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Abstract We study analytical and numerical properties of the L | — Ly minimization problem
for sparse representation of a signal over a highly coherent dictionary. Though the L — L,
metric is non-convex, it is Lipschitz continuous. The difference of convex algorithm (DCA)
is readily applicable for computing the sparse representation coefficients. The L1 minimiza-
tion appears as an initialization step of DCA. We further integrate DCA with a non-standard
simulated annealing methodology to approximate globally sparse solutions. Non-Gaussian
random perturbations are more effective than standard Gaussian perturbations for improv-
ing sparsity of solutions. In numerical experiments, we conduct an extensive comparison
among sparse penalties such as Lo, Ly, L, for p € (0, 1) based on data from three specific
applications (over-sampled discreet cosine basis, differential absorption optical spectroscopy,
and image denoising) where highly coherent dictionaries arise. We find numerically that the
L1 — L, minimization persistently produces better results than L; minimization, especially
when the sensing matrix is ill-conditioned. In addition, the DCA method outperforms many
existing algorithms for other nonconvex metrics.

Keywords Highly coherent dictionary - Sparse representation - L; — L, minimization -
Difference of convex programming - Simulated annealing - Comparison with L, p € (0, 1)
1 Introduction

Sparse representation in an overcomplete basis appears frequently in signal processing and
imaging applications such as oversampled discrete Fourier transform, Gabor frames, curvelet
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frames, concatenation of different orthonormal bases [3]. It is known to be related to sparse
coding in visual systems [19]. The advantage is robustness and reliability.

Mathematically it amounts to finding the sparsest solution to an under-determined linear
system

b= Ax +n, 1

where b is the observed data, Aisa M x N (M < N) matrix and n is noise. A fundamental
issue in compressed sensing (CS) is how to enforce sparsity when solving the linear system
(1). A natural strategy is to minimize Ly norm, ||x|lp, which is the number of nonzero
elements. Unfortunately, the Lo minimization is NP hard [18]. There are two methods that
approach L directly. One is the greedy approach, the so called orthogonal matching pursuit
(OMP) [23]. Its basic idea is to select one best column from the matrix A at a time, followed
by an orthogonal projection to avoid selecting the same vector multiple times. The other is
the penalty decomposition method [17], which solves

1
min ~[|Ax — b3 + Alx]lo, )
xeRN 2

by a series of minimization problems with an increasing sequence {p*}:

. k
R YD) = argmin 3| Ax — b2 + & llx — yII> + Allyllo

Pl =1pk (x> 1). )

In general, the two approaches only provide sub-optimal sparse solutions to the original
problem.

The convex relaxation of L in lieu of L attracts considerable attention in CS. There are
numerous algorithms, such as LASSO [22], Bregman iterations [27], and alternating direction
method of multipliers (ADMM) [2], devoted to solving L regularized problems efficiently
and accurately. The theoretical aspect of L relaxation is studied in [5,8] and elsewhere. A
deterministic result in [8] says that exact L recovery is possible if

1+ 1/u
—

where o is mutual coherence of the matrix A = [ay, ..., ay], defined as

“

llxllo <

Tg.
la; aj

M= max ————r-.
i laillllajll

The inequality (4) suggests that L | may not perform well for highly coherent sensing matrices
in that if & ~ 1, then ||x||o can be at most 1. Though the theoretical estimate is far from
sharp, we shall show numerical examples of such phenomenon later.

In this paper we study a non-convex but Lipschitz continuous metric L1 — Ly for sparse
signal recovery in the highly coherent regime of CS, and compare with the concave and
Holder continuous sparsity metric L, (p € (0, 1)).

Recently, nonconvex measures, such as L, for p € (0, 1) in [7], L1/Lz and L1 — L3 in
[10,25], have been proposed as alternatives to Li. As illustrated in Fig. 1 in R?, the level
curves of L, and L{ — L, are closer to L than those of L. Geometrically, minimizing a
sparse measure subject to linear constraints is equivalent to finding an interception of an affine
subspace (corresponding to solutions of the linear constraints) with a level set of that measure
so that the intersection is closest to a coordinate axis/plane. For L, and L — L3, due to their
curved level set, the interception is more likely to occur at the coordinate axis/plane, giving
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Fig. 1 Level lines of three sparsity metrics. Compared with L1, the level lines of L, and L — L are closer
to the axes when minimized (closer to those of L)

a sparse solution. For L, it is possible that the affine subspace coincides with a segment
of a level set (a resonance phenomenon), i.e., any point on that segment is a solution of L
minimization. If such resonance occurs, L1 minimization fails to find a sparse solution. There
may be other degenerate scenarios in three and above dimensions when the sensing matrix
is highly coherent.

Though L, and L — L, measures are theoretically better than L to promote sparsity, the
non-convexity poses a challenge to computation. For L, minimization, iterative reweighed
least-square [7] is considered for the constrained problem, while an unconstrained formu-
lation is discussed in [16]. The minimizing sequence may get stuck at a stationary point.
The L, metric has an a-priori unknown parameter p and is non-Lipschitz. The L — L;
is however Lipschitz continuous and free of parameter. It can be minimized by the differ-
ence of convex algorithm (DCA) [21] where linearization convexifies the objective without
additional smoothing or regularization. The DCA minimizing sequence converges to a sta-
tionary point theoretically, which empirically often (yet not always) turns out to be a global
minimizer. To avoid trapping in a local basin, we further incorporate a variant of the so
called simulated annealing (SA) technique in global optimization. Here we found that non-
Gaussian random perturbations are better at improving sparsity of solutions than standard
Gaussian perturbations. A hybrid method integrating SA for L, minimization is discussed
in [24].
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The rest of the paper is organized as follows. In Sect. 2.1, we show a toy example when
L minimization fails to find the sparsest solution, while L, and L; — L, minimization
succeed. In Sect. 2.2, we then present some nice properties of L1 — Ly metric as a sparsity
measure. In Sect. 3, we discuss the algorithms for computing sparse representation based on
L1 — L, minimization, where both constrained and unconstrained formulations are given.
In order to find a global solution, we further integrate DCA and the simulated annealing
method. As numerical experiments, we investigate three specific applications (over-sampled
discreet cosine transform, optical spectroscopy, and image denoising) where highly coherent
matrices are encountered. We demonstrate that L | — L, minimization with DCA solver is
robust in finding sparse solutions, and outperforms some state-of-the-art algorithms. Finally,
discussion and conclusion are given in Sect. 5.

2 Sparsity Measures
2.1 A Toy Example

We study a toy example where L fails to find the sparsest solution, while both L — L, and
L, can. Consider a linear system

210 1
111 | x=1]1 Q)
012 1

The sparsest solution is xo = [0, 1, 0]17. We find any vector of form [a, 1 — 2a, all for
a € [0,0.5] is a solution of L; minimization subject to (5). In other words, L fails to pick
up the sparsest solution.

L, minimization is equivalent to minimizing 2a” 4 (1 — 2a)” fora € [0,0.5]. As L is
concave, the minimum is attained at the boundary. Consequently, we only need to evaluate
a = 0 and a = 0.5 to see which one is smaller. By simple calculations, L, attains its
minimum at a = 0 for p < 1. In other words, L, minimization yields the sparsest solution.

Let us look at L1 — L>. A non-zero vector is 1-sparse (only one non-zero element) if and
only ifits L — L is 0. Since xq is 1-sparse, then only 1-sparse vectors could be the solution
of minimizing L1 — L, subject to (5). But the other 1-sparse vectors do not satisfy the linear
equation, and as a result we can get xq exactly if minimizing L| — L,.

2.2 Theoretical Properties of L1 — L»

To make this paper self-contained, we list some nice properties of L1 — L,. Please refer
to [26] for the proof. Recall that the well-known restricted isometry property (RIP) [5] in
compressive sensing is that for all subsets 7 C {1, ..., N} with its cardinality |T| < S,

(1—=8s)llxl3 < IATx[3 < (1 —8s)lxI3 VxeRY,

where A7 is a submatrix of A with column indices 7', and 85 is a parameter depending on
S. The RIP condition for L — L, exact recovery is given in the following.

Theorem 2.1 Let xq be any vector with sparsity of s andb = A xo. Suppose that the following
condition holds

835 +a(s)das < a(s) — 1, (6)
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w=(! 2
a(s) = \/E-i-l s

then xq is the unique solution to a constrained minimization problem:

where

min [lx][; — [|x[l2 subjectto Ax =b. @)
x€eRN

In fact, Theorem 2.1 does not characterize L | — L, completely, as in practice its assumption
can be further relaxed. Due to concavity of the metric, we can prove that even local minimizers
of (7) satisfy certain sparsity, no matter whether A satisfies RIP or not.

Theorem 2.2 Let x* be a local minimizer of the constrained problem (7) then A |p+ is of
full column rank, i.e. the columns of A |p+ are linearly independent.

The same result can be obtained for the unconstrained problem:

1
min = [[Ax — b|13 +A(lxl — llx 8
min, 2|| 5+ Adlxll — llxll2) (3)
Corollary 2.1 Let x* be a local minimizer of (8) then the columns of A |p+ are linearly
independent.

By Theorem 2.2 and Corollary 2.1, we readily conclude the following facts:

RM*N is of full row rank, i.e.

a. Suppose x* is a local minimizer of (7) or (8) and A €
rank(A) = M, then the sparsity of x* is at most M.

b. If x* is a local minimizer of (7), then there is no such x € RV satisfying Ax = b
and support(x) € A*, i.e. it is impossible to find a feasible solution whose support is
contained in A*.

¢. The number of the local minimizers of (7) or (8) is finite.

3 Algorithm

To compute sparse representation based on L — Ly, both constrained and unconstrained
minimization problems are discussed in Sects. 3.1 and 3.2 respectively. In Sect. 3.3, we
further employ a simulated annealing technique to search for global solutions of these two
nonconvex problems.

3.1 Unconstrained Minimization

We start with the unconstrained minimization problem (8). We adopt a DCA, which is to
decompose F(x) = G(x) — H(x), where

G(x) = 3 Ax —bI3 + Alx] ©
H(x) = Allx]l2
By linearizing H, we can design an iterative scheme that starts with x! #0,
x"*1 = arg min 1||Ax—b||2+x||x||1—<x—x" A ’ ) (10)
xeRN 2 : el
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To advance to a new solution, it requires solving a L regularized subproblem of the form

1
min ExT(ATA)x+ZTx+k||x||1, (11)

xeRN

where z = ATh + A 2—. We consider the augmented Lagrangian

HX"II
)
Ly(x,y,u) = ExT<ATA)x 2l Ayl =)+ Sl =y,

Alternating direction method of multipliers iterates between minimizing Ls with respect to x,
minimizing with respect to y and updating u. The pseudo-code of solving the unconstrained
L1 — L, minimization is described in Algorithm 1.

Algorithm 1 A DCA method for unconstrained L; — L, minimization

Define €purer > 0, €inner > 0 and initialize x0 = 0, x1 £ 0,7 = 1
while |[x”" — x| > €ourer do
Letz = ﬁ andxg =0, x; =x",i=1,y, =x;,u; =0
while [|x; — x;_1]l > €;,per do
xipr = ATA+8DT Oy —z —u;)
Yit1 = shrink(xj41 +u; /8, 1/5)
Wir] =u; +8(xj41 — Yit+1)
i=i+1
end while
n=n+1
X" = x;
end while

In our experiments we always set the initial value x! as the solution of unconstrained L
problem, that is to solve (11) with z = 0. So basically we are minimizing L; — L, on top
of L. In practice the algorithm takes only a few steps to convergence. Theoretically, we can
prove that the sequence {x"} is bounded and lx" 1 — x™||; — 0, thus limit points of {x"}
are stationary points of (8) satisfying the first-order optimality condition.

Theorem 3.1 Let F(x) = %||Ax — bll% + A(lx|l1 — llx|l2) with the D.C. decomposition in
(9) and {x"} be the sequence of iterates generated by Algorithm 1, then

a. F(x) = oo as |x|l2 = o0. so the level set {x € RN : F(x) < F(x%)} is bounded.
b. [x" T — x|, — 0.
c. Any limit point x* # 0 of {x"*} satisfies the first-order optimality condition

x*
llx* 12

which means x* is a stationary point of (8).

AT(Ax* = b) + A(w*

) =0, forsome w* € d||x*, (12)

Starting from (12), we obtain the following results.

Theorem 3.2 Vk > 1, we can a choose a regularization parameter A, > 0 for (8) so that
lx*llo < k.

Theorem 3.2 suggests that we can control the sparsity of the limit point of the DCA
algorithm by choosing a proper A. Please refer to [26] for the proof of both theorems.
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3.2 Constrained Minimization

For the constrained problem (7), we apply a similar trick as the unconstrained problem by
considering the following iterative scheme

n
n+1

X = argmin ||x|[) — (= x)
X" 112
st.Ax =b (13)
Each subproblem (13) amounts to solving a constrained L minimization,
min|x| —z'x st Ax =b, (14)
for 7 = % To solve (14), we introduce two Lagrange multipliers u, v and define an

augmented Lagrangian

T T T 8 2 ) 2
Ls(x,y,u,v)=|lyli —z'x+u" (x —y)+v (Ax —b) + EIIX —yI"+ EIIAX —Dbll",
for § > 0. ADMM finds a saddle point
Ls(x*, y*,u,v) < Ls(x™, y*, u™, v*) < Ls(x, y, u*, v*)  Vx,y,u,v

by alternately minimizing Ls with respect to x, minimizing with respect to y and updating
the dual variables u and v. The saddle point (x*, y*) will be a solution to (14) and we can take
x* be the solution to (13), i.e., x"T1 = x*. The overall algorithm for solving the constrained
L1 — L, is described in Algorithm 2.

Algorithm 2 A DCA method for constrained L — L, minimization

Define €purer > 0, €inmer > 0 and initialize x0 = 0, x! £ 0,n = 1
while [|x" — X" 1| > €ourer do
Letz = ﬁ andxg =0,x) =x",i=1,y =xj,u; =v; =0
while |x; —x; 1] > €jnper do
xie1 = ATA+DVATh + y; + . —u; — ATv;)/5)
Vi1 = shrink(xj4y +u;i/8, 1/8)
Uit] = uj +8(Xj41 — Yit+1)
Vit =V +06(Axjy —b)
i=i+1
end while
n=n+1
X" = x;
end while

3.3 Simulated Annealing

The DCA method does not guarantee a global minimum in general. We further employ a
technique, called SA, to traverse a stationary point to a global solution. SA has drawn much
attentions dealing with global optimization. There are many generic SA algorithms, see
Kirkpatrick [15], Geman and Geman [13], Gidas [14], and the reference therein. In addition,
Carnevali et al. [6] apply this technique to many applications in image processing.

Here is a brief description of simulated annealing. The term “annealing” is analogous to the
cooling of a liquid or solid in a physical system. Consider the problem of minimizing the cost
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function f(x). Simulated annealing algorithm begins with an initial solution and iteratively
generates new ones, each of which is randomly selected among the “neighborhood” of the
previous state. If the new solution is better than the previous one, it is accepted; otherwise,
it is accepted with certain probability. The probability of accepting a new state is given by
exp(— w) > R, where R is arandom number between 0 and 1, and 7 is a temperature
parameter. The algorithm usually starts with a high temperature, and then gradually goes down
to 0. The cooling must be slow enough so that the system does not get stuck into saddle points
or local minima of f(x).

There are two important aspects in implementing simulated annealing. One is how to lower
the temperature 7. Kirkpatrick et al. [15] suggest T decays geometrically in the number of
cooling phases. Geman and Geman [13] prove that if 7" decreases at the rate of @, where
k is the number of iterations, then the probability distribution for the algorithm converges
to the uniform distribution over all the global minimum points. In our algorithm, we follow
Geman and Geman'’s suggestion by decreasing 7 at the rate of @. Another aspect is how
to advance to a new state based on the current one. One of the most common methods is to
add Gaussian random noise. However, due to the presence of a large number of saddle points
and local minima, this perturbation method yields slow convergence of the SA algorithm.
To overcome this difficulty, we propose two pertubative strategies. Together with Gaussian
perturbation, we list the three SA methods as follows,

SA1. Define the support set of a vector x by support(x) := {i|x; # 0}. We randomly
choose the new state x,¢y, such that support(xpew) C support(Xeyrr) and |Xpewlo <
[Xcurrlo-

SA2. We randomly choose the new state X,y such that [X,ewlo < ¥ |Xcurrlo With some
constant y < 1.

SA3. We choose the new state x,., by Gaussian perturbations, i.e. Xpeyy = Xcurr +
Gaussian noise.

The idea of SA1 and SA2 is to help maintain the monotone (non-increasing) sparsity property
of the iterates. The pseudo-code of the SA method in combination of DCA is given in
Algorithm 3.

Algorithm 3 L1-L2 DCA with simulated annealing

Define xcurr, Xnew, €, Ty < 1, maxlIter and AcceptMax, Accept = 0.
while T > € or k < maxlter do
SAL: xpew = randsample(x¢y,r) such that support(xpew) C support(xcurr) and |[Xpewlo < [Xcurrlo-
SA2: xpew = randsample(xcyrr) such that |xXpewlo < ¥ |[Xcurrlg, With y < 1.
SA3: xpew = Xcurr + Gaussian noise.
Update xj¢qy by the DCA solution of L1 — Ly using xpey as initial guess
if f(xpew) < f(xcurr) then
Xeurr = Xnew
else .
if exp(—w) > rand(1) then
Xcurr = Xnew
end if
end if
k=k+1
Accept=Accept+1
if Accept> AcceptMax then
T = gz
Accept=0
end if
end while
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4 Applications

In this section we examine three specific applications where the sensing matrix is highly
coherent. They are compressive sensing based on oversampled DCT matrices, wavelength
misalignment in differential optical absorption spectroscopy (DOAS) analysis, and image
denoising via sparse representation in an overcomplete dictionary. For each problem, we
compare the proposed method for minimizing L — L, with some state-of-the-art algorithms
for Lo, L1, and L ,. Experiments show promising results of using L — L as a sparse measure
and solving sparse coefficients by DCA and SA.

4.1 Over-Sampled DCT

We consider an over-sampled DCT matrix A = [ay,...,ay] € RM*N with
1 (27rwj) o N (15)
a, = ——cos ,j=1,...,
J N F J

where w is a random vector of length M. This matrix is derived from the problem of spectral
estimation [11] in signal processing, if we replace the cosine function in (15) by exponential.
The matrix is highly coherent. For a 100 x 1, 000 matrix with F = 10, the coherence i5.9981,
while the coherence of a same size matrix with F=20 is .9999.

The sparse recovery under such matrices is possible only if the non-zero elements of solu-
tion x are sufficiently separated. This phenomenon is characterized as minimum separation
in [4], and this minimum length is referred as the Rayleigh length (RL). The value of RL
in (15) is equal to F. It is closely related to the coherence in the sense that larger F corre-
sponds to larger coherence of a matrix. We find empirically that at least 2RL is necessary
to ensure optimal sparse recovery. Intuitively, we need sparse spikes to be further apart for
more coherent matrices.

Under the assumption of sparse signal with 2RL separated spikes, we compare algorithms
in terms of success rate. Denote x, as a reconstructed solution by a certain algorithm. We
consider the algorithm successful, if the relative error of x, to the ground truth x, is less than

.001, i.e., “xﬂ);flg I < .001. The success rate is based on 100 random realizations.

We first investigate the unconstrained algorithms for sparse penalties Ly — Ly, L, L),
(p=1/2) and a direct L solver, penalty decomposition (3). The unconstrained L , minimiza-
tion is solved by Lai et al. in [16]. The sensing matrix is of size 100 x 1, 000. The success rate
of each measure is plotted in Fig. 2. For smaller F' = 5, each measure performs relatively
well. When F = 20, which corresponds to highly coherent matrices, the proposed L1 — Ly
outperforms L and L, for p = 1/2. For both cases, L1 — L is consistently better than L.

Figure 3 illustrates that the success rate of L1 — L, increases with the help of SA. The
matrix size is 100 x 1, 500 and F' = 20. We also compare three different random generations
of the new state, referred to as SA1-SA3 in Algorithm 3. All of these SA methods can
improve the accuracy of the original DCA algorithm for L1 — L2 minimization. Both of
SAT1 and SA2 have better performance than the regular Gaussian perturbation method SA3.
Apparently, SA2 has the best performance out of the three, especially when the number of
non-zero elements is large.

For the constrained versions of each measure, we observe the similar behavior compared
to the unconstrained ones. The plots are presented in Fig. 4 for matrices of size 100 x 1, 000.
The iterative reweighed least square [7] is applied to solve the constrained L. L1 — Lj is
the best for both incoherent and coherent matrices.
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N = 100, M = 1000, minimum separation is 2RL
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Fig. 2 Plots of success rates as a function of sparsity for F = 5 (left) and F = 20 (right). Each metric is
solved in an unconstrained optimization framework

N =100, M = 1500, F = 20, minimum separation is 2RL
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Fig. 3 Plots of success rates of three SA algorithms: SA1-the support of the new state is within the current
one, SA2-the new state does not depend on the current one, and SA3-the new state is obtained by adding
Gaussian noise to the current one. The results of L1 and L1 — L, without SA are plotted as reference

We further look at the success rates of L1 — L, with different combinations of sparsity
and RL. The rates are recorded in Table 1, which shows it is possible to deal with large RL,
but with the sacrifice of high sparsity, or small number of non-zero elements.

The computation time for each method is listed in Table 2. The reported time is the average
of 100 realizations. Since all the nonconvex optimization methods Lo, L, L1 — L use the
L solution as initial guess, we add L run time on top of each of them. Our L — L, method
is slower than L, but with better accuracy.

4.2 DOAS

Differential optical absorption spectroscopy analysis [20] is a technique that uses Beer’s
law to estimate chemical contents and concentrations of a mixture of gases by decompos-
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N =100, M = 1000, minimum separation is 2RL
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Fig. 4 Plots of success rates as a function of sparsity for F = 5 (left) and F = 20 (right). Each metric is
solved in a constrained optimization framework

Table 1 The success rates (%)

of L — Ly for different Sparsity 6 9 12 15 18 21 24
fr‘l’i‘;‘i‘[’ril‘:sn‘i‘;‘;;’rifgfty and IRL 100 100 100 97 85 37 3
2RL 100 100 100 100 88 44 11
3RL 100 100 100 99 90 41 8
4RL 100 100 100 98 85 46 8
e Tor cach meshod a difforent L Lip L Li-b
settings Unconstrained F = 5 12.26 1.94 1.53 3.56
Unconstrained F = 20 12.23 2.01 1.54 3.55
Constrained F = 5 4.37 1.97 3.68 9.94
Constrained F = 20 635 744 3.67 10.91

ing a measured characteristic absorption spectra of all the gases into a set of individual
ones. A mathematical model is to estimate fitting coefficients {a;} from a linear model
J(A) = Z;W aj - yj(A) + n(x) , where the data J(A) and reference spectra {y;(1)} are
given at each wavelength A and n()) is noise. A challenging complication in practice is
wavelength misalignment, i.e., the nominal wavelengths in the measurement J (1) may not
correspond exactly to those in the basis y;(A). We must allow for small deformations v; (1)
so that y;(A + v;(1)) are all aligned with the data J(A). Taking into account wavelength
misalignment, the data model becomes

M
T =D aj-yi(h+v;0) +nk). (16)
j

Esser et al. [10] construct an incremented dictionary by deforming each y; with a set
of possible deformations for the DOAS problem. Specifically, since it has been discovered
that the deformations can be well approximated by linear functions, i.e., v; (1) = p;A +q;,
all the possible deformations are enumerated by choosing p;, ¢; from two pre-determined
sets {Py, ..., Pk}, {Q1,..., Or}. Let Y; be a matrix with each column be a deformed basis
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Fig. 5 Each gas spectrum (a dictionary element) is plotted in red, while four deformed spectra (nearby
dictionary elements) are in dotted black

corresponding to y;(A), ie., yj(A + A+ Q) fork =1,--- ,Kand/ =1,---, L. Then
the model (16) can be rewritten in terms of a matrix-vector form,
aj
J= | s |+ (17)

ay
where a; is a (K L)—dimensional column vector.

In our experiments, we generate such a dictionary by taking three given reference spectra
v; () for the gases HONO, NO2 and O3 and deforming each by a set of linear functions.
The represented wavelengths in nanometers are A = 340 + 0.04038w, w = 0, ..., 1023,
thus yielding each y; € R'924 We choose two pre-determined sets Py = —1.01 + 0.01k
k=1,...,21)and Q; = —1.1+0.1/ (I = 1,...,21), and hence there are a total of 441
linearly deformed references for each of the three groups. In Fig. 5, we plot the reference
spectra of these three gases together with four deformed examples. The coherence of the
resulting dictionary is .9996.

To generate synthetic data J (1) € R, we randomly select one element for each group
with random magnitude plus additive zero mean Gaussian noise. Mimicking the relative
magnitudes of a real DOAS dataset [12] after normalization of the dictionary, the random
magnitudes are chosen to be at different orders with mean values of 1, 0.1, 1.5 for HONO,
NO2 and O3 respectively. We consider four different noise levels, whose standard deviations
o are 0, .001, .005 and .01 respectively.
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Fig. 6 Method comparisons on synthetic DOAS data without noise. Computed coefficients (blue) are plotted
on top of the ground truth (red)

To solve the wavelength misalignment, the following minimization model is considered,
aj

argmin [/ — [Yi.....Yal | 2 ]I (18)
J

ay
st. a; >0, llajllo<]  j=1,...,M. (19)
The second constraint in (19) is to enforce each a; to have at most one non-zero element.
lajllo = 1 indicates the existence of the gas with a spectrum y; and its non-zero component
corresponds to the selected deformation.

We consider a generic method to find sparse coefficients from the least square model (18).
To enforce sparsity, we use L1 — Ly and compare it with L, for p = 1/2. When taking the
non-negativity into account, we look at non-negative least square (NNLS) and non-negative
constrained L (NN L1) as comparison. We use MATLAB’s 1sgnonneg function, which
is parameter free, to solve the NNLS. The constrained NN L1 is modelled as,

min [|x|;  suchthat [JAx — bl <7, (20)
x>0

which can be solved by Bregman iteration [27]. We also compare with a direct L approach
that takes advantages of the structured sparsity. This method is based on the idea of penalty
decomposition [17], and therefore itrequires a good initialization and slowly increases penalty
parameter X in (3).

In Figs. 6 and 7, we plot the results of different methods in blue along with the ground truth
solution in red for o = 0 and 0.005 respectively. Table 3 shows the relative errors between the
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Fig. 7 Method comparisons on synthetic DOAS data with additive noise o = .005. Computed coefficients
(blue) are plotted on top of the ground truth (red)

Table 3 Relative errors for each method under different amounts of noise. Each recorded value is the mean
of 100 random realizations

Noise std NNLS NN L1 LO Li—Ly Ly
0 0.00 0.90 0.00 0.0000 0.04
0.001 0.04 0.87 0.005 0.003 0.06
0.005 0.19 0.16 0.06 0.058 0.18
0.01 0.39 0.33 0.20 0.34 0.40

The bold number indicates the smallest error among all the methods, which corresponds to the best recon-
struction result

reconstructed vector and the ground-truth under different amounts of noise. Each recorded
value is the average of 100 random realizations. All the results demonstrate that L — L, is
comparable to other methods without additional assumption on non-negativity or structured
sparsity.

4.3 Image Denoising

An image denosing model [9] interprets an image as linear combinations of local overcom-
plete bases, where the vector of coefficients is sparse, so at any location only few bases
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contribute to the approximation. Suppose the discrete image patches of size ,/n x /n pixels,
ordered lexicographically as column vectors x € R”, then the sparsity assumption corre-
sponds to assuming the existence of a matrix D € R"* X the “dictionary,” such that every
image patch x can be represented as a linear combination of its columns with a vector of
coefficients that has small Ly norm. If we measure y, a version of x corrupted by additive
Gaussian noise with standard deviation o, then the maximum a-posteriori estimator of the
“denoised” patch x is given by D&, where

& =argmin ||alo st |[De—yll3 < T, 1)
o

where T is dictated by o. If one wishes to encode a larger image X of size N x /N
(N > n), with a given dictionary D € R” %K 4 natural approach is to use a block-coordinate
relaxation.

3 . 2 2
X = arg min |[X — Y|3 + AZJ letijllo + MZ]: IDasi; — RijX|[3. (22)

The first term measures the fidelity between the measured image Y and its denoised (and
unknown) version X. The second term enforces sparsity of each patch; the n x N matrix
R;j extracts the (i, j)th block from the image. A simple denoising algorithm [9] goes as
follows,

1. Given an overcomplete dictionary D and let X be noisy data Y
2. Compute the coefficients «;; for each patch R;; X

aij = argnrgnllallo s.t. |[Da — Rinll% <T. (23)
3. Update X by

Y+ ) RSDaij
I+ ,LLZU RiC-R,'j

; (24)

which is a simple averaging of shifted patches.

The aforementioned DCT basis (15) can be a candidate for such dictionary, but it is
not suitable to represent natural image patches. Aharon et al. propose a dictionary learn-
ing technique called K-SVD [1]. They construct aglobal dictionary that is trained from
a large number of natural images. They also consider an adaptivedictionary by train-
ing on random samples of the noisy data so that the dictionary is more tailored to the
data. The global dictionary is presented in Fig. 8, which is used in our denoising experi-
ments.

In the denoising model [9], the sparse coding step (23) is solved by OMP [23], which
is described in Algorithm 4. We can replace OMP by enforcing sparse penalties Ly, L, or
L1 — L. The results are presented in Figs. 9 and 10 for o = 20, 30 respectively. The peak-
signal-to-noise (PSNR) is provided for quantitative comparison. We find Ly by OMP and
its approximation L, for p=1/4 outperforms L and L| — L; objectively in terms of PSNR.
Perceptually, L — L, appears to leave fewer defects on Lena’s face and elsewhere than Lg
and L, with a rather close PSNR value. The reasons can be twofold. First, the dictionary
is not as coherent as the previous examples, (its coherence is .9559). Second, there is no
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Fig. 8 A global dictionary shown on the left is obtained from [1]. Each small blob is an 8 x 8 patch, which
corresponds to one column in the dictionary. A test image is shown on the right. It contains 4 sub images with
different features

Algorithm 4 Orthogonal matching pursuit [23]

1. Start from vector b and initialize the residual R = b fori = 1. i
2. Select the atom that maximizes the absolute value of the inner product of columns of A with R'.
3. Form a matrix, ®, with previously selected atoms as the columns. Define the orthogonal projection
operator onto the span of the columns of ®
P = d(0*d) L ¥,
4. Apply the orthogonal projection operator to the residual and update

Rt = 1- PR,

5.Leti =i + 1 and go to Step 2; stop if s atoms are chosen.

ground-truth sparsest solution in this case. Many solutions may look reasonable to human
perception. Visually and objectively via PSNR, L| — L, is always better than L.

5 Conclusions and Future Work

In this paper, we studied L1 — L, as an alterative to L for sparse representation. We addressed
several analytical properties of L — Lj to promote sparsity. We proposed to compute sparse
coefficients based on the difference of convex algorithm. Due to its nonconvex nature, we
further considered a simulated annealing framework to approach a global solution. We have
conducted an extensive study comparing sparse penalties, Lo, L1, L, L1 — L2, and their
numerical algorithms. Experiments have demonstrated that L1 — L is better than L as a
sparse regularization, especially when the sensing matrix or dictionary is highly coherent,
and the DCA of L; — L, is better than iterative reweighed strategies for L, minimiza-
tion.
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noisy, PSNR = 22.12 Lo, PSNR =32.39

Hello YWorle

L,, PSNR = 27.57 Ly — Ly, PSNR =30.09

<« <«

Fig. 9 Denoising comparison with additive noise whose standard deviation is 20

For future work, we plan to pursue the following directions. As the DCA of Ly — L»
is built upon Ly, it is interesting to study whether the support of L; — L, solution is
within the one of L. It has been noticed that not only does exact recovery of a sparse
signal depend on the matrix, it also depends on the signal itself. We want to charac-
terize exact sparse recovery in terms of minimum separation and/or Rayleigh length.
Finally we want to investigate simulated annealing for this specific algorithm, such as
how to advance to next step, how to determine the cooling strategy, and how to converge
faster.
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noisy, PSNR =18.58 Lo, PSNR =30.05

Hella Waorld o
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Hello World Hello World

Fig. 10 Denoising comparison with additive noise whose standard deviation is 30. There are more noticeable
defects in L image than in L; — L, image
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