RMSE. This toolbox allows us to decide whether the flutter
shutter paradigm is useful for any given application. According to the results of this paper, for
every given distribution ρ�v� for the relative camera/scene velocity v, there exists an optimal
flutter shutter code. This optimal flutter shutter code is invertible for all velocities v in the



24 YOHANN TENDERO AND JEAN-MICHEL MOREL

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Lo
g 

of
 th

e 
P

ro
ba

bi
lit

y

Velocity v

Legend
Velocity probability density of the first Agrawal et al. code

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Lo
g 

of
 th

e 
P

ro
ba

bi
lit

y

Velocity v

Legend
Velocity probability density of the second Agrawal et al. code

(b)

-9e+06

-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
st

im
at

ed
 d

er
iv

at
iv

e 
of

 th
e 

fu
nc

tio
n 

w

x

Legend
The estimated derivative of the function w for the first Agrawal et al. code

(c)

-2.5e+06

-2e+06

-1.5e+06

-1e+06

-500000

 0

 500000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
st

im
at

ed
 d

er
iv

at
iv

e 
of

 th
e 

fu
nc

tio
n 

w

x

Legend
The estimated derivative of the function w for the second Agrawal et al. code

(d)

Figure 11. Top: The velocity probability densities ρ associated with the codes of Agrawal, Raskar, et al.;
the x-axis is the velocity (in signed pixels per Δt), and the y-axis is the logarithm of the velocity probability
densities (log�1 � ρ�v��). (a) uses the code published in [38, p. 799] and patent application [39]; (b) uses the
code published in [6, p. 7], which corresponds to an attempt to optimize both the MSE and the a posteriori
velocity estimation. (c), (d) The estimation of the w� function. (Recall that w is defined in (3.4).) The x-axis
represents x, and the y-axis the estimated w��x� from the flutter shutter code coefficients.

support of ρ. The gain of the optimal flutter shutter with respect to the optimal snapshot
in terms of MSE can be significant, e.g., for Gaussian (resp., trimodal) velocity distribution
considered in section 6.1.1 (resp., section 6.1.3). A fortiori this gain is very significant when
compared to the 1.17 asymptotic bound that was proved in [46, 48] for fixed known velocity v.
Yet, such gains can be attained only for very specific velocity distributions, e.g., the trimodal
velocity distribution of section 6.1.3. For more generic cases like the Gaussian model, the
RMSE gain of the numerical flutter shutter is a moderate 1.27 factor, while the exposure time
is multiplied by a factor of 10 compared to the optimal snapshot. These RMSE gains are
obtained under the following assumptions:

1. The convolution model is valid. In consequence, it must be assumed that the motion
blur, i.e., the velocity, is constant everywhere in the image. This rules out many more
complex motion blurs, e.g., camera shakes [53].

2. An accurate a posteriori estimation of the velocity can be obtained. Indeed, the RMSE
computations are valid under the assumption that the deconvolution kernel is known.
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Figure 12. Top: The velocity probability densities ρ associated with the codes of Agrawal, Raskar, et al.;
the x-axis is the velocity (in signed pixels per Δt)), and the y-axis is the logarithm of the velocity probability
densities (log�1�ρ�v��). (a) The code published in [4, p. 2566]; (b) the code published in [3, p. 5]. Bottom: The
estimation of the w� function. (Recall that w is defined as in (3.4).) The x-axis represents x, and the y-axis
the estimated w��x� from the flutter shutter code coefficients.

The RMSE gains of the numerical flutter shutter also yield upper performance bounds for
the RMSE gains of the analog flutter shutter compared to the optimal snapshot. Indeed, the
numerical flutter shutter always yields a higher gain [48] simply because it relaxes several
constraints of the analog flutter shutter setup.

Practical conclusion. The above numerical results and practical considerations are re-
stricted to locally or globally straight motions, and therefore to short exposures. As we
mentioned in section 1, the flutter shutter setup imposes itself only under the condition that
no shorter time exposure is possible, and/or that the size of the acquired data and/or its
processing time must be so severely constrained that storing and fusing successive frames is
simply not possible. This sends us back to the conception of special high-speed cameras with
drastic memory constraints. We deduce that, under the assumption of a globally straight
motion, the flutter shutter is the following:

� Useless unless we cannot keep all images. (Yet the numerical flutter shutter with a
sinc code can be used successfully as a temporal filter, provided the maximal velocity
is controlled [45, 49].)
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Figure 13. (a) The velocity probability density ρ associated with the McCloskey code [27, p. 321]; the x-axis
is the velocity (in signed pixels per Δt), and the y-axis the logarithm of the distribution (log�1� ρ�v��). Figure
(a) has a high probability of not moving and two small charges for two relatively small but nonzero velocities. (b)
The probability density of velocities associated with a “standardized” snapshot with flutter shutter gain function
��0,1�; the x-axis is the velocity (in signed pixels per Δt), and the y-axis (not log scaled) is the corresponding
probability density. This snapshot is optimized a priori for objects moving at velocity �v� � 1. This bimodal
density is quite suitable for, e.g., a traffic surveillance camera. Bottom: The estimation of the w� function.
(Recall that w is defined in (3.4).) The x-axis is x, and the y-axis the estimated w��x� from the flutter shutter
code coefficients.

� Useful for a known uniform velocity. The numerical flutter shutter gains over the
optimal snapshot by a 1.17 RMSE gain factor [48].

� More useful if one is able to model the velocity distribution. In that case the RMSE
gain can increase more significant values in expectation. This setup requires neverthe-
less an accurate a posteriori velocity estimation.

Appendix A. Proof of Theorem 3.2. We choose, w.l.o.g., an unknown function L1��� �
f :� 
α̂
2. To simplify the expressions we omit the ξ integration variable in the integrals which
are all on �. Thus, (3.5) can be rewritten as

E�f � �
��

f

���
w

f

�
,(A.1)
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where w defined in (3.4) is uniquely associated to the velocity probability density ρ. Hence,
finding minimizer(s) of (3.5) among L2��� functions is equivalent to finding minimizer(s) of
(A.1) among all nonnegative functions that belong to L1���. The proof is in two steps. We
first prove that any minimizer f of (A.1) satisfies f � C

�
w on the support of w, where C

is an arbitrary positive constant. We then prove that if we extend it by zero outside this
support, we obtain a minimizer of (A.1) in L1���. This yields all minimizers α of (3.5) that
belong to L2���.

Let g be an arbitrary bounded perturbation with compact support included in the support
of f . From (A.1) we deduce that the weak differential of E at f in the direction g satisfies

E��f ��g� �
��

g

��
w

f
	
��

f

��
w

f2
g.(A.2)

Since any function f minimizing (A.1) satisfies E��f ��g� � 0 for every bounded perturbation
g with support contained in the support of f , we obtain from (A.2) that�

g

���
w

f

�
	
��

f

�
w

f2

�
� 0.(A.3)

Therefore, any f minimizing (A.1) satisfies f � C
�
w on the support of w, where C � �0,���

can be chosen arbitrarily. (From its definition in (3.4), w � 0.) This concludes the first step
of the proof.

We now prove that when extended by zero outside the support of w, f is a minimizer
of (A.1) among all nonnegative functions in L1���. It follows from (A.1) that E�Cf � � E�f �
for any C � �0,���. Therefore, we can assume w.l.o.g. that f satisfies

�
f � ��

w. In
addition, from its definition, L1��� � f :� 
α̂
2 is nonnegative. Moreover, from its definition
in (3.4), E satisfies E�f � h� � E�f � for any nonnegative h � L1��� supported on ��I, where
I denotes the support of w. Therefore, minimizing (A.1) on all nonnegative f � L1��� is
equivalent to minimizing on f � L1��� the strictly convex functional F �f � :� � w

f under the

constraints
�
f � ��w, f � 0, f � 0 outside the support of w. Indeed, any minimizer of

E is deduced, up to a positive multiplicative constant, from a solution of this constrained
optimization. We shall now prove that f :� �w is the minimizer of F in L1��� under the
constraints

�
f � ��w, f � 0, f � 0, outside the support of w. From Remark 1 we have

that
�
w � 0, that 4

�
w � L2���, and therefore that

�
w � L1���. Hence, f � �w satisfies the

constraints
�
f � ��w, f � 0, f � 0 outside the support of w. Thus, this f is in the feasible

set for F . In addition, from the Cauchy–Schwarz inequality, we have

(A.4)

�� �
w

�2

�
�� �

w�
f

�
f

�2

�
��

w

f

���
f

�
for every f that is positive on the support of w. Equality in (A.4) is attained for f � �w.
Therefore,

�
w is the unique minimizer of F under the aforementioned constraints. Thus, the

minimizers of (A.1) among nonnegative functions that belong to L1��� are of the form C
�
w

for some C � 0 on the support of w, and are zero outside this support. Since f :� 
α̂
2, we
deduce that α is a minimizer of (3.5) in L2��� iff α̂ satisfies 
α̂
 � C 4

�
w for some C � 0 on

the support of w, and is zero outside this support. This concludes the proof.
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Appendix B. Proof of Theorem 3.3. We wish to find the minimizer(s), if they exist,
of (3.5) among real-valued functions of the form of (3.6) that belong to L2���. From (3.6),
we deduce that this question is equivalent to finding an optimal sequence �αk�k in �2���.

The proof is in two steps. We first prove that �αk�k � �2��� is optimal iff it satisfies




	
k��

αke
�ikξ







2

� C

���� w
�

ξ
Δt

�
sinc2

� ξ
2π

�
for some fixed C � 0 and for any ξ � �	π, π
. We then prove that the sequence �αk�k defined
by

αk � 1

2π

� π�vmax�Δt

�π�vmax�Δt

4

�
w
�

ξ
Δt

�
cos �ks��

sinc
�

ξ
2π

� dξ

defines an optimal real-valued α � L2��� of the form of (3.6).
From (3.5) and Plancherel’s identity (xx), we deduce that

E�α̂� � 2π�α�2L2
��

�
�

w�ξ�

α̂
2�ξ�dξ.(B.1)

From Remark 1 we have that the support of w is �	π, 
vmax
, π, 
vmax

. Thus, from (B.1) we
deduce that

E�α̂� � 2π�α�2L2
��

� π�vmax�

�π�vmax�

w�ξ�

α̂
2�ξ�dξ.(B.2)

From (3.6) we have

(B.3) �α�2L2
�� � Δt
	
k��


αk
2

and

(B.4) α̂�ξ� � Δtsinc

�
ξΔt

2π

�
e�

iξΔt
2

	
k��

αke
�ikξΔt

for any ξ � �. Hence, combining (B.2), (B.3), and (B.4), for any α � L2��� of the form
of (3.6), we find

E�α̂� � 2πΔt

�	
k��


αk
2
�� π�vmax�

�π�vmax�

w�ξ�

Δt sinc
�
ξΔt
2π

�
e�

iξΔt
2
�

k�� αke�ikξΔt


2 dξ(B.5)

� 2π

Δt2

�	
k��


αk
2
�� π�vmax�Δt

�π�vmax�Δt

w
�

ξ
Δt

�
sinc2

�
ξ
2π

�

�
k�� αke�ikξ



2 dξ.(B.6)

Since, by assumption, we have 
vmax
Δt � 1, we deduce that �	π
vmax
Δt, π
vmax
Δt
  
�	π, π
. Note that sinc2� ξ

2π

� � 0 for any ξ � �	π, π
. In addition, we recall that the support of
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w
�

	
Δt

�
is �	π, 
vmax
Δt, π, 
vmax
Δt
. In other words, w

�
	
Δt

�
is zero on �	π, π
��	π, 
vmax
Δt,

π, 
vmax
Δt
. Hence, from (B.5)–(B.6), for any α � L2��� of the form of (3.6) we have

E�α̂� � 2π

Δt2

�	
k��


αk
2
�� π

�π

w
� ξ
Δt

�
sinc2

�
ξ
2π

�

�
k�� αke�ikξ



2dξ.(B.7)

For any α � L2��� of the form of (3.6), as soon as 
vmax
Δt � 1, the term
�

k�� αke
�ikξ

that appears in (B.7) is the Fourier series (xxi) synthesis formula of some f � L2�	π, π�
function evaluated at 	ξ. In other words, as soon as 
vmax
Δt � 1, αk � ck�f � for any
k � � for some f � L2�	π, π�. (This fact will be used later on to compute optimal �αk�k.)
From the Riesz–Fischer theorem (see, e.g., [54, p. 27]) and (B.7), we deduce that, as soon
as 
vmax
Δt � 1, minimizing (3.5) among L2��� functions of the form (3.6) is equivalent to
finding f � L2�	π, π� that minimizes

E�f � � 2π

Δt2

�	
k��


ck�f �
2
�� π

�π

w
�

ξ
Δt

�
sinc2

� ξ
2π

� 
f �	ξ�
2dξ(B.8)

� 2π

Δt2

�	
k��


ck�f �
2
�� π

�π

w
� ξ
Δt

�
sinc2

� ξ
2π

� 
f �ξ�
2dξ,(B.9)

where the last inequality is justified by the fact that w and sinc2 are even functions. Hence,
from Parseval’s identity (xxi) and (B.8)–(B.9), we deduce that, as soon as 
vmax
Δt � 1,
minimizing (3.5) among L2��� functions of the form (3.6) is equivalent to finding f � L2�	π, π�
that minimizes

E�f � � 1

Δt2

�� π

�π

f �ξ�
2dξ

�� π

�π

w
� ξ
Δt

�
sinc2

�
ξ
2π

� 
f �ξ�
2dξ.(B.10)

We choose as unknown L1�	π, π� � g :� 
f 
2. To simplify the expression, we omit the
integration variable and the integration intervals, which are all �	π, π
, and the positive
multiplicative constant 1

Δt2 . Thus, from (B.10), we deduce that, as soon as 
vmax
Δt � 1,
minimizing (3.5) among functions of the form (3.6) is equivalent to finding a nonnegative g
that belongs to L1�	π, π� and that minimizes

E�g� �
��

g

���
w̃

g

�
,(B.11)

where �	π, π
 � ξ �� w̃�ξ� :� w
�

ξ
Δt

��sinc2� ξ
2π

�
. By the same calculations as in the proof

of Theorem 3.2 (Appendix A), we deduce that any nonnegative g � L1�	π, π� that mini-
mizes (B.11) satisfies g � C

�
w̃, on the support of w̃, and C � 0 can be arbitrarily cho-

sen. (This solution is nonnegative, belongs to L1�	π, π�, and is therefore admissible.) The
support of w̃ is �	π
vmax
Δt, π
vmax
Δt
 and is therefore contained in �	π, π
. Indeed, by
assumption we have that 
vmax
Δt � 1. It remains to show that if we extend g by zero on
�	π, π
��	π
vmax
Δt, π
vmax
Δt
, we obtain a solution. By the same arguments developed
in the proof of Theorem 3.2, we see that minimizing E�g� for g � L1�	π, π� is equivalent to
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minimizing the strictly convex functional F �g� :� � w̃
g under the constraints

�
g � ��w̃, g � 0,

g � 0, on �	π, π
��	π
vmax
Δt, π
vmax
Δt
. The fact that g :� �
w̃ � L1��� is the unique

solution to this problem follows by the very same arguments. It follows that �αk�k � �2��� is
optimal iff the square modulus of its Fourier series synthesis (xxi) coincides with

�
w̃, up to a

positive multiplicative constant, on �	π, π
. In other words, we deduce that �αk�k � �2��� is
optimal iff 




	

k��

αke
�ikξ







2

� C

���� w
�

ξ
Δt

�
sinc2

� ξ
2π

�
for some fixed C � 0 and for any ξ � �	π, π
. This proves the first part of our theorem. It
remains to compute an optimal real-valued sequence �αk� � �2���.

We have that sinc
� ξ
2π

� � 0 for any ξ � �	π, π
. We recall that
�
w � L1���. Therefore,

the function

f : �	π, π
 � ξ ��
4

�
w
�

s
Δt

��
sinc

�
s
2π

�
belongs to L2�	π, π�. We can therefore consider its Fourier series (xxi). In addition, we recall
that as soon as 
vmax
Δt � 1, the sequence �αk�k corresponds to the Fourier series coefficient
of the considered f . Thus, consider the real-valued sequence �αk� given by

αk � 1

2π

� π

�π

4

�
w
� ξ
Δt

��
sinc

� ξ
2π

�e�ikξdξ � 1

2π

� π�vmax�Δt

�π�vmax�Δt

4

�
w
� ξ
Δt

��
sinc

� ξ
2π

� cos �kξ� dξ.(B.12)

Indeed, the support of w
�

ξ
Δt

�
is �	π
vmax
Δt, π
vmax
Δt
, and 4

�
w
�

ξ
Δt

��sinc� ξ
2π

�
is even.

Therefore, for any k � �, the coefficients αk are real. In addition, we have the function
4
�

w� 	
Δt ��sinc� 	

2π � � L2�	π, π�. Thus, we deduce that �αk�k � �2���. From its definition (B.12)
the sequence �αk�k satisfies 




	

k��

αke
�ikξ







2

�
���� w

�
ξ
Δt

�
sinc2

� ξ
2π

�
for any ξ � �	π, π
. Hence, the real-valued sequence �αk���2��� defined by (B.12) is optimal.
Thus, as soon as 
vmax
Δt � 1, the function α of the form of (3.6), with the αk defined
by (B.12), belongs to L2���, is optimal for (B.2), and is real-valued. This concludes our
proof.

Appendix C. Proof of Theorem 4.1. The proof is in two parts. We first consider time-
continuous flutter shutter gain functions and then treat the case of piecewise constant flutter
shutter gain functions.

Let α � L2��� be an optimal time-continuous (not of the form of (3.6)) flutter shutter
gain function with respect to some velocity probability density ρ. Consider the function w
associated with the probability density ρ by (3.4). From Remark 1, we have that �0,��� �
ξ �� w�ξ� is nonincreasing. By Theorem 3.2, we know that 
α̂
 � 4

�
w on the support of w
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(up to a positive multiplicative constant) and 0 outside the support of w. It follows that any
optimal α � L2��� is such that 
α̂
 is nonincreasing on �0,���.

We now prove formula (4.1). Notice that given w, the optimal density ρ can be assumed
to be even. Indeed, if ρ is not even, (3.4) still holds true when replacing ρ by its symmetrized

version ρ
	��ρ
�	�
2 . Thus, we can look for an even ρ and therefore simplify (3.4) into

(C.1) w�ξ� � 2

� ��


ξ

π

ρ�v�
v

dv.

Since ρ is L1���, this formula implies that w is absolutely continuous and that its derivative
in the distributional sense on ���0� is

(C.2) w��ξ� � sign�ξ�w��
ξ
� � 2sign�ξ�
�� ��


ξ

π

ρ�v�
v

dv

��

� sign�ξ�
�
1

π

� ��

�ξ�

ρ
�
v
π

�
v
π

dv

��

,

where the first equality is justified by the fact that we assumed that ρ is even, the second
by (C.1), and the last by the change of variables v �� v

π . Hence, from (C.2) we deduce that

w��ξ� � 	2sign�ξ� 1
π

ρ
� �ξ�

π

�
�ξ�
π

� 	2ρ
� �ξ�
π

�
ξ

.

Hence, we have w��πξ� � 	2ρ
�ξ��
πξ and, since ρ is even by assumption, that w��πξ� � 	2ρ
ξ�

πξ
on ���0�, these equalities being understood in the distribution sense on ���0�. It follows that
ρ�v�, being a probability density function, is entirely determined by

(C.3) ρ�v� � 	πv

2
w��πv� for any v � 0.

It remains to show that we can deduce ρ from α. By Theorem 3.2, any optimal α � L2���
with respect to a velocity density ρ satisfies 
α̂
4 � Cw for some positive constant C. Then
(C.3) implies ρ�v� � 	vC

2 �
α̂
4���πv� for v � 0. The normalization factor C is chosen so that�
ρ�v�dv � 1. This proves the first part of our theorem. We now prove the second part of our

theorem that concerns piecewise constant flutter shutter gain functions.
Let α � L2��� be an optimal piecewise constant code of the form (3.6), and assume that

Δt
vmax
 � 1. (We recall that in this case ρ is supported on �	
vmax
, 
vmax

.) From (B.4)
we have


α̂�ξ�
4 �




Δtsinc

�
ξΔt

2π

�



4





	
k��

αke
�ikξΔt







4

for any ξ � �.(C.4)

By Theorem 3.3 the sequence �αk�k � �2��� defining α satisfies




	
k��

αke
�ikξ






 � C

4

�
w
� ξ
Δt

��
sinc

� ξ
2π

�
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for some fixed C � 0 and for any ξ � �	π, π
. Therefore, we deduce that

(C.5)






	
k��

αke
�ikΔtξ







4

� C
w �ξ�

sinc� ξΔt

2π

�

2
for some fixed C � 0 and for any ξ � ��π

Δt ,
π
Δt 
. Combining (C.4) and (C.5), we obtain

(C.6) 
α̂�ξ�
4 � C





sinc�ξΔt

2π

�



2 w �ξ� and therefore

α̂�ξ�
4

sinc�ξΔt

2π

�

2 � Cw �ξ�

for some C � 0 and for any ξ � ��π
Δt ,

π
Δt 
. Since �0,��� � ξ �� w�ξ� is nonincreasing,

from (C.6), we immediately obtain a necessary condition for an α � L2��� of the form of (3.6)
to be optimal. Indeed, an α of the form (3.6) is optimal only if�

0,
π

Δt



� ξ �� 
α̂�ξ�
4

sinc�ξΔt

2π

�

2
is nonincreasing. Furthermore, from (C.6), we obtain that

(C.7) w� �ξ� � C

�

α̂�ξ�
4

sinc� ξΔt

2π

�

2
��

�ξ�

for some C � 0 and for any ξ � ��π
Δt ,

π
Δt 
��0�, the equality in (C.7) being understood in the

distribution sense. By (C.3) we have ρ�v� � 	v
2w

��πv� for v � 0. Therefore, from (C.7) we
deduce that

(C.8) ρ�v� � 	vC

2

�

α̂�ξ�
4

sinc� ξΔt

2π

�

2
��

�πv� for any v �
�	1
Δt

,
1

Δt

�
��0�.

In addition, since by assumption we have 
vmax
Δt � 1, we deduce that 1
Δt � 
vmax
 and

therefore that �	
vmax
, 
vmax

  ��1
Δt ,

1
Δt 
. Thus, since ρ is supported on �	
vmax
, 
vmax

, ρ

is determined up to a positive multiplicative constant by (C.8). We again choose C so that�
ρ � 1. This concludes the proof.

Appendix D. Proof of Proposition 5.1. The proof is in three steps. We first prove that
the energy defined by (5.1) is strictly convex. We then justify that this energy always has
exactly one minimizer Δt�. Lastly, we prove that the quantity Δt�
vmax
 is constant when
the velocity density ρ is uniform or a (truncated) Gaussian.

The function Δt� Δt

sin2 ξvΔt
2

is strictly convex for 
 ξvΔt
2 
 � π. It follows immediately that

E�Δt� is a strictly convex function on I :� �0, 2
�vmax�

�
. By a direct application of the monotone

convergence theorem, we have limΔt�0,Δt�0 E�Δt� � limΔt� 2

vmax 


,Δt� 2

vmax 


E�Δt� � ��.

Furthermore, E is finite in the interior of I. Thus, E has exactly one minimizer Δt� on
I. It remains to show that if ρ�v� is uniform or Gaussian, the optimal snapshot satisfies
Δt�
vmax
 � C, where C is a positive constant. Consider s � 0 and ρs�v� � sρ�vs� a
family of probability densities which comes from a compactly supported mother function
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ρ�v�����vmax�,�vmax�
�v�. Let Δt� be the unique minimizer of (5.1). By an obvious change of
variables,

Es�Δt� :�
�� π

�π

ξ2

sin2
�
ξvΔt
2

� v2Δt

4
ρs�v�dξdv � 1

s

�� π

�π

ξ2

sin2
�
ξv
2

Δt
s

� v2Δt

s
ρ�v�dξdv � 1

s
E

�
Δt

s

�
.

Thus, Es�Δt� is minimized for Δt
s � Δt�. In other words, Es�Δt� has sΔt� for a unique

minimizer. Since E and Es differ only by a 1
s positive multiplicative constant, we deduce that

sΔt� is the unique minimizer of E. The rest of the proof follows since ρs�v� � s���1
2
, 1
2

�vs� or

ρs�v� � s���4,4
�vs� exp
��
vs�2

2

�
(up to an irrelevant constant positive multiplicative constant

for the optimization of E). The values Δt�
vmax
 � 1.42 (when ρ is uniform) and Δt�
vmax
 �
1.94 (when ρ�v�����4σ,4σ
e

�v2

2σ2 ) are obtained numerically.

Appendix E. Main notation and formulae.
(i) t � � time variable.
(ii) Δt � 0 length of a time interval.
(iii) x � � spatial variable.
(iv) X � Y random variables X and Y have the same law.
(v) ��A� probability of an event A.
(vi) P�λ� Poisson random variable with intensity λ � 0. Thus, if X � P�λ�, we have

��X � k� � exp
�λ�λk

k! .
(vii) � �X� expected value of a random variable X.
(viii) var�X� variance of a random variable X.
(ix) f � g convolution of two functions �f � g��x� � ����� f �y�g�x	 y�dy.
(x) u ideal (noiseless) observable landscape just before sampling. Assumption: u �

L1��� � L2���, �	π, π
 band-limited.
(xi) obs�n�, n � �, observation of the landscape at a pixel supported on

�
n	 1

2 , n� 1
2

�
.

(xii) v relative velocity between the scene and the camera (unit: pixels per Δt seconds).
(xiii) α�t� piecewise constant or time-continuous gain control function for the analog flutter

shutter and numerical flutter shutter methods.
(xiv) ρ�v� probability distribution for the relative camera-scene velocities. Assumption:

ρ�v� � 0 for any v such that 
v
 � vmax.
(xv) w�x� � 0 weight function associated with the probability distribution ρ.

(xvi) �f�L1
�� �
� 
f �x�
dx, �f�L2
�� �

�� 
f �x�
2dx.
(xvii) sinc�x� � sin
πx�

πx � 1
2πF����π,π
��x� � F�1����π,π
��x�.

(xviii) ��a,b
 indicator function of an interval �a, b
.
(xix) sign�x� � 1 if x � 0, and sign�x� � 	1 if x � 0.
(xx) Let f, g � L1��� or L2���; then

F�f ��ξ� :� f̂�ξ� :�
� �

��
f �x�e�ixξdx,

F�1�F�f ���x� :� �F�f ��x� � f �x� � 1

2π

� �

��
F�f ��ξ�eixξdξ.

Moreover, F�f � g��ξ� � F�f ��ξ�F�g��ξ� and (Plancherel)� �

��

f �x�
2dx � �f�2L2
�� �

1

2π

� �

��

F�f �
2�ξ�dξ � 1

2π
�F�f ��2L2
��.
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(xxi) Let f � L1�	π, π� or f � L2�π, π�. The nth Fourier series coefficient of f is cn�f � :�
1
2π

�π
�π f �t�e�intdt, and we have f �t� � ���

n��� cn�f �e�int. Moreover, we have (Parse-

val)
���

n��� 
cn�f �
2 � 1
2π

�π
�π 
f �t�
2 dt.
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