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Abstract. In this paper, a new convex variational model for restoring images degraded by blur
and Rician noise is proposed. The new method is inspired by previous works in which the non-
convex variational model obtained by MAP estimation has been presented. Based on the statistical
property of Rician noise, we put forward to adding a quadratic penalty term into it, which leads a
new strictly convex model under mild condition. The new model guarantees the uniqueness of the
solution and stabilization of the algorithm. We utilize a primal-dual algorithm to solve the model.
Numerical results are presented in the end to demonstrate that our model outperforms some of the
state-of-the-art models in both medical and natural images.
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1. Introduction. In digital image processing, most real images are generated
through image recording systems. During the formation procedure, images are un-
avoidably corrupted by noise and blurring. Hence, in the domain of image pro-
cessing, the image restoration under various noises and blurring is always one of
the fundamental tasks. As the additive Gaussian white noise is the most typical
noise in image formation, many approaches have been proposed to remove Gaussian
noise [10,12,13,19,24,36]. In the literature, depending on the imaging systems, vari-
ous other kinds of noises have also been considered, such as Impulse noise [11,17,22],
Poisson noise [30, 41] and multiplicative noise [4, 23]. In recent years, with the devel-
opment of Magnetic Resonance Imaging (MRI), another very important noise, Rician
noise, has been taken into account gradually. Indeed, Rician noise frequently occurs
in the magnitude image where the real and imaginary components of the image are
both corrupted by Gaussian noise. It has been verified that Rician noise can be ap-
proximated rather well by homogenous Gaussian noise in the case of high SNR, but in
the low SNR case, the Rician noise can not be so readily approximated [2,7]. Hence,
it is important to develop techniques for image recovery under Rician noise.

Mathematically, suppose that an image u is a real function defined on Ω, a con-
nected bounded open subset of R2 with compact Lipschitz boundry, i.e., u : Ω → R.
The format of the measured degraded image f under Rician noise is given by,

f =
√

(Au+ η1)2 + η22 , (1.1)

where A ∈ £(L2(Ω)) is a known linear blurring operator, and η1, η2 represent inde-
pendent Gaussian white noise of standard deviation σ. Here, the observed image f is
firstly blurred by the blurring operator A, and then is corrupted by the Rician noise.
Usually we assume that f > 0. In this paper, we pay attention to the assumption
that the blur is the identity operator (for denoising), Gaussian blur or Motion blur.

In the literature, various methods have been proposed to deblur and denoise the
magnitude image corrupted by blur and Rician noise. In [25,34], Anisotropic Diffusion
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Filter (ADF) was proposed to solve the denoising problem with edge preservation.
However, this method usually wipes small features. In [32], Nowak studied wavelet-
domain filtering methods for Rician noise removal. In [39], Wood and Johnson came
up with using wavelet packet denoising method to remove Rician noise. Although
the wavelet approaches are effective to preserve image details and features without
compromising edge sharpness, they are apt to introduce characteristic artifacts (small
pots) which can hamper the image analysis process [31]. In [8], Basu et al. proposed a
new method for denoising diffusion tensor images that includes a Rician noise model
as part of MAP estimation framework. This was the first work to explicitly model
and remove the bias effects of Rician noise in Diffusion Tensor MRI image. In [38],
inspired by [21, 37], Daessléet al. developed a non-local means (NLMeans) filter for
Rician noise removal. In [26], based on the maximum a posteriori (MAP) estimation,
Getreuer et al. proposed a total variational (TV) model as follows,

inf
u

1

2σ2

∫
Ω

u2dx−
∫
Ω

log I0(
fu

σ2
)dx+ γTV(u), (1.2)

where I0 is the zero order Modified Bessel function [1] and TV(u) is the classical
total variation prior. Unfortunately, (1.2) is non-convex due to the second term. In
order to overcome this issue, they further considered the following convex model to
approximate (1.2),

inf
u

γTV(u) +

∫
Ω

Gσ(u, f)dx, (1.3)

where letting c = 0.8246, we have,

Gσ(u, f) =

{
Hσ(u) if u ≥ cσ,

Hσ(cσ) +H ′
σ(cσ)(u− cσ) if u ≤ cσ,

H ′
σ(u)=

u

σ2
− f

σ2
B(

fu

σ2
),

B(t) ≡ I1(t)

I0(t)
≈ t3 + 0.950037t2 + 2.38944t

t3 + 1.48937t2 + 2.57541t+ 4.65314
.

Here, Hσ(u) is the primitive function of H ′
σ(u). In the rest of the paper, we call it

Getreuer’s model for short.
Evidently, the model (1.3) is somewhat complex and its mathematical property

is difficult to derive. The goal of this paper is to provide a new elegant convex model
for Rician noise removal. Since TV regularization is extremely effective for recovering
“blocky”, possibly discontinuous, functions from noisy data with reserving sharp edges
of images [12,16], in our paper, we still use this regularization and it could be readily
replaced by some other modern regularization terms such as non-local TV or framelet
approach. However, different from Getreuer’s model, we add a reasonable quadratic
penalty term into the non-convex model (1.2) to derive a new convex model. By this,
we can guarantee the uniqueness of the solution. The minimization of our model can
be efficiently handled by the primal-dual algorithm [6,14,20,22,40,42]. The numerical
results in this paper show that our method has the potential to outperform the other
approaches in Rician noise removal with deblurring simultaneously.

The rest of the paper is organized as follows. In Section 2, we briefly review the
total variation regularization and introduce its main properties. In Section 3, based
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on the statistical properties of the Rician noise, we propose a new convex model for
denoising, and discuss the condition to ensure its convexity. Meanwhile, the existence
and the uniqueness of the solution are also proved in this section. In Section 4, we
extend the model to the case of denoising and deblurring simultaneously and present
the corresponding properties. Section 5 gives the primal-dual algorithm for solving
our convex restoration models. The numerical results shown in Section 6 demonstrate
the superior performance of our approach. In the end, conclusion remarks are drawn
in Section 7.

2. Review of Total Variation Regularization. In order to reserve sharp
edges in images efficiently, in [36], Rudin et al. introduced the celebrated total varia-
tion (TV) regularization. In their approach, they considered image in BV (Ω), which
means the space of functions of bounded variation, i.e. u ∈ BV (Ω) iff u ∈ L1(Ω) and
the BV-seminorm∫

Ω

|Du| := sup

{∫
Ω

u · div(ξ(x))dx
∣∣ξ ∈ C∞

0 (Ω,R2), ∥ξ∥L∞(Ω,R2) ≤ 1

}
, (2.1)

is finite. The space BV (Ω) with the norm ∥u∥BV = ∥u∥L1 +
∫
Ω
|Du| is a Banach

space. If u ∈ BV (Ω), the distributional derivative Du is a bounded Radon measure
and the above quantity defined in (2.1) corresponds to the total variation (TV).
Based on the compactness of BV (Ω), in two-dimensional case we have the embedding
BV (Ω) ↪→ Lp(Ω) for 1 ≤ p ≤ 2 which is compact for p < 2. See [3, 5, 19] for more
details.

3. A Convex Rician Denoising Model. Before we establish a convex Rician
denoising model, let us recall some basic information of Rician noise which will be
used in the sequel.

The noise in magnitude image is assumed to be Rician distribution because the
noises added into the real and imaginary parts of the image both obey the same
Gaussian distribution. In this paper, we suppose that the Gaussian distribution is
N (0, σ2). The description of the magnitude image corrupted by Rician noise can be
written as follows,

f =
√
(u+ η1)2 + η22, (3.1)

η1 ∼ N (0, σ2 ), η2 ∼ N (0, σ2).

Before we present the property of the magnitude image f , as a prerequisite, we
firstly introduce a Lemma as follows.

Lemma 3.1. Assume that a, b ∈ R. Then, |(u2 +2au+ b2)
1
4 − u

1
2 | ≤

√
|a|+

√
|b|

is true whenever u ≥ 0 and |a| ≤ |b|.
Proof. Readily, we have the following inequalities,

(
√
u+

√
|a|+

√
|b|)2 ≥ u+ |a|+ |b|,

(
√
u−

√
|a| −

√
|b|)2 ≤ u− |a| if

√
u ≥

√
|a|+

√
|b|,

(u2 + 2au+ b2)
1
2 ≥ u− |a| if |b| ≥ |a|.

Using these inequalities, we can easily verify that,

√
u−

√
|a| −

√
|b| ≤ (u2 + 2au+ b2)

1
4 ≤

√
u+

√
|a|+

√
|b|.
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Thus, the proof of Lemma 3.2 is finished.
Proposition 3.2. Suppose that the variables η1 and η2 independently follow the

Normal distribution N (0, σ2). Set f =
√

(u+ η1)2 + η22 where u is fixed and u ≥ 0.
Then we can get the following inequality,

E((
√
f −

√
u)2)

σ
≤

√
2

π
(π + 2). (3.2)

Proof. Since (3.1), we can get,√
f −

√
u = (u2 + 2η1u+ η21 + η22)

1
4 − u

1
2 .

Based on Lemma 3.1, we obtain

(
√
f −

√
u)2 ≤

(√
|η1|+

√
(η21 + η22)

1
2

)2

≤ 2
(
|η1|+ (η21 + η22)

1
2

)
.

Hence,

E((
√
f −

√
u)2) ≤ 2E(|η1|) + 2E((η21 + η22)

1
2 ).

As we have already known, η1 and η2 follow Gaussian distribution N(0, σ2), on the
basic of statistical theories, we have

Y :=
η21 + η22

σ2
∼ χ2(2),

which means that Y follows Chi-squared distribution with 2 degrees. Therefore,
according to the PDF of normal variable and Chi-square variable with two degrees,
we can calculate

E(
√
Y ) =

E((η21 + η22)
1
2 )

σ
=

√
2π

2
,

E(|η1|) =
√

2

π
σ.

Taken together,

E((
√
f −

√
u)2) ≤ (

√
2π +

2
√
2√
π
)σ.

Thus we finish the proof of the Proposition.

The Proposition 3.2 ensures that the value of E((
√
f−

√
u)2)

σ is always bounded.
Numerically, we can verify that for natural images and typical medical images, the

real value of E((
√
f−

√
u)2)

σ is usually very small. Indeed, in Table 3.1, we report the

values of E((
√
f−

√
u)2)

σ for different values of σ with different original image u. Clearly,
these values are very small.

In the denoising case, that is, A is the identity operator, from the degradation
model (1.1), we obtain that f =

√
(u+ η1)2 + η22 . Inspired by Proposition 3.2, we

now introduce a quadratic penalty term into the MAP model (1.2), which turns out
to be

inf
u∈S̄(Ω)

1

2σ2

∫
Ω

u2dx−
∫
Ω

log I0(
fu

σ2
)dx+

M

σ

∫
Ω

(
√
u−

√
f)2dx+ γTV(u), (3.3)
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Image σ = 5 σ = 10 σ = 15 σ = 20 σ = 25 σ = 30

Cameraman 0.0261 0.0418 0.0571 0.0738 0.0882 0.1040
Bird 0.0131 0.0255 0.0371 0.0486 0.0590 0.0685
Skull 0.0453 0.0754 0.1009 0.1234 0.1425 0.1600

Leg joint 0.0356 0.0654 0.0906 0.1105 0.1263 0.1419
Table 3.1

The values of E((
√

f−
√

u)2)
σ

for different values of σ with different original image u.

with the penalty parameter M > 0. In addition, we set

S̄(Ω) := {v ∈ BV (Ω) : v ≥ 0},

which is closed and convex. In the coming section, we will show that if M is big
enough, the above model is strictly convex.

In medical image processing, we often need to deal with a certain kind of image
which can be easily segmented into two parts: foreground part and background part.
In the background part, the pixel values are all zero. Thus, for this kind of image,
we firstly segment the image and denoise and deblur only on the foreground image
since there exists no information in the background. Correspondingly, the change of
the model is only transferring Ω into Ω/ΩB where ΩB represents the background set.
In Section 6, we take MR image “Brain” as one example of this kind of image.

3.1. Existence and uniqueness of a solution. We begin with working on the
certain condition under which the model is convex before discussing the existence and
uniqueness of a solution to (3.3). That is, we will firstly calculate the suitable range
of the parameter M which is in the front of the quadratic penalty term.

Lemma 3.3. Let h(t) = t
3
2
(I0(t)+I2(t))I0(t)−2I2

1 (t)

I2
0 (t)

, then h(t) is bounded on [0,+∞).

Proof. We only need to prove that lim+∞ h(t) = 0. By [35], if t ∈ R is large
enough, In(t) can be written as,

In(t) =
et√
2πt

{
1 +

∞∑
m=1

(−1)m
(4n2 − 1)(4n2 − 32)...[4n2 − (2m− 1)2]

m!(8t)m

}
.

Taking n = 0, 1, 2, we have,

I0(t) =
et√
2πt

[1 +
1

8t
+

9

128t2
+O(

1

t3
)],

I1(t) =
et√
2πt

[1− 3

8t
− 15

128t2
+O(

1

t3
)],

I2(t) =
et√
2πt

[1− 15

8t
+

105

128t2
+O(

1

t3
)].
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Using the Taylor expansion of 1
1+x at x = 0, readily, we have,

I1(t)

I0(t)
=

1− 3
8t −

15
128t2 +O( 1

t3 )

1 + 1
8t +

9
128t2 +O( 1

t3 )

=

(
1− 3

8t
− 15

128t2
+O(

1

t3
))

)(
1− (

1

8t
+

9

128t2
) + (

1

8t
+

9

128t2
)2 +O(

1

t3
))

)
= (1− 3

8t
− 15

128t2
)(1− 1

8t
− 7

128t2
) +O(

1

t3
)

= 1− 1

2t
− 1

8t2
+O(

1

t3
),

I2(t)

I0(t)
= (1− 15

8t
+

105

128t2
)(1− 1

8t
− 7

128t2
) +O(

1

t3
)

= 1− 2

t
+

1

t2
+O(

1

t3
).

Further,

(
I1(t)

I0(t)
)2 = (1− 1

2t
− 1

8t2
)2 +O(

1

t3
)

= 1− 1

t
+O(

1

t3
),

lim
t→+∞

h(t) = lim
t→+∞

t
3
2
(I0(t) + I2(t))I0(t)− 2I21 (t)

I20 (t)

= lim
t→+∞

t
3
2 (1 + 1− 2

t
+

1

t2
− 2(1− 1

t
) +O(

1

t3
))

= lim
t→+∞

t
3
2 (

1

t2
+O(

1

t3
))

= lim
t→+∞

1√
t
+O(

1

t
3
2

) = 0.

Since h(t) is a continuous function on t ∈ [0,+∞), the assertion that h(t) is bounded
on [0,+∞) is proved.

Using the above lemma, let

M0 := sup
t∈[0,∞)

h(t),

then M0 exists. Through numerical computation, readily we can get: when t = 1.81,
h(t) reaches its unique maximum 0.9366 which can be observed in Fig. 3.1.

Proposition 3.4. If M ≥ M0, then the model (3.3) is strictly convex.
Proof. With t ∈ R+ and a fixed M , we define a function g as

g(t) := − log I0(t)− 2M
√
t.

Easily, we have that the second order derivative of g satisfies

g′′(t) = − (I0(t) + I2(t))I0(t)− 2I21 (t)

2I20 (t)
+

M

2
t−

3
2 .

Straightly, if M ≥ M0 = sup t
3
2
(I0(t)+I2(t))I0(t)−2I2

1 (t)

I2
0 (t)

, we have

g′′(t) ≥ 0.
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Fig. 3.1. The range of function value of h(t) = t
3
2

(I0(t)+I2(t))I0(t)−2I21 (t)

I20 (t)
.

Setting t = f(x)u(x)
σ2 for each x ∈ Ω, we obtain the strict convexity of the first

three terms in (3.3). As a prerequisite, the convexity of the TV regularization helps
us deduce that model (3.3) is strictly convex, if M ≥ M0. Since the feasible set S̄(Ω)
is convex, the assertion is an immediate consequence.

Based on Proposition 3.4, the following existence and uniqueness results hold.

Theorem 3.5. Let f be in L∞(Ω) with infΩ f > 0, then the model (3.3) has a
solution u∗ in BV (Ω) satisfying

0 <
M2σ2

(2 supΩ f +Mσ)2
inf
Ω

f ≤ u∗ ≤ sup
Ω

f

Moreover, if M ≥ M0, the solution of (3.3) is unique.

Proof. Set c1 := M2σ2

(2 supΩ f+Mσ)2 infΩ f , c2 = supΩ f , and define two functions as

follows,

E0(u) =
1

2σ2

∫
Ω

u2dx−
∫
Ω

log I0(
fu

σ2
)dx+

M

σ

∫
Ω

(
√
u−

√
f)2dx,

E1(u) =
1

2σ2

∫
Ω

u2dx−
∫
Ω

log I0(
fu

σ2
)dx+

M

σ

∫
Ω

(
√
u−

√
f)2dx+ γ

∫
Ω

|Du|dx

= E0(u) + γ

∫
Ω

|Du|dx. (3.4)

where E1(u) is just the objective function in model (3.3).

According to the definition of zero order of Modified Bessel function [9]

I0(x) =
1

π

∫ π

0

ex cos θdθ ≤ ex, ∀x ≥ 0, (3.5)

we can easily get: for each fixed x ∈ Ω, − log I0(
f(x)t
σ2 ) ≥ − f(x)t

σ2 with t ≥ 0. Based on
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the definition of E0(u) and E1(u), we have

E1(u) ≥ E0(u) ≥
1

2σ2

∫
Ω

u2dx−
∫
Ω

log I0(
fu

σ2
)dx

≥
∫
Ω

(
1

2σ2
u2 − fu

σ2
)dx

=

∫
Ω

(u− f)2 − f2

2σ2
dx

≥ − 1

2σ2

∫
Ω

f2dx.

This means that E1(u) in (3.3) is bounded from below, thus we can choose a mini-
mizing sequence {un ∈ S̄(Ω) : n = 1, 2, ...}.

Since for each fixed x ∈ Ω, let the real function on R+
∪
{0}

g(t) :=
1

2σ2
t2−log I0(

f(x)t

σ2
)+

M

σ
(
√
t−

√
f(x))2, g′(t) =

1

σ2
t−f(x)

σ2

I1(
f(x)t
σ2 )

I0(
f(x)t
σ2 )

+
M

σ
(1−

√
f(x)

t
).

Also referred from [9], based on the definition of first order of Modified Bessel function

I1(x) =
1

π

∫ π

0

cos θex cos θdθ, (3.6)

we can easily deduce that −1 ≤ I1(x)
I0(x)

≤ 1 with x ≥ 0, combining with the definition

of I0.
Therefore, if t > f(x), we get

g′(t) >
1

σ2
f(x)− f(x)

σ2
+

M

σ
(1−

√
f(x)

t
)

=
M

σ
(1−

√
f(x)

t
) > 0,

else if 0 ≤ t < M2σ2

(2f(x)+Mσ)2 f(x) ≤ f(x),

g′(t) <
2f(x)

σ2
+

M

σ
(1−

√
f(x)

t
)

≤ 2f(x)

σ2
+

M

σ
(1− 2f(x) +Mσ

Mσ
) = 0.

In other word, from the above two inequalities, we know g(t) is increasing if t ∈
(f(x),+∞) and decreasing if 0 ≤ t < M2σ2

(2f(x)+Mσ)2 f(x). This implies that g(min (t, V )) ≤
g(t) if V ≥ f(x). Furthermore, with

∫
Ω
|D inf(u, c2)| ≤

∫
Ω
|Du| obtained from Lemma

1 in [29], we have

E1(inf(u, c2)) ≤ E1(u).

Similarly, we can get E1(sup(u, c1)) ≤ E1(u). Hence, we can restrict the minimizing
sequence to satisfy 0 < c1 ≤ un ≤ c2, that is, un is bounded in L1(Ω). Based on the
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definition of E1(u), we know E1(un) is bounded. Meanwhile,
∫
Ω
|Dun| is bounded

which implies that un is bounded in BV (Ω). Thus, there must exist a subsequence
{unk

} which converges strongly in L1(Ω) to some u∗ ∈ BV (Ω), and Dunk
converges

weakly to Du∗ in the sense of measure. Due to the lower semi-continuity of TV
and Fatou’s lemma, we can conclude that u∗ is a minimizer of problem in (3.3) with
restricted condition 0 < c1 ≤ u∗ ≤ c2.

Moreover, if M ≥ M0, the problem is strictly convex which implies the uniqueness
of the solution.

Before giving comparison results, we illustrate two lemmas.
Lemma 3.6. The function I0(x) is strictly log-convex for all x > 0 where I0(x)

is the Modified Bessel function of first kind of order zero.
Proof. In order to prove that the function I0(x) is strictly log-convex in (0,+∞),

it suffices to show that its logarithmic second-order derivative

(log I0(x))
′′ =

1
2 (I0(x) + I2(x))I0(x)− I1(x)

2

I20 (x)

is positive in (0,+∞).
Using (3.5), (3.6) and

I2(x) =
1

π

∫ π

0

cos 2θex cos θdθ,

referred from [9], we obtain

1

2
(I0(x) + I2(x))I0(x) =

1

π

∫ π

0

1 + cos 2θ

2
ex cos θdθ · 1

π

∫ π

0

ex cos θdθ

=
1

π

∫ π

0

cos2 θex cos θdθ · 1
π

∫ π

0

ex cos θdθ

≥ (
1

π

∫ π

0

cos θex cos θdθ)2

= (I1(x))
2,

where we have applied Cauchy Schwarz inequality.
Since cos θe

1
2x cos θ and e

1
2x cos θ are not linear dependent when θ changes, the

equality in above does’t hold. Thus, the lemma is finished.
Lemma 3.7. Let g(x) is a strictly convex and strictly increasing function in

(0,+∞). Assume that 0 < a < b, 0 < c < d, then we have:

g(ac) + g(bd) > g(ad) + g(bc).

Proof. In order to establish the assertion, it suffices to prove that

g(bd)− g(bc) > g(ad)− g(ac).

Since g(x) is strictly convex in (0,+∞), g′(x) is strictly increasing in (0,+∞).
If bc ≥ ad, then we have

g(bd)− g(bc) ≥ g′(bc)b(d− c)

≥ g′(ad)b(d− c)

> g′(ad)a(d− c)

> g(ad)− g(ac).
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If bc < ad, then

g(bd)− g(bc) = g(bd)− g(ad) + g(ad)− g(bc)

> g′(ad)d(b− a) + g(ad)− g(bc)

> g′(bc)d(b− a) + g(ad)− g(bc)

> g(bc)− g(ac) + g(ad)− g(bc)

= g(ad)− g(ac).

Therefore, we complete the proof.
On the basis of Theorem 3.5, Lemma 3.6 and Lemma 3.7, we can deduce the

following comparison principle.
Proposition 3.8. Let f1 and f2 be in L∞(Ω) with infΩ f1 > 0 and infΩ f2 > 0.

Suppose u∗
1(resp.u

∗
2) is a solution of model (3.3) with f = f1 (resp. f = f2). Assume

that f1 < f2, then we have u∗
1 ≤ u∗

2 a.e. in Ω.
Proof. Use the notations u∗

1∧u∗
2 = inf(u∗

1, u
∗
2), u

∗
1∨u∗

2 = sup(u∗
1, u

∗
2). In addition,

Ei
1(u) denotes E1(u) defined in (3.4) with f = fi. Since u∗

1(resp.u
∗
2) is a solution of

model (3.3) with f = f1 (resp. f = f2), we can easily get

E1
1(u

∗
1 ∧ u∗

2) ≥ E1
1(u

∗
1),

E2
1(u

∗
1 ∨ u∗

2) ≥ E2
1(u

∗
2).

Adding the above two inequalities, and using the fact that
∫
Ω
|D(u∗

1∧u∗
2)|+

∫
Ω
|D(u∗

1∨
u∗
2)| ≤

∫
Ω
|Du∗

1|+
∫
Ω
|Du∗

2|, we obtain∫
Ω

1

2σ2
(u∗

1 ∧ u∗
2)

2 − log I0(
f1u

∗
1 ∧ u∗

2

σ2
) +

M

σ
(
√
u∗
1 ∧ u∗

2 −
√
f1)

2dx

+

∫
Ω

1

2σ2
(u∗

1 ∨ u∗
2)

2 − log I0(
f2u

∗
1 ∨ u∗

2

σ2
) +

M

σ
(
√
u∗
1 ∧ u∗

2 −
√

f2)
2dx

≥
∫
Ω

1

2σ2
(u∗

1)
2 − log I0(

f1u
∗
1

σ2
) +

M

σ
(
√
u∗
1 −

√
f1)

2dx

+

∫
Ω

1

2σ2
(u∗

2)
2 − log I0(

f2u
∗
2

σ2
) +

M

σ
(
√
u∗
2 −

√
f2)

2dx.

(3.8)

As Ω can be written as Ω = {u∗
1 > u∗

2} ∪ {u∗
1 ≤ u∗

2}, then we can calculate∫
Ω

((u∗
1 ∧ u∗

2)
2 + (u∗

1 ∨ u∗
2)

2)dx =

∫
Ω

((u∗
1)

2 + (u∗
2)

2)dx.

And the inequality (3.8) can be simplified as follows∫
{u∗

1>u∗
2}
[log

I0(
f1u

∗
1

σ2 )I0(
f2u

∗
2

σ2 )

I0(
f1u∗

2

σ2 )I0(
f2u∗

1

σ2 )
+ (

√
u∗
1 −

√
u∗
2)(

√
f1 −

√
f2)]dx ≥ 0. (3.9)

Referring to Lemma 3.6 and Lemma 3.7, we can easily get

log I0(
f1u

∗
1

σ2
) + log I0(

f2u
∗
2

σ2
) < log I0(

f1u
∗
2

σ2
) + log I0(

f2u
∗
1

σ2
),
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which is equivalent to

log
I0(

f1u
∗
1

σ2 )I0(
f2u

∗
2

σ2 )

I0(
f1u∗

2

σ2 )I0(
f2u∗

1

σ2 )
< 0,

if f1 < f2 and u∗
1 > u∗

2. Thus, on the basis of the assumption f1 < f2, we can deduce
from inequality (3.9) that u∗

1 > u∗
2 has zero Lebesgue measure, i.e., u∗

1 ≤ u∗
2 a.e. in Ω.

4. The Extension to Simultaneous Deblurring and Denoising. The model
(3.3) that we propose is obtained by MAP estimation, and particularly adapt to the
Rician noise removal. In this section, we extend it to the case in which we need
to deblur and denoise simultaneously. That is, we will recover the image u in (1.1)
with the blurring operator A. The restoration is conducted by solving the following
minimization problem

inf
u∈S̄(Ω)

1

2σ2

∫
Ω

(Au)2dx−
∫
Ω

log I0(
Auf

σ2
)dx+

M

σ

∫
Ω

(
√
Au−

√
f)2dx+γTV(u), (4.1)

where A ∈ L(L2(Ω)). As a blurring operator, we assume that A is nonnegative, i.e.,
A ≥ 0 in short. Then we have Au ≥ 0 with u ∈ S̄(Ω).

Since A is linear, based on Proposition 3.4 and Theorem 3.5, we can easily obtain
the following results.

Proposition 4.1. If M ≥ M0, then the model (4.1) is convex.
Theorem 4.2. Assume that A ∈ £(L2(Ω)) is nonnegative, and it does not

annihilate constant functions, i.e., A1 ̸= 0. Let f be in L∞(Ω) with infΩ f > 0, then
the model (4.1) has a solution u∗. Moreover, if M ≥ M0 and A is injective, then the
solution is unique.

Proof. Define one function EA(u) as follows

EA(u) =
1

2σ2

∫
Ω

(Au)2dx−
∫
Ω

log I0(
Auf

σ2
)dx+

M

σ

∫
Ω

(
√
Au−

√
f)2dx+γ

∫
Ω

|Du|dx.

Similar as in the proof of Theorem 3.5 , EA is bounded from below. Thus, we choose
a minimizing sequence {un ∈ S̄(Ω) : n = 1, 2, . . .} for (4.1), and have {

∫
Ω
|Dun|} is

bounded. Applying the Poincaré inequality in [33], we get

∥un −mΩ(un)∥2 ≤ C

∫
Ω

|D(un −mΩ(un))| = C

∫
Ω

|Dun|, (4.2)

where mΩ(un) = 1
|Ω|

∫
Ω
un dx, |Ω| denotes the measure of Ω, and C is a constant.

As Ω is bounded, ∥un − mΩ(un)∥2 is bounded for each n. Since A ∈ L(L2(Ω)) is
continuous, {A(un −mΩ(un))} must be bounded in L2(Ω) and in L1(Ω).

In addition, based on the boundedness of EA(un), ∥
√
Aun −

√
f∥2 is bounded,

which deduces that Aun is bounded in L1(Ω). Meanwhile, we have:

|mΩ(un)| · ∥A1∥1 = ∥A(un −mΩ(un))−Aun∥1 ≤ ∥A(un −mΩ(un))∥1 + ∥Aun∥1,

which turns out that mΩ(un) is uniformly bounded, because of A1 ̸= 0. As we know
{un −mΩ(un)} is bounded, the boundedness of {un} in L2(Ω) and thus in L1(Ω) is
obvious.
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Therefore, there exists a subsequence {unk
} which converges weakly in L2(Ω) to

some u∗ ∈ L2(Ω), and {Dunk
} converges weakly as a measure to Du∗. Since the

linear operator A is continuous, we have {Aunk
} converges weakly to Au∗ in L2(Ω) as

well. Then according to the lower semi-continuity of the total variation and Fatou’s
lemma, we obtain that u∗ is a solution of the model (4.1).

Based on Theorem 3.5, when M ≥ M0, the model (4.1) is convex. Furthermore,
if A is injective, (4.1) is strictly convex, then its minimizer has to be unique.

5. Primal-Dual Algorithm. As model (3.3) is convex when M ≥ M0, many
optimization methods can be applied to solve the minimization problem in (3.3). For
instance, Split-Bregman method [27] is widely used in this case because of its many
superiorities, such as small memory footprint, easy to code; gradient method is also a
suitable classical method to solve this optimization problem and so on. In particular,
we introduce the primal-dual method [14] since it is easy to implement and can be
effectively accelerated on parallel hardware such as graphics processing units (GPUs).
Moreover, it is built with the convergence theories.

We write the model (3.3) as the following discrete formula

min
u∈X

1

2σ2
∥u∥22 − ⟨log I0(

fu

σ2
), 1⟩+ M

σ
∥
√
u−

√
f∥22 + γ∥∇u∥1, (5.1)

where X = {v ∈ Rn : vi ≥ 0 for i = 1, · · · , n}, f ∈ X is columnwise stacked into a
vector from a 2D pixel-array, ∥ · ∥2 denotes the l2-vector norm, ⟨u, v⟩ =

∑n
i=1 uivi is

the vector inner product, and n is the number of pixels in the image. Furthermore,
∥∇u∥1 denotes the discrete version of the isotropic total variation, which is defined as
∥∇u∥1 =

∑n
i=1

√
(∇xu)2i + (∇yu)2i with ∇u = (∇xu,∇yu)

⊤ ∈ R2n, and symmetric
boundary conditions are used for the discrete gradient operator ∇.

In order to give a brief expression, we denote the sum of the first three terms in
(5.1) as the function G : X → R, that is,

G(u) :=
1

2σ2
∥u∥22 − ⟨log I0(

fu

σ2
), 1⟩+ M

σ
∥
√
u−

√
f∥22.

According to the duality of the TV, the primal-dual formulation of the optimization
problem in (5.1) is given by

max
p∈Y

min
u∈X

G(u)− γ⟨u,div p⟩, (5.2)

where Y = {q ∈ R2n : ∥q∥∞ ≤ 1}, ∥q∥∞ = maxi∈{1,··· ,n}

∣∣∣√q2i + q2i+n

∣∣∣ denotes the

l∞-vector-norm, p is the dual variable, and the divergence operator div = −∇⊤. The
algorithm is summarized as follows.
Algorithm for solving the model (3.3)

1: Fixed α, γ, σ, β, and τ . Initialize u0 = f , ū0 = f , and p0 = (0, · · · , 0)⊤ ∈
R2n.

2: Calculate pk+1 and uk+1 from

pk+1 = argmax
p∈Y

γ⟨∇ūk, p⟩ − 1

2β
∥p− pk∥22

= π1(βγ∇ūk + pk), (5.3)

uk+1 = arg min
u∈X

G(u)− γ⟨u,div pk+1⟩+ 1

2τ
∥u− uk∥22, (5.4)

ūk+1 = 2uk+1 − uk, (5.5)
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where π1 is the projector onto the l2-normed unit ball, i. e.,

π1(qi) =
qi

max{1, |qi|}
and π1(qn+i) =

qn+i

max{1, |qi|}
, for i = 1, · · · , n,

with |qi| =
√
q2i + q2n+i.

3: Stop; or set k := k + 1 and go to step 2.
In the algorithm, we utilize Newton method to solve the minimization problem

in (5.4) because of the strict convexity of our proposed model. In addition, based on
Theorem 1 in [13], we have the following convergence result.

Proposition 5.1. The iterates (uk, pk) of our algorithm converge to a saddle
point of (3.3), provided that βτγ2∥∇∥2 < 1.

According to the result ∥∇∥2 ≤ 8 with the unit spacing size between pixels in [13],
we only need βτγ2 < 1

8 in order to keep the convergent condition. While, in our
numerical practice, γ is tuned empirically, and we set β = 0.8/γ, τ = 0.2/γ, which
already can ensure the convergence of the algorithm.

In order to extend the primal-dual algorithm to solve deblurring model (4.1), we
introduce another two variables. Based on the definition of TV, (4.1) can be written
as

max
p∈Y,q∈Z

min
u∈X,w∈X

G(w)− γ⟨u,div p⟩+ ⟨Au− w, q⟩,

where w is the approximation of Au, and q ∈ Z = {v ∈ Rn : vi ≥ 0, i = 1, ..., n}
is the Lagrangian multiplier of the constraint Au = w. The resulting algorithm is
summarized as follows.
Algorithm for solving the model (4.1)

1: Fixed α, γ, σ, τ , and β. Initialize u0 = f , ū0 = f , w0 = f , w̄0 = f ,
p0 = (0, · · · , 0)⊤ ∈ R2n, and q0 = (0, · · · , 0) ∈ Rn.

2: Calculate pk+1, qk+1, wk+1 and uk+1 from

pk+1 = argmax
p∈Y

⟨γ∇ūk, p⟩ − 1

2β
∥p− pk∥22, (5.6)

qk+1 = argmax
q∈Z

⟨Aūk − w̄k, q⟩ − 1

2β
∥q − qk∥22, (5.7)

uk+1 = arg min
u∈X

⟨u,A⊤qk+1 − γ div pk+1⟩+ 1

2τ
∥u− uk∥22, (5.8)

wk+1 = arg min
w∈X

G(w)− ⟨w, qk+1⟩+ 1

2τ
∥w − wk∥22, (5.9)

uk+1 = 2uk+1 − uk, (5.10)

wk+1 = 2wk+1 − wk, (5.11)

3: Stop; or set k := k + 1 and go to step 2.
Based on the Proposition 4.2 and Proposition 4.3 in [18], we end this section by

the convergence properties of the algorithm for solving (4.1).
Proposition 5.2. Let x = (u,w)⊤ and y = (p, q)⊤. If we choose τ and β such

that τβ ≤ 1/(1+γ2∥∇∥22+∥A∥22), then the iterates (xk, yk) converge to a saddle point
(x∗, y∗) of (4.1).

13



(a) (b)

(c) (d) (e)

Fig. 6.1. Original images. (a) “Cameraman”, (b) “Bird”, (c) “Skull”, (d) “Leg joint”, (e)
“Brain”.

6. Numerical Results. In this section, we report some numerical results to
illustrate the effectiveness of our proposed approach. In total, we use five images for
testing: two natural images “Cameraman” and “Bird”, and three MR images “Skull”,
“Leg joint” and “Brain”, see Fig. 6.1. We compare our proposed approach with the
classical ROF model [36] and Getreuer’s convex model in [26], and both of them are
efficient for image recovery. The ROF model is solved by the primal-dual algorithm,
and can be served as reference since it doest not consider the characteristics of the
noise. The Getreuer’s model is based on MAP estimation taking full account of the
distribution of the Rician noise, and is solved by the Split-Bregman algorithm [27].
In the numerical experiments, we observe a phenomenon that there exists rather big
gap between the mean of the restored image by our model (or ROF model) and that
of the original image. In order to compensate the gap, we make a bias correction step
in the end. Indeed, based on (1.1), we can easily get

Au = −η1 +
√
f2 − η22 .

Hence,

E(u) ≈ E(Au) = E(
√

f2 − η22) ≈ E(
√

max(f2 − cσ2, 0)),

where the constant c should be nearly 1.
Under independence conditions, the above approximations are theoretically res-

onable in statistics. Moreover, in the practical simulations, we find that these two
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assumptions provide rather good results. Assuming that u is the resulting image of
our model or ROF model, the above analysis suggests that we could revise it as

û = u+ a,

where a is the mean value of the difference between u and
√
max(f2 − cσ2, 0). In

our paper, we choose c = 1.2 and list relative estimation errors of three images as
examples in Table 6.1. From Table 6.1, we can see that the estimated results are quite
good. For the Getreuer’s model, we numerically find that this bias correction is not
necessary.

Relative Estimation Error for different σ
images σ = 15 σ = 20 σ = 25 σ = 30

Cameraman 0.0009 0.0044 0.0071 0.0105
Skull 0.0107 0.0054 0.0154 0.0265

Leg joint 0.0043 0.0108 0.0081 0.0027
Table 6.1

The values of
|Aesti−Atrue|

Atrue
for different Rician noise standard variation σ with different image

u, where Aesti denotes the estimated mean value of u, while Atrue denotes the true mean value of
u.

For all the three image restoration methods used in this section, we tuned the
parameters in the experiments to achieve the best visual results. For the quality of
the restoration results, we measure it quantitatively by the Peak-Signal-to-Noise Ratio
(PSNR) [28] value which is commonly used in image processing. All the experiments
are executed on a ACPI×64-based PC with 3.3GHz CPU and Matlab 7.12.0 (R2011a).

6.1. Image denoising. In the denoising case, the test images are degraded by
Rician noise with standard deviation σ = 20 and σ = 30, respectively. In our model,
we fix M = 0.94 which ensures the convexity of our model (3.3). As the stopping
criteria for the algorithm used by three different models, we design it as

∥uk − uk+1∥2
∥uk+1∥2

< ϵ, (6.1)

where ϵ is set by 10−4.
In Fig. 6.2, we present the restored images by our proposed model, ROF model

and Getreuer’s model from the “Cameraman” image degraded by Rician noise with
σ = 20. From Fig. 6.2, we can see that the noisy “Cameraman” image is enhanced
by all the three models. Compared with the other two models, ROF model smooths
the image more damnably which is also re-confirmed in the residual image and lowest
PSNR value in Table 6.2. However, the contrast of the resulting image of Getreuer’s
model seems worst, for example, the intensity of the trousers of the cameraman is
much lighter than the original one. The image recovered by our proposed model
preserves most feature while clearly removing the noise. From the information in the
yellow rectangle of Fig. 6.2, we can see that the hand of our recovered image contains
most details. In Fig. 6.3, we show the residual images of “Leg joint” obtained by three
models. We can find that the residual image of our model contains least information
of the observed image, in addition, some particular positions in the residual part of
Getreuer’s model are especially brighter than those in our proposed model. In general,
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(a) Original (b) Noisy: 22.09 (c) Original

(d) ROF: 26.64 (e) Getreuer’s: 27.26 (f) Ours: 27.89

(g) Residual of ROF (h) Residual of Gretreuer (i) Residual of Ours

Fig. 6.2. Results and PSNR values of different methods when removing the Rician noise with
σ = 20 in natural image “Cameraman”. Row 1: the original image “Cameraman” and the degraded
image. Row 2: the recovered images with different methods. Row 3: the residuals images with
different methods. (a) Original “Cameraman”, (b) Noisy “Cameraman” with σ = 20, (c) Zoomed
original “Cameraman”, (d) ROF model (λ = 0.05), (e) Getreuer’s model (λ = 20), (f) Our proposed
model (γ = 0.05), (g)-(i) are residual images of ROF model, Getreuer’s model and our model,
respectively.

the reconstructed image by our proposed model performs best visually. In numerical
aspect, the whole three models are monotonically decreasing. Simultaneously, the
PSNR value of our model is largest according to Table 6.2. Note that the PSNR
values listed in Table 6.2 are the best PSNR values obtained by three models through
adjusting the parameters to remove noise. The corresponding parameters are given
in the captions of Fig. 6.2-6.5.

From Table 6.2, it is easily found that the larger the standard variance σ of Rician
noise is, the improvement of our method over the other two approaches seems more
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(a) ROF (b) Getreuer’s (c) Ours

(d)ROF (e) Getreuer’s (f) Ours

Fig. 6.3. Residual images of different methods when removing the Rician noise with σ = 20
and σ = 30 in MR image “Leg joint”. Row 1: The σ = 20 case; Row 2: The σ = 30 case; (a)
and (d) are obtained by ROF model; (b) and (e) are obtained by Getreuer’s model; (c) and (f) are
obtained by our proposed model.

significant. In order to show the superiority of our proposed model, we also present
the restored results of natural image “Bird” and MR image “Brain” in Fig. 6.4-6.5.
The corresponding PSNR values obtained by all the three models are listed in Table
6.2.

In Fig. 6.4, we provide a visual comparison of a slice of the natural image (Bird)
denoised using three methods. Note that the noisy image is degraded by Rician noise
with standard variation σ = 30. Our method is seen to provide most details of the
image. For example, the paws of the bird in our image is clearest. In Fig. 6.5,
we zoom in to the restored “Brain” images by above-mentioned three methods to
get more detail. The conclusion is easily obtained that image reconstructed by our
method preserves most detail information among three images.

6.2. Image deblurring and denoising. In Section 6.1, we discuss to recover
the noisy images. Since we have already extended the noisy case to the simultaneous
blurred with noise one in Section 4, in this section, we consider restoring the noisy
blurred images. For the blurring operators, two kinds of blurring operators are ap-
plied. One is Gaussian blur with a window size 9 ∗ 9 and standard deviation 1, the
other one is Motion blur with length 5 and angle 30. In the experiment, after blurred,
the test images are degraded by Rician noise with σ = 15. In the deblurring case, the
stopping criteria ϵ is set by 10−4.

In Fig. 6.6-6.7, we show the degraded images and the recovered results by solving
three models : ROF model, Getreuer’s and ours. In this deblurring case, we select
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(a) Original (b) Noisy: 18.72 (c) Original

(d) ROF: 28.03 (e) Getreuer’s: 30.09 (f) Ours: 30.62

Fig. 6.4. Results and PSNR values of different methods when removing the Rician noise with
σ = 30 in natural image “Bird”. Row 1: the original image “Bird” and the degraded image. Row
2: the recovered images with different methods. (a) Original “Bird”, (b) Noisy “Bird” with σ = 30,
(c) Zoomed original “Bird”, (d) ROF model (λ = 0.03), (e) Getreuer’s model (λ = 30), (f) Our
proposed model (γ = 0.035).

to present the restored results of two images (one natural image “Bird” and one MR
image “Brain”). In Table 6.3, we list the best PSNR values obtained by three models
for both Gaussian blur and Motion blur. From Table 6.3, we can see that in this
deblurring case, the PSNR values gotten by our model are still best and the PSNR
values obtained by ROF model are quite good. This phenomenon matches the opinion
proposed in [2, 7] that when the standard deviation σ of the Rician noise is not so
large, it can be well approximated by Gaussian noise. Since in the deblurring case, σ
is set by 15, the result by ROF model can be very good. From Fig. 6.6-6.7, we can
easily find that our model performs best in removing the noise clearly.

In Fig. 6.6, the background of the reconstructed image by our model is more
similar to the original image “Bird” than the other two models. Our method produces
least artifacts, at the same time, it is able to provide better preservation of edges
and other details. In Fig. 6.7, we list the residual images of three methods. The
residual image of our method contains least information of the original “Brain” image
which means our method is able to best preserve the features of the original image.
Meanwhile, we can get the same conclusion from the PSNR values listed in Table 6.3.

In a conclusion, our model outperforms the other two models which can deblur
with removing Rician noise simultaneously.

7. Conclusion. In this paper, we put forward a new convex variational model
for recovering blurred images with Rician noise. Taking account of the statistical
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(a) Original (b) Noisy: 18.42 (c) Original

(d) ROF: 22.50 (e) Getreuer’s: 25.71 (f) Ours: 26.52

Fig. 6.5. Results and PSNR values of different methods when removing the Rician noise with
σ = 30 in MR image “Brain”. Row 1: the original image “Brain” and the degraded image. Row 2:
the recovered images with different methods. (a) Original “Brain”, (b) Noisy “Brain” with σ = 30,
(c) Zoomed original “Brain”, (d) ROF model (λ = 0.03), (e) Getreuer’s model (λ = 30), (f) Our
proposed model (γ = 0.03).

property of Rician noise, we eventually come up with adding a quadratic penalty
term into the non-convex model (1.2) obtained by MAP estimation to establish a new
convex model (3.3). The new model can guarantee the uniqueness of the solution
and the stability of the algorithm. Moreover, based on the convexity of the new
model (3.3), primal-dual algorithm presented in [14] is applied to solve it since the
convergence is ensured. Furthermore, experimental results presented in the end show
that our proposed method can restore the degraded image by Rician noise effectively.
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