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Abstract Westudy analytical and numerical properties of the L1−L2 minimization problem
for sparse representation of a signal over a highly coherent dictionary. Though the L1 − L2

metric is non-convex, it is Lipschitz continuous. The difference of convex algorithm (DCA)
is readily applicable for computing the sparse representation coefficients. The L1 minimiza-
tion appears as an initialization step of DCA. We further integrate DCA with a non-standard
simulated annealing methodology to approximate globally sparse solutions. Non-Gaussian
random perturbations are more effective than standard Gaussian perturbations for improv-
ing sparsity of solutions. In numerical experiments, we conduct an extensive comparison
among sparse penalties such as L0, L1, L p for p ∈ (0, 1) based on data from three specific
applications (over-sampled discreet cosine basis, differential absorption optical spectroscopy,
and image denoising) where highly coherent dictionaries arise. We find numerically that the
L1 − L2 minimization persistently produces better results than L1 minimization, especially
when the sensing matrix is ill-conditioned. In addition, the DCA method outperforms many
existing algorithms for other nonconvex metrics.

Keywords Highly coherent dictionary · Sparse representation · L1 − L2 minimization ·
Difference of convex programming · Simulated annealing · Comparison with L p p ∈ (0, 1)

1 Introduction

Sparse representation in an overcomplete basis appears frequently in signal processing and
imaging applications such as oversampled discrete Fourier transform, Gabor frames, curvelet
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frames, concatenation of different orthonormal bases [3]. It is known to be related to sparse
coding in visual systems [19]. The advantage is robustness and reliability.

Mathematically it amounts to finding the sparsest solution to an under-determined linear
system

b = Ax + n, (1)

where b is the observed data, A is a M × N (M < N ) matrix and n is noise. A fundamental
issue in compressed sensing (CS) is how to enforce sparsity when solving the linear system
(1). A natural strategy is to minimize L0 norm, ‖x‖0, which is the number of nonzero
elements. Unfortunately, the L0 minimization is NP hard [18]. There are two methods that
approach L0 directly. One is the greedy approach, the so called orthogonal matching pursuit
(OMP) [23]. Its basic idea is to select one best column from the matrix A at a time, followed
by an orthogonal projection to avoid selecting the same vector multiple times. The other is
the penalty decomposition method [17], which solves

min
x∈RN

1

2
‖A x − b‖22 + λ‖x‖0, (2)

by a series of minimization problems with an increasing sequence {ρk}:
(xk+1, yk+1) = argmin 1

2‖Ax − b‖2 + ρk

2 ‖x − y‖2 + λ‖y‖0
ρk+1 = τρk (τ > 1).

(3)

In general, the two approaches only provide sub-optimal sparse solutions to the original
problem.

The convex relaxation of L1 in lieu of L0 attracts considerable attention in CS. There are
numerous algorithms, such as LASSO [22], Bregman iterations [27], and alternating direction
method of multipliers (ADMM) [2], devoted to solving L1 regularized problems efficiently
and accurately. The theoretical aspect of L1 relaxation is studied in [5,8] and elsewhere. A
deterministic result in [8] says that exact L1 recovery is possible if

‖x‖0 <
1 + 1/μ

2
, (4)

where μ is mutual coherence of the matrix A = [a1, . . . , aN ], defined as

μ = max
i �= j

|aTi a j |
‖ai‖‖a j‖ .

The inequality (4) suggests that L1 may not performwell for highly coherent sensingmatrices
in that if μ ∼ 1, then ‖x‖0 can be at most 1. Though the theoretical estimate is far from
sharp, we shall show numerical examples of such phenomenon later.

In this paper we study a non-convex but Lipschitz continuous metric L1 − L2 for sparse
signal recovery in the highly coherent regime of CS, and compare with the concave and
Hölder continuous sparsity metric L p (p ∈ (0, 1)).

Recently, nonconvex measures, such as L p for p ∈ (0, 1) in [7], L1/L2 and L1 − L2 in
[10,25], have been proposed as alternatives to L1. As illustrated in Fig. 1 in R

2, the level
curves of L p and L1 − L2 are closer to L0 than those of L1. Geometrically, minimizing a
sparsemeasure subject to linear constraints is equivalent to finding an interception of an affine
subspace (corresponding to solutions of the linear constraints) with a level set of that measure
so that the intersection is closest to a coordinate axis/plane. For L p and L1 − L2, due to their
curved level set, the interception is more likely to occur at the coordinate axis/plane, giving
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Fig. 1 Level lines of three sparsity metrics. Compared with L1, the level lines of L p and L1 − L2 are closer
to the axes when minimized (closer to those of L0)

a sparse solution. For L1, it is possible that the affine subspace coincides with a segment
of a level set (a resonance phenomenon), i.e., any point on that segment is a solution of L1

minimization. If such resonance occurs, L1 minimization fails to find a sparse solution. There
may be other degenerate scenarios in three and above dimensions when the sensing matrix
is highly coherent.

Though L p and L1− L2 measures are theoretically better than L1 to promote sparsity, the
non-convexity poses a challenge to computation. For L p minimization, iterative reweighed
least-square [7] is considered for the constrained problem, while an unconstrained formu-
lation is discussed in [16]. The minimizing sequence may get stuck at a stationary point.
The L p metric has an a-priori unknown parameter p and is non-Lipschitz. The L1 − L2

is however Lipschitz continuous and free of parameter. It can be minimized by the differ-
ence of convex algorithm (DCA) [21] where linearization convexifies the objective without
additional smoothing or regularization. The DCA minimizing sequence converges to a sta-
tionary point theoretically, which empirically often (yet not always) turns out to be a global
minimizer. To avoid trapping in a local basin, we further incorporate a variant of the so
called simulated annealing (SA) technique in global optimization. Here we found that non-
Gaussian random perturbations are better at improving sparsity of solutions than standard
Gaussian perturbations. A hybrid method integrating SA for L p minimization is discussed
in [24].
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The rest of the paper is organized as follows. In Sect. 2.1, we show a toy example when
L1 minimization fails to find the sparsest solution, while L p and L1 − L2 minimization
succeed. In Sect. 2.2, we then present some nice properties of L1 − L2 metric as a sparsity
measure. In Sect. 3, we discuss the algorithms for computing sparse representation based on
L1 − L2 minimization, where both constrained and unconstrained formulations are given.
In order to find a global solution, we further integrate DCA and the simulated annealing
method. As numerical experiments, we investigate three specific applications (over-sampled
discreet cosine transform, optical spectroscopy, and image denoising) where highly coherent
matrices are encountered. We demonstrate that L1 − L2 minimization with DCA solver is
robust in finding sparse solutions, and outperforms some state-of-the-art algorithms. Finally,
discussion and conclusion are given in Sect. 5.

2 Sparsity Measures

2.1 A Toy Example

We study a toy example where L1 fails to find the sparsest solution, while both L1 − L2 and
L p can. Consider a linear system

⎡
⎣
2 1 0
1 1 1
0 1 2

⎤
⎦ x =

⎡
⎣
1
1
1

⎤
⎦ (5)

The sparsest solution is x0 = [0, 1, 0]T . We find any vector of form [a, 1 − 2a, a]T for
a ∈ [0, 0.5] is a solution of L1 minimization subject to (5). In other words, L1 fails to pick
up the sparsest solution.

L p minimization is equivalent to minimizing 2a p + (1 − 2a)p for a ∈ [0, 0.5]. As L p is
concave, the minimum is attained at the boundary. Consequently, we only need to evaluate
a = 0 and a = 0.5 to see which one is smaller. By simple calculations, L p attains its
minimum at a = 0 for p < 1. In other words, L p minimization yields the sparsest solution.

Let us look at L1 − L2. A non-zero vector is 1-sparse (only one non-zero element) if and
only if its L1 − L2 is 0. Since x0 is 1-sparse, then only 1-sparse vectors could be the solution
of minimizing L1 − L2 subject to (5). But the other 1-sparse vectors do not satisfy the linear
equation, and as a result we can get x0 exactly if minimizing L1 − L2.

2.2 Theoretical Properties of L1 − L2

To make this paper self-contained, we list some nice properties of L1 − L2. Please refer
to [26] for the proof. Recall that the well-known restricted isometry property (RIP) [5] in
compressive sensing is that for all subsets T ⊂ {1, . . . , N } with its cardinality |T | ≤ S,

(1 − δS)‖x‖22 ≤ ‖AT x‖22 ≤ (1 − δS)‖x‖22 ∀ x ∈ R
N ,

where AT is a submatrix of A with column indices T , and δS is a parameter depending on
S. The RIP condition for L1 − L2 exact recovery is given in the following.

Theorem 2.1 Let x0 be any vectorwith sparsity of s and b = A x0. Suppose that the following
condition holds

δ3s + a(s)δ4s < a(s) − 1, (6)
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where

a(s) =
(√

3s − 1√
s + 1

)2

,

then x0 is the unique solution to a constrained minimization problem:

min
x∈RN

‖x‖1 − ‖x‖2 subject to A x = b. (7)

In fact, Theorem2.1 does not characterize L1−L2 completely, as in practice its assumption
can be further relaxed.Due to concavity of themetric, we can prove that even localminimizers
of (7) satisfy certain sparsity, no matter whether A satisfies RIP or not.

Theorem 2.2 Let x∗ be a local minimizer of the constrained problem (7) then A |�∗ is of
full column rank, i.e. the columns of A |�∗ are linearly independent.

The same result can be obtained for the unconstrained problem:

min
x∈RN

1

2
‖A x − b‖22 + λ(‖x‖1 − ‖x‖2) (8)

Corollary 2.1 Let x∗ be a local minimizer of (8) then the columns of A |�∗ are linearly
independent.

By Theorem 2.2 and Corollary 2.1, we readily conclude the following facts:

a. Suppose x∗ is a local minimizer of (7) or (8) and A ∈ R
M×N is of full row rank, i.e.

rank(A) = M , then the sparsity of x∗ is at most M .
b. If x∗ is a local minimizer of (7), then there is no such x ∈ R

N satisfying Ax = b
and support (x) ⊆ �∗, i.e. it is impossible to find a feasible solution whose support is
contained in �∗.

c. The number of the local minimizers of (7) or (8) is finite.

3 Algorithm

To compute sparse representation based on L1 − L2, both constrained and unconstrained
minimization problems are discussed in Sects. 3.1 and 3.2 respectively. In Sect. 3.3, we
further employ a simulated annealing technique to search for global solutions of these two
nonconvex problems.

3.1 Unconstrained Minimization

We start with the unconstrained minimization problem (8). We adopt a DCA, which is to
decompose F(x) = G(x) − H(x), where

{
G(x) = 1

2‖A x − b‖22 + λ‖x‖1
H(x) = λ‖x‖2

(9)

By linearizing H , we can design an iterative scheme that starts with x1 �= 0,

xn+1 = arg min
x∈RN

1

2
‖A x − b‖22 + λ‖x‖1 − 〈x − xn, λ

xn

‖xn‖2 〉 (10)
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To advance to a new solution, it requires solving a L1 regularized subproblem of the form

min
x∈RN

1

2
xT (AT A)x + zT x + λ‖x‖1, (11)

where z = AT b + λ xn
‖xn‖2 . We consider the augmented Lagrangian

Lδ(x, y, u) = 1

2
xT (AT A)x + zT x + λ‖y‖1 + uT (x − y) + δ

2
‖x − y‖22.

Alternating directionmethod ofmultipliers iterates betweenminimizing Lδ with respect to x ,
minimizing with respect to y and updating u. The pseudo-code of solving the unconstrained
L1 − L2 minimization is described in Algorithm 1.

Algorithm 1 A DCA method for unconstrained L1 − L2 minimization

Define εouter > 0, εinner > 0 and initialize x0 = 0, x1 �= 0, n = 1
while ‖xn − xn−1‖ > εouter do
Let z = xn

‖xn‖2 and x0 = 0, x1 = xn , i = 1, yi = xi , ui = 0
while ‖xi − xi−1‖ > εinner do
xi+1 = (AT A + δ I )−1(δyi − z − ui )
yi+1 = shrink(xi+1 + ui /δ, λ/δ)

ui+1 = ui + δ(xi+1 − yi+1)
i = i + 1

end while
n = n + 1
xn = xi

end while

In our experiments we always set the initial value x1 as the solution of unconstrained L1

problem, that is to solve (11) with z = 0. So basically we are minimizing L1 − L2 on top
of L1. In practice the algorithm takes only a few steps to convergence. Theoretically, we can
prove that the sequence {xn} is bounded and ‖xn+1 − xn‖2 → 0, thus limit points of {xn}
are stationary points of (8) satisfying the first-order optimality condition.

Theorem 3.1 Let F(x) = 1
2‖A x − b‖22 + λ(‖x‖1 − ‖x‖2) with the D.C. decomposition in

(9) and {xn} be the sequence of iterates generated by Algorithm 1, then

a. F(x) → ∞ as ‖x‖2 → ∞. so the level set {x ∈ R
N : F(x) ≤ F(x0)} is bounded.

b. ‖xn+1 − xn‖2 → 0.
c. Any limit point x∗ �= 0 of {xn} satisfies the first-order optimality condition

AT (A x∗ − b) + λ(w∗ − x∗

‖x∗‖2 ) = 0, for some w∗ ∈ ∂‖x∗‖1, (12)

which means x∗ is a stationary point of (8).

Starting from (12), we obtain the following results.

Theorem 3.2 ∀k ≥ 1, we can a choose a regularization parameter λk > 0 for (8) so that
‖x∗‖0 ≤ k.

Theorem 3.2 suggests that we can control the sparsity of the limit point of the DCA
algorithm by choosing a proper λ. Please refer to [26] for the proof of both theorems.
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3.2 Constrained Minimization

For the constrained problem (7), we apply a similar trick as the unconstrained problem by
considering the following iterative scheme

xn+1 = argmin ‖x‖1 − 〈 xn

‖xn‖2 , x〉
s.t. Ax = b (13)

Each subproblem (13) amounts to solving a constrained L1 minimization,

min |x | − zT x s.t. Ax = b, (14)

for z = xn
‖xn‖2 . To solve (14), we introduce two Lagrange multipliers u, v and define an

augmented Lagrangian

Lδ(x, y, u, v) = ‖y‖1 − zT x + uT (x − y) + vT (Ax − b) + δ

2
‖x − y‖2 + δ

2
‖Ax − b‖2,

for δ > 0. ADMM finds a saddle point

Lδ(x
∗, y∗, u, v) � Lδ(x

∗, y∗, u∗, v∗) � Lδ(x, y, u
∗, v∗) ∀x, y, u, v

by alternately minimizing Lδ with respect to x , minimizing with respect to y and updating
the dual variables u and v. The saddle point (x∗, y∗)will be a solution to (14) and we can take
x∗ be the solution to (13), i.e., xn+1 = x∗. The overall algorithm for solving the constrained
L1 − L2 is described in Algorithm 2.

Algorithm 2 A DCA method for constrained L1 − L2 minimization

Define εouter > 0, εinner > 0 and initialize x0 = 0, x1 �= 0, n = 1
while ‖xn − xn−1‖ > εouter do
Let z = xn

‖xn‖2 and x0 = 0, x1 = xn , i = 1, yi = xi , ui = vi = 0
while ‖xi − xi−1‖ > εinner do
xi+1 = (AT A + I)−1(AT b + yi + (z − ui − AT vi )/δ)
yi+1 = shrink(xi+1 + ui /δ, 1/δ)
ui+1 = ui + δ(xi+1 − yi+1)
vi+1 = vi + δ(Axi+1 − b)
i = i + 1

end while
n = n + 1
xn = xi

end while

3.3 Simulated Annealing

The DCA method does not guarantee a global minimum in general. We further employ a
technique, called SA, to traverse a stationary point to a global solution. SA has drawn much
attentions dealing with global optimization. There are many generic SA algorithms, see
Kirkpatrick [15], Geman and Geman [13], Gidas [14], and the reference therein. In addition,
Carnevali et al. [6] apply this technique to many applications in image processing.

Here is a brief description of simulated annealing. The term “annealing” is analogous to the
cooling of a liquid or solid in a physical system. Consider the problem of minimizing the cost
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function f (x). Simulated annealing algorithm begins with an initial solution and iteratively
generates new ones, each of which is randomly selected among the “neighborhood” of the
previous state. If the new solution is better than the previous one, it is accepted; otherwise,
it is accepted with certain probability. The probability of accepting a new state is given by
exp(− fnew− fcurr

T ) > R,where R is a random number between 0 and 1, and T is a temperature
parameter. The algorithmusually startswith a high temperature, and then gradually goes down
to 0. The cooling must be slow enough so that the system does not get stuck into saddle points
or local minima of f (x).

There are two important aspects in implementing simulated annealing. One is how to lower
the temperature T . Kirkpatrick et al. [15] suggest T decays geometrically in the number of
cooling phases. Geman and Geman [13] prove that if T decreases at the rate of 1

log k , where
k is the number of iterations, then the probability distribution for the algorithm converges
to the uniform distribution over all the global minimum points. In our algorithm, we follow
Geman and Geman’s suggestion by decreasing T at the rate of 1

log k . Another aspect is how
to advance to a new state based on the current one. One of the most common methods is to
add Gaussian random noise. However, due to the presence of a large number of saddle points
and local minima, this perturbation method yields slow convergence of the SA algorithm.
To overcome this difficulty, we propose two pertubative strategies. Together with Gaussian
perturbation, we list the three SA methods as follows,

SA1. Define the support set of a vector x by support (x) := {i |xi �= 0}. We randomly
choose the new state xnew such that support (xnew) ⊂ support (xcurr ) and |xnew|0 <

|xcurr |0.
SA2. We randomly choose the new state xnew such that |xnew|0 < γ |xcurr |0 with some
constant γ < 1.
SA3. We choose the new state xnew by Gaussian perturbations, i.e. xnew = xcurr +
Gaussian noise.

The idea of SA1 and SA2 is to helpmaintain themonotone (non-increasing) sparsity property
of the iterates. The pseudo-code of the SA method in combination of DCA is given in
Algorithm 3.

Algorithm 3 L1-L2 DCA with simulated annealing
Define xcurr , xnew, ε, T γ < 1, maxIter and AcceptMax, Accept = 0.
while T > ε or k ≤ maxIter do
SA1: xnew = randsample(xcurr ) such that support (xnew) ⊂ support (xcurr ) and |xnew |0 < |xcurr |0.
SA2: xnew = randsample(xcurr ) such that |xnew |0 < γ |xcurr |0, with γ < 1.
SA3: xnew = xcurr + Gaussian noise.
Update xnew by the DCA solution of L1 − L2 using xnew as initial guess
if f (xnew) ≤ f (xcurr ) then
xcurr = xnew

else
if exp(− f (xnew)− f (xcurr )

T ) > rand(1) then
xcurr = xnew

end if
end if
k = k + 1
Accept=Accept+1
if Accept≥ AcceptMax then
T = 1

log k
Accept=0

end if
end while
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4 Applications

In this section we examine three specific applications where the sensing matrix is highly
coherent. They are compressive sensing based on oversampled DCT matrices, wavelength
misalignment in differential optical absorption spectroscopy (DOAS) analysis, and image
denoising via sparse representation in an overcomplete dictionary. For each problem, we
compare the proposed method for minimizing L1 − L2 with some state-of-the-art algorithms
for L0, L1, and L p . Experiments show promising results of using L1−L2 as a sparsemeasure
and solving sparse coefficients by DCA and SA.

4.1 Over-Sampled DCT

We consider an over-sampled DCT matrix A = [a1, . . . , aN ] ∈ R
M×N with

a j = 1√
N

cos(
2πw j

F
), j = 1, . . . , N (15)

where w is a random vector of length M . This matrix is derived from the problem of spectral
estimation [11] in signal processing, if we replace the cosine function in (15) by exponential.
The matrix is highly coherent. For a 100×1, 000 matrix with F = 10, the coherence is.9981,
while the coherence of a same size matrix with F=20 is .9999.

The sparse recovery under such matrices is possible only if the non-zero elements of solu-
tion x are sufficiently separated. This phenomenon is characterized as minimum separation
in [4], and this minimum length is referred as the Rayleigh length (RL). The value of RL
in (15) is equal to F . It is closely related to the coherence in the sense that larger F corre-
sponds to larger coherence of a matrix. We find empirically that at least 2RL is necessary
to ensure optimal sparse recovery. Intuitively, we need sparse spikes to be further apart for
more coherent matrices.

Under the assumption of sparse signal with 2RL separated spikes, we compare algorithms
in terms of success rate. Denote xr as a reconstructed solution by a certain algorithm. We
consider the algorithm successful, if the relative error of xr to the ground truth xg is less than

.001, i.e., ‖xr−xg‖
‖xg‖ < .001. The success rate is based on 100 random realizations.

We first investigate the unconstrained algorithms for sparse penalties L1 − L2, L1, L p

(p=1/2) and a direct L0 solver, penalty decomposition (3). The unconstrained L p minimiza-
tion is solved by Lai et al. in [16]. The sensing matrix is of size 100×1, 000. The success rate
of each measure is plotted in Fig. 2. For smaller F = 5, each measure performs relatively
well. When F = 20, which corresponds to highly coherent matrices, the proposed L1 − L2

outperforms L1 and L p for p = 1/2. For both cases, L1 − L2 is consistently better than L1.
Figure 3 illustrates that the success rate of L1 − L2 increases with the help of SA. The

matrix size is 100×1, 500 and F = 20. We also compare three different random generations
of the new state, referred to as SA1–SA3 in Algorithm 3. All of these SA methods can
improve the accuracy of the original DCA algorithm for L1 − L2 minimization. Both of
SA1 and SA2 have better performance than the regular Gaussian perturbation method SA3.
Apparently, SA2 has the best performance out of the three, especially when the number of
non-zero elements is large.

For the constrained versions of each measure, we observe the similar behavior compared
to the unconstrained ones. The plots are presented in Fig. 4 for matrices of size 100×1, 000.
The iterative reweighed least square [7] is applied to solve the constrained L p . L1 − L2 is
the best for both incoherent and coherent matrices.
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N = 100, M = 1000, minimum separation is 2RL
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Fig. 2 Plots of success rates as a function of sparsity for F = 5 (left) and F = 20 (right). Each metric is
solved in an unconstrained optimization framework

N = 100, M = 1500, F = 20, minimum separation is 2RL
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Fig. 3 Plots of success rates of three SA algorithms: SA1-the support of the new state is within the current
one, SA2-the new state does not depend on the current one, and SA3-the new state is obtained by adding
Gaussian noise to the current one. The results of L1 and L1 − L2 without SA are plotted as reference

We further look at the success rates of L1 − L2 with different combinations of sparsity
and RL. The rates are recorded in Table 1, which shows it is possible to deal with large RL,
but with the sacrifice of high sparsity, or small number of non-zero elements.

The computation time for eachmethod is listed in Table 2. The reported time is the average
of 100 realizations. Since all the nonconvex optimization methods L0, L p, L1 − L2 use the
L1 solution as initial guess, we add L1 run time on top of each of them. Our L1 − L2 method
is slower than L p , but with better accuracy.

4.2 DOAS

Differential optical absorption spectroscopy analysis [20] is a technique that uses Beer’s
law to estimate chemical contents and concentrations of a mixture of gases by decompos-
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N = 100, M = 1000, minimum separation is 2RL
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Fig. 4 Plots of success rates as a function of sparsity for F = 5 (left) and F = 20 (right). Each metric is
solved in a constrained optimization framework

Table 1 The success rates (%)
of L1 − L2 for different
combinations of sparsity and
minimum separation

Sparsity 6 9 12 15 18 21 24

1RL 100 100 100 97 85 37 3

2RL 100 100 100 100 88 44 11

3RL 100 100 100 99 90 41 8

4RL 100 100 100 98 85 46 8

Table 2 Average computation
time for each method at different
settings

L0 L1/2 L1 L1 − L2

Unconstrained F = 5 12.26 1.94 1.53 3.56

Unconstrained F = 20 12.23 2.01 1.54 3.55

Constrained F = 5 4.37 1.97 3.68 9.94

Constrained F = 20 6.35 7.44 3.67 10.91

ing a measured characteristic absorption spectra of all the gases into a set of individual
ones. A mathematical model is to estimate fitting coefficients {a j } from a linear model
J (λ) = ∑M

j a j · y j (λ) + η(λ) , where the data J (λ) and reference spectra {y j (λ)} are
given at each wavelength λ and η(λ) is noise. A challenging complication in practice is
wavelength misalignment, i.e., the nominal wavelengths in the measurement J (λ) may not
correspond exactly to those in the basis y j (λ). We must allow for small deformations v j (λ)

so that y j (λ + v j (λ)) are all aligned with the data J (λ). Taking into account wavelength
misalignment, the data model becomes

J (λ) =
M∑
j

a j · y j
(
λ + v j (λ)

) + η(λ). (16)

Esser et al. [10] construct an incremented dictionary by deforming each y j with a set
of possible deformations for the DOAS problem. Specifically, since it has been discovered
that the deformations can be well approximated by linear functions, i.e., v j (λ) = p jλ + q j ,
all the possible deformations are enumerated by choosing p j , q j from two pre-determined
sets {P1, . . . , PK }, {Q1, . . . , QL }. Let Y j be a matrix with each column be a deformed basis
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Fig. 5 Each gas spectrum (a dictionary element) is plotted in red, while four deformed spectra (nearby
dictionary elements) are in dotted black

corresponding to y j (λ), i.e., y j (λ + Pkλ + Ql) for k = 1, · · · , K and l = 1, · · · , L . Then
the model (16) can be rewritten in terms of a matrix-vector form,

J = [Y1, . . . , YM ]
⎡
⎢⎣

a1
...

aM

⎤
⎥⎦ + η, (17)

where a j is a (K L)−dimensional column vector.
In our experiments, we generate such a dictionary by taking three given reference spectra

y j (λ) for the gases HONO, NO2 and O3 and deforming each by a set of linear functions.
The represented wavelengths in nanometers are λ = 340 + 0.04038w, w = 0, . . . , 1023,
thus yielding each y j ∈ R

1024. We choose two pre-determined sets Pk = −1.01 + 0.01k
(k = 1, . . . , 21) and Ql = −1.1 + 0.1l (l = 1, . . . , 21), and hence there are a total of 441
linearly deformed references for each of the three groups. In Fig. 5, we plot the reference
spectra of these three gases together with four deformed examples. The coherence of the
resulting dictionary is .9996.

To generate synthetic data J (λ) ∈ R
W , we randomly select one element for each group

with random magnitude plus additive zero mean Gaussian noise. Mimicking the relative
magnitudes of a real DOAS dataset [12] after normalization of the dictionary, the random
magnitudes are chosen to be at different orders with mean values of 1, 0.1, 1.5 for HONO,
NO2 and O3 respectively. We consider four different noise levels, whose standard deviations
σ are 0, .001, .005 and .01 respectively.
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Fig. 6 Method comparisons on synthetic DOAS data without noise. Computed coefficients (blue) are plotted
on top of the ground truth (red)

To solve the wavelength misalignment, the following minimization model is considered,

argmin
a j

‖J − [Y1, . . . , YM ]
⎡
⎢⎣

a1
...

aM

⎤
⎥⎦ ‖2, (18)

s.t. a j � 0, ‖a j‖0 � 1 j = 1, . . . , M. (19)
The second constraint in (19) is to enforce each a j to have at most one non-zero element.
‖a j‖0 = 1 indicates the existence of the gas with a spectrum y j and its non-zero component
corresponds to the selected deformation.

We consider a generic method to find sparse coefficients from the least square model (18).
To enforce sparsity, we use L1 − L2 and compare it with L p for p = 1/2. When taking the
non-negativity into account, we look at non-negative least square (NNLS) and non-negative
constrained L1 (NN L1) as comparison. We use MATLAB’s lsqnonneg function, which
is parameter free, to solve the NNLS. The constrained NN L1 is modelled as,

min
x≥0

‖x‖1 such that ‖Ax − b‖ ≤ τ, (20)

which can be solved by Bregman iteration [27]. We also compare with a direct L0 approach
that takes advantages of the structured sparsity. This method is based on the idea of penalty
decomposition [17], and therefore it requires a good initialization and slowly increases penalty
parameter ρk in (3).

In Figs. 6 and 7, we plot the results of different methods in blue alongwith the ground truth
solution in red for σ = 0 and 0.005 respectively. Table 3 shows the relative errors between the
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Fig. 7 Method comparisons on synthetic DOAS data with additive noise σ = .005. Computed coefficients
(blue) are plotted on top of the ground truth (red)

Table 3 Relative errors for each method under different amounts of noise. Each recorded value is the mean
of 100 random realizations

Noise std NNLS NN L1 L0 L1 − L2 L1/2

0 0.00 0.90 0.00 0.0000 0.04

0.001 0.04 0.87 0.005 0.003 0.06

0.005 0.19 0.16 0.06 0.058 0.18

0.01 0.39 0.33 0.20 0.34 0.40

The bold number indicates the smallest error among all the methods, which corresponds to the best recon-
struction result

reconstructed vector and the ground-truth under different amounts of noise. Each recorded
value is the average of 100 random realizations. All the results demonstrate that L1 − L2 is
comparable to other methods without additional assumption on non-negativity or structured
sparsity.

4.3 Image Denoising

An image denosing model [9] interprets an image as linear combinations of local overcom-
plete bases, where the vector of coefficients is sparse, so at any location only few bases
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contribute to the approximation. Suppose the discrete image patches of size
√
n×√

n pixels,
ordered lexicographically as column vectors x ∈ R

n , then the sparsity assumption corre-
sponds to assuming the existence of a matrix D ∈ R

n×K , the “dictionary,” such that every
image patch x can be represented as a linear combination of its columns with a vector of
coefficients that has small L0 norm. If we measure y, a version of x corrupted by additive
Gaussian noise with standard deviation σ , then the maximum a-posteriori estimator of the
“denoised” patch x is given by Dα̂, where

α̂ = argmin
α

||α||0 s.t. ||Dα − y||22 � T, (21)

where T is dictated by σ . If one wishes to encode a larger image X of size
√
N × √

N
(N � n), with a given dictionary D ∈ R

n×K , a natural approach is to use a block-coordinate
relaxation.

X̂ = arg min
X,αi j

||X − Y||22 + λ
∑
i, j

||αi j ||0 + μ
∑
i, j

||Dαi j − Ri jX||22. (22)

The first term measures the fidelity between the measured image Y and its denoised (and
unknown) version X. The second term enforces sparsity of each patch; the n × N matrix
Ri j extracts the (i, j)th block from the image. A simple denoising algorithm [9] goes as
follows,

1. Given an overcomplete dictionary D and let X be noisy data Y
2. Compute the coefficients αi j for each patch Ri jX

α̂i j = argmin
α

||α||0 s.t. ||Dα − Ri jX||22 � T . (23)

3. Update X by

X = Y + μ
∑

i j R
T
i jDαi j

I + μ
∑

i j R
T
i j Ri j

, (24)

which is a simple averaging of shifted patches.

The aforementioned DCT basis (15) can be a candidate for such dictionary, but it is
not suitable to represent natural image patches. Aharon et al. propose a dictionary learn-
ing technique called K-SVD [1]. They construct aglobal dictionary that is trained from
a large number of natural images. They also consider an adaptivedictionary by train-
ing on random samples of the noisy data so that the dictionary is more tailored to the
data. The global dictionary is presented in Fig. 8, which is used in our denoising experi-
ments.

In the denoising model [9], the sparse coding step (23) is solved by OMP [23], which
is described in Algorithm 4. We can replace OMP by enforcing sparse penalties L1, L p or
L1 − L2. The results are presented in Figs. 9 and 10 for σ = 20, 30 respectively. The peak-
signal-to-noise (PSNR) is provided for quantitative comparison. We find L0 by OMP and
its approximation L p for p=1/4 outperforms L1 and L1 − L2 objectively in terms of PSNR.
Perceptually, L1 − L2 appears to leave fewer defects on Lena’s face and elsewhere than L0

and L p with a rather close PSNR value. The reasons can be twofold. First, the dictionary
is not as coherent as the previous examples, (its coherence is .9559). Second, there is no
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Fig. 8 A global dictionary shown on the left is obtained from [1]. Each small blob is an 8 × 8 patch, which
corresponds to one column in the dictionary. A test image is shown on the right. It contains 4 sub images with
different features

Algorithm 4 Orthogonal matching pursuit [23]

1. Start from vector b and initialize the residual Ri = b for i = 1.
2. Select the atom that maximizes the absolute value of the inner product of columns of A with Ri .
3. Form a matrix, �, with previously selected atoms as the columns. Define the orthogonal projection
operator onto the span of the columns of �

P = �(�∗�)−1�∗.

4. Apply the orthogonal projection operator to the residual and update

Ri+1 = (I − P)Ri .

5. Let i = i + 1 and go to Step 2; stop if s atoms are chosen.

ground-truth sparsest solution in this case. Many solutions may look reasonable to human
perception. Visually and objectively via PSNR, L1 − L2 is always better than L1.

5 Conclusions and Future Work

In this paper, we studied L1−L2 as an alterative to L1 for sparse representation.We addressed
several analytical properties of L1 − L2 to promote sparsity. We proposed to compute sparse
coefficients based on the difference of convex algorithm. Due to its nonconvex nature, we
further considered a simulated annealing framework to approach a global solution. We have
conducted an extensive study comparing sparse penalties, L0, L1, L p, L1 − L2, and their
numerical algorithms. Experiments have demonstrated that L1 − L2 is better than L1 as a
sparse regularization, especially when the sensing matrix or dictionary is highly coherent,
and the DCA of L1 − L2 is better than iterative reweighed strategies for L p minimiza-
tion.
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noisy, PSNR = 22.12 L0, PSNR =32.39

L1, PSNR = 27.57 L1 − L2, PSNR =30.09

Fig. 9 Denoising comparison with additive noise whose standard deviation is 20

For future work, we plan to pursue the following directions. As the DCA of L1 − L2

is built upon L1, it is interesting to study whether the support of L1 − L2 solution is
within the one of L1. It has been noticed that not only does exact recovery of a sparse
signal depend on the matrix, it also depends on the signal itself. We want to charac-
terize exact sparse recovery in terms of minimum separation and/or Rayleigh length.
Finally we want to investigate simulated annealing for this specific algorithm, such as
how to advance to next step, how to determine the cooling strategy, and how to converge
faster.
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noisy, PSNR =18.58 L0, PSNR =30.05

L1/4, PSNR =28.87 L1 − L2, PSNR = 28.48

Fig. 10 Denoising comparison with additive noise whose standard deviation is 30. There are more noticeable
defects in L0 image than in L1 − L2 image
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