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Abstract Finding a meaningful 1-1 correspondence between different data, such as images or surface data,
has important applications in various fields. It involves the optimization of certain energy functionals
over the space of all diffeomorphisms. This type of optimization problems (called the diffeomorphism
optimization problems, DOPs), is especially challenging, since the bijectivity of the mapping has to be
ensured. Recently, a method, called the Beltrami holomorphic flow(BHF), has been proposed to solve
the DOP using quasi-conformal theories [1]. The optimization problem is formulated over the space of
Beltrami coefficients(BCs), instead of the space of all diffeomorphisms. BHF iteratively finds a sequence
of BCs associated with a sequence of diffeomorphisms, using the gradient descent method, to minimize
the energy functional. The use of BCs effectively controls the smoothness and bijectivity of the mapping,
and hence make it easier to handle the constrained optimization problem. However, the algorithm is
computationally expensive. In this paper, we propose an efficient splitting algorithm, based on the classical
alternating direction method of multiplier (ADMM), to solve the DOP. The basic idea is to split the energy
functional into two energy terms: one involves the BC whereas the other involves the quasi-conformal map.
Alternating minimization scheme can then be applied to minimize the energy functional. The proposed
method significantly speeds up the previous BHF approach. It also extends the previous BHF algorithm
to Riemann surfaces of arbitrary topologies, such as multiply-connected shapes. Experiments have been
carried out on synthetic together with real surface data, which demonstrate the efficiency and efficacy of
the proposed algorithm to solve the DOP.

Keywords Beltrami holomorphic flow, diffeomorphism optimization problem, Beltrami coefficient,
quasi-conformal theories, alternating direction method of multiplier

1 Introduction

Registration, which aims to find a meaningful one-to-one pointwise mapping between two corresponding
data, is important in various fields, such as medical imaging, computer visions and computer graphics.
For example, in medical imaging, finding accurate 1-1 correspondences between brain cortical surfaces
is crucial for medical shape analysis. While in computer graphics, finding a 1-1 correspondence (called
the texture mapping) between a surface mesh and a two dimensional image is necessary for generating a
textured surface. Developing an effective way to obtain the registration becomes an important research
field.

A meaningful registration often satisfies certain important properties. For example, for image regis-
tration, a good registration is determined by how well it matches the image intensities between the two
images. While for geometric matching surface registration, it is often desirable to look for registrations
that match surface curvatures as much as possible. Mathematically, this kind of problems can be formu-
lated as an optimization problem of certain energy functionals over the space of all diffeomorphisms. More
specifically, suppose S1 and S2 are two corresponding data to be registered. Our goal is to look for an
orientation-preserving diffeomorphism f∗ : S1 → S2 such that:

f∗ = argminf∈DiffE(f) (1)
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where Diff is the collection of all orientation-preserving diffeomorphisms between S1 and S2 and E : Diff→
R+ is an energy functional defined on Diff. This kind of optimization problems, which optimize an energy
functional over the space of all diffeomorphisms, is called a diffeomorphism optimization problem (DOP).

Solving a DOP is generally challenging, since the bijectivity of the mapping can be easily lost during the
optimization process. To tackle with this problem, finding a suitable representation for Diff that facilitates
the optimization process is necessary. In [1], the Beltrami coefficient(BC) was proposed to represent an
orientation-preserving diffeomorphism. A BC is a complex-valued function defined on S1 with supreme
norm strictly less than 1. We usually denote the set of all BCs by B = {µ : S1 → C : ||µ||∞ < 1}. It
can be shown that there is a bijection Φ : B → Diff between B and Diff [1]. In other words, every
orientation-preserving diffeomorphism g is associated with a unique BC µg.

The BC is more suitable for solving the DOP as it has the least amount of constraints. For instance,
the representation of a diffeomorphism using its coordinate functions has to satisfy the 1-1 and onto
constraints. It can be reduced to a constraint on the Jacobian, which is a nonlinear partial differential
inequality. This constraint adds extra difficulty when solving the DOP. On the contrary, the BC has the
least amount of constraints. It does not need to 1-1 or onto. The only constraint is that its supreme norm
has to be strictly less than 1. The original DOP (1) can be reformulated over the space of BC B as follows:

ν∗ = argminµ∈BEB(µ) (2)

subject to the constraint that (i) ν∗ = µ(f∗) = BC of some f∗ ∈ Diff and (ii) ||ν∗||∞ < 1. Formulating
the DOP over B makes the optimization problem more manageable, since the bijectivity can be easily
controlled.

It is noteworthy to mention that formulating the DOP over B does not only make the optimization
easier, the BC also captures local geometric distortions of the diffeomorphism. Therefore, by incorporating
the BC into the energy functional, one can enforce desired properties on the geometric distortions of the
map. For example, suppose S1 and S2 are two surfaces, say two human faces. Let H1 and H2 are the mean
curvatures on S1 and S2 respectively. To obtain a geometric matching registration, one might need to find
a diffeomorphism that matches the surface curvatures while minimizing the local geometric (conformality)
distortion. This problem can be formulated as a DOP as follows:

ν∗ = argminµ∈B

{∫
S1

|µ|p + α

∫
S1

|H1 −H2(fµ)|2
}

(3)

with the constraint that ν∗ = µ(f∗) = BC of some f∗ ∈ Diff, where fµ is the quasi-conformal map
associated to µ. The first term minimize the Lp norm of the conformality distortion measured by the BC of
the quasi-conformal map. The second term aims to minimize the curvature mismatching error. Sometimes,
it might be required that the registration matches corresponding landmarks {pi}ni=1 and {qi}ni=1 on S1 and
S2 respectively. In this case, we add an extra constraint to the DOP (3) that f∗(pi) = qi for i = 1, 2, ..., n.

To solve the DOPs (2) or (3), a gradient descent based method was proposed in [1]. The quasi-conformal
map associated to a given perturbed BC, which is needed in deriving the descent direction (such as the
second term in (3)), was computed using an integral formula. Although the optimization problem can
be effectively solved, the computation is quite inefficient. Also, this gradient descent based algorithm
converges slowly. In this paper, we propose an efficient splitting method, based on the classical augmented
Lagrangian method of multipliers (ADMM), to solve the DOP over the space of BCs. The basic idea is
to split the energy functional into two energy terms: one involves the BC whereas the other involves the
quasi-conformal map. Alternating minimization scheme can then be applied to minimize the the energy
functional. The proposed method significantly speed up the previous BHF approach in [1]. It also extends
the previous BHF algorithm to Riemann surfaces of arbitrary topologies. Experiments have been carried
out on synthetic together with real medical data. Results show that the proposed algorithm solves the
DOP efficiently.

In summary, the main contribution of this paper is to apply the alternating direction method of mul-
tipliers (ADMM) together with the quasi-conformal theories to solve the DOP. Using ADMM, a splitting
method can be used to minimize the energy functional in the DOP alternatively over the quasi-conformal
maps and BCs. The algorithm speeds up the previous method proposed in [1] and extends it to solve DOPs
on Riemann surfaces of arbitrary topologies. Experimental results show that the newly proposed method
often yields better registration results.
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2 Related work

Finding meaningful mapping or registration between corresponding data that optimizes certain kinds of
energy functionals has been extensively studied. In this section, we briefly describe some related methods
commonly used.

Conformal maps have been widely studied to obtain smooth 1-1 correspondence between surfaces
that minimize angular distortions [2][8][9][10][11][15][27][50]. Conformal maps are usually computed using
variational approaches to minimize some energy functionals, such as the harmonic energy [8] and the least-
squares energy based on the Cauchy-Riemann equation [27]. A 1-1 correspondence between surfaces can
be obtained in the optimal state. However, the above registration cannot map anatomical features, such
as sulcal landmarks, consistently from subject to subject.

To obtain a surface registration that matches important landmark features, landmark-based diffeomor-
phisms are often used. Optimization of surface diffeomorphisms by landmark matching has been extensively
studied. Gu et al. [8] improved a conformal parameterization by composing an optimal Möbius transforma-
tion so that it minimizes a landmark mismatch energy. The resulting parameterization remains conformal,
although features cannot be perfectly matched. Wang et al. [22][51] proposed a variational framework to
compute an optimized conformal registration that aligns landmarks as well as possible. However, land-
marks are not matched exactly and diffeomorphisms cannot be guaranteed when there is a large number of
landmark features. Durrleman et al. [3][4] developed a framework using currents, a concept from differential
geometry, to match landmarks within surfaces across subjects, for the purpose of inferring the variability
of brain structure in an image database. Landmark curves are not perfectly matched. Tosun et al. [43]
proposed a more automated mapping technique that attempts to align cortical sulci across subjects by
combining parametric relaxation, iterative closest point registration, and inverse stereographic projection.
Glaunès et al. [7][14] proposed to generate large deformation diffeomorphisms of a sphere onto itself, given
the displacements of a finite set of template landmarks. The diffeomorphism obtained can better match
landmark features.

Lui et al. [23] proposed to compute shape-based landmark matching registrations between brain sur-
faces using the integral flow method. The one-parameter subgroup within the set of all diffeomorphisms
was considered and represented by smooth vector fields. Landmarks can be perfectly matched and the
correspondence between landmark curves is based on shape information. Leow et al. [18] proposed a
level-set-based approach for matching different types of features, including points, 2D and 3D curves rep-
resented as implicit functions. These matching features in the parameter domain were then pulled back
onto surfaces to compute correspondence fields. In related work, Lepore et al. [19] used a level-set represen-
tation to match curves embedded in surfaces, using a diffeomorphic flow parametrized using velocity fields
on the sphere. In this work, features within the landmark curves were not matched, and the landmark
curves were matched as level sets. Later, Shi et al. [40] computed a direct harmonic mapping between two
surfaces by embedding both surfaces as the level-set of an implicit function, and representing the map-
ping energy as a Dirichlet functional in 3D volume domains. Although such an approach can incorporate
landmark constraints, it has not been proven to yield diffeomorphic mappings. Quasi-conformal mapping
that matches landmarks consistently has also been proposed. Wei et al. [28] also proposed to compute
quasi-conformal mappings for feature matching face registration. The Beltrami coefficient associated to a
landmark-matching parameterization is approximated. However, either exact landmark matching or the
bijectivity of the mapping cannot be guaranteed, especially when very large deformations occur.

Since there may not be well-defined landmarks on surfaces, some authors proposed driving features into
correspondence based on shape information or scalar fields defined on the surfaces. Lyttelton et al. [29]
computed surface parameterizations that match surface curvature. Fischl et al. [5] improved the alignment
of cortical folding patterns by minimizing the mean squared difference between the average convexity across
a set of subjects and that of the individual. Wang et al. [44] computed surface registrations that maximize
the mutual information between mean curvature and conformal factor maps across subjects. Lord et al. [20]
matched surfaces by minimizing the deviation from isometry. Quasi-conformal surface registrations, which
minimize geometric mismatching, have also been studied [1,24–26]. For example, Lui et al. [24] proposed to
compute quasi-conformal registration between hippocampal surfaces, which matches geometric quantities
(such as curvatures) and minimizes the conformality distortion [24]. In most situations, one has to pay
extra attention to ensure the optimal map computed is diffeomorphic. In [1], a method, called the Beltrami
holomorphic flow, has been proposed to optimize the energy functional defined over the space of quasi-
conformal maps. The algorithm effectively computes a diffeomorphic quasi-conformal map that optimizes
the given energy functional, although it is computationally expensive. Furthermore, various techniques for
computing the quasi-conformal map of a given BC have also been proposed [25,26,47].
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Fig. 1 Illustration of how the Beltrami coefficient determines the conformality distortion.

3 Background

3.1 Quasi-conformal geometry

In this subsection, we give a brief description on quasi-conformal theories. For details, we refer the readers
to [16,17].

A surface S with a conformal structure is called a Riemann surface. Given two Riemann surfaces M
and N , a map f : M → N is conformal if it preserves the surface metric up to a multiplicative factor
called the conformal factor. An immediate consequence is that every conformal map preserves angles.
With the angle-preserving property, a conformal map effectively preserves the local geometry of the surface
structure. A generalization of conformal maps is the quasi-conformal maps, which are orientation preserving
homeomorphisms between Riemann surfaces with bounded conformality distortion, in the sense that their
first order approximations takes small circles to small ellipses of bounded eccentricity [17]. Mathematically,
f : C→ C is quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (4)

for some complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami coefficient, which is a
measure of non-conformality. It measures how far the map at each point is deviated from a conformal map.
In particular, the map f is conformal around a small neighborhood of p when µ(p) = 0. Infinitesimally,
around a point p, f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(5)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter domain, f may be
considered as a map composed of a translation to f(p) together with a stretch map S(z) = z+µ(p)z, which
is postcomposed by a multiplication of fz(p), which is conformal. All the conformal distortion of S(z) is
caused by µ(p). S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p), we can
determine the angles of the directions of maximal magnification and shrinking and the amount of them
as well. Specifically, the angle of maximal magnification is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|;
The angle of maximal shrinking is the orthogonal angle (arg(µ(p))− π)/2 with shrinking factor 1− |µ(p)|.
Thus, the Beltrami coefficient µ gives us all the information about the properties of the map (See Figure
1).

The maximal dilation of f is given by:

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (6)

Quasiconformal mapping between two Riemann surfaces S1 and S2 can also be defined. Instead of

the Beltrami coefficient, the Beltrami differential is used. A Beltrami differential µ(z)dzdz on a Riemann
surface S is an assignment to each chart (Uα, φα) of an L∞ complex-valued function µα, defined on local
parameter zα such that

µα(zα)
dzα
dzα

= µβ(zβ)
dzβ
dzβ

, (7)

on the domain which is also covered by another chart (Uβ , φβ). Here,
dzβ
dzα

= d
dzα

φαβ and φαβ = φβ ◦ φ−1
α .
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An orientation preserving diffeomorphism f : S1 → S2 is called quasi-conformal associated with µ(z)dzdz
if for any chart (Uα, φα) on S1 and any chart (Vβ , ψβ) on S2, the mapping fαβ := ψβ ◦ f ◦ f−1

α is quasi-
conformal associated with µα(zα)dzαdzα

.

3.2 Beltrami holomorphic flow

The Beltrami holomorphic flow (BHF) refers to a flow of quasi-conformal maps over t ∈ C, which is
associated with a flow of Beltrami coefficients. Mathematically, suppose µ := µ(t, z) : C × S1 → C such
that µ(t, ·) ∈ B for all t ∈ C. Assume that µ(·, p) is holomorphic for each fixed p ∈ S1. Then, µ = µ(t, ·)
is called a holomorphic flow of the Beltrami coefficients. For simply-connected S1 and S2, each µ(t, ·)
is associated with a quasi-conformal map f(t, ·) : S1 → S2. f(t, ·) is called the Beltrami holomorphic
flow (BHF) of quasi-conformal maps associated with µ(t, ·). It can be shown that for any fixed p ∈ S1,
f(·, p) : C→ C is holomorphic. More specifically, let {µ(t, ·)} be a family of BCs depending on a complex
parameter t ∈ C. Suppose µ(t, ·) can be written in the form:

µ(t0, z) = µ(z) + (t− t0)ν(z) + (t− t0)ε(t− t0)(z) (8)

for z ∈ C, with a suitable µ in the unit ball of C∞(C), ν, ε ∈ L∞(C) such that ||ε(t− t0)||∞ → 0 as t→ t0.
Then for all p ∈ S1,

fµ(t,·)(p) = fµ(p) + tV(fµ, ν) + o(|t− t0|) (9)

local uniformally as t→ t0, where

V(fµ, ν)(p) = −f
µ(fµ(p)− 1)

π

∫
C

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(p))
dxdy (10)

if S1 and S2 are genus-0 closed surfaces. Here, we have identified S1 and S2 with S2 ∼= C through spherical
conformal parameterizations. And if S1 and S2 are simply-connected open surfaces, we have

V(fµ, ν)(p) = −f
µ(fµ(p)− 1)

π
(

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(p))
dxdy

+

∫
D

ν(z)((fµ)z(z))
2

fµ(z)(1− fµ(z))(1− fµ(z)fµ(p))
dxdy).

(11)

Here, we have identified S1 and S2 with D through conformal parameterizations.
BHF has been applied to solve the DOP [1]. In particular, as the Beltrami coefficient is updated

during the gradient descent based iterative minimization process, the associated quasi-conformal map is
also updated using Equation (1). This method has been successfully applied for surface registration in
the field of medical imaging and computer graphics. However, the computation of the quasi-conformal
map of a given BC using the integral formula (1) is quite time-consuming in practice. Recently, various
algorithms have been proposed to compute the quasi-conformal map from a prescribed BC efficiently. For
example, Lui et al. [26][48] proposed to compute quasi-conformal maps by solving a generalized Laplace’s
equation. The algorithm, which is called the Linear Beltrami Solver (LBS), can be discretized into a sparse
symmetric positive definite linear system. The linear system is then solved by the conjugate gradient
method. Gu et al. [52] proposed to compute the quasi-conformal map using the holomorphic differential
1-form under the auxiliary metric given by the BC. Zeng et al. [25] proposed a curvature flow method to
compute the quasi-conformal map through calculating a conformal map under the auxiliary metric given
by the prescribed BC. The algorithm converges exponentially. Wong et al. [47] proposed to approximate
the small perturbation of the quasi-conformal map from the identity map under a small variation tν of
the BC from µ = 0 by solving a PDE. This gives a first-order approximation of the perturbation when t is
small. The quasi-conformal map of a given target BC can then be obtained using a composition formula
of quasi-conformal maps. Ng et al. [49] proposed to iteratively compute the quasi-conformal map fν with
Beltrami coefficient ν by solving the Beltrami’s equation in each iteration. The Beltrami’s equation is
solved by a Lp-minimization of the Beltrami energy:

f̃ = argminf∈Diff{||
∂f

∂z
− ν ∂f

∂z
||pp} (12)

This is applied to solve a subproblem for computing the Teichmüller map between multiply-connected
domains.
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Note that when p = 2, the minimizer of the least square problem (12) is called the least-square quasi-
conformal map (LSQC) associated to ν, which has also been studied in [46][53]. In this paper, we will
apply the method in [49] to cope with a subproblem in the alternating minimization algorithm for solving
the DOP.

3.3 Alternating direction method with multipliers (ADMM)

Alternating direction method with multipliers (ADMM) is an optimization algorithm that solves the
following type of problems:

Minimize {E1(x) + E2(Ax)} (13)

where A ∈Mm×n(R) has full column rank. E1 and E2 are often assumed to be convex functionals.
The problem (13) can be reformulated as a constrained optimization problem:

Minimize {E1(x) + E2(y)} subject to Ax = y (14)

The augmented Lagrangian associated to the problem (15) is given by

L(x, y, λ, µ) = E1(x) + E2(y) + λT (Ax− y) +
µ

2
||Ax− y||2 (15)

The classical augmented Lagrangian method iteratively solves the problem (15) as follow:

(xk+1, yk+1) = argmin{L(x, y, λk, µk)} (16)

λk+1 = λk + µk(Axk+1 − yk+1) (17)

where {λk} is the sequence approximating the Lagrange multiplier of the constraint Ax = y and {µk} is
a sequence of positive real number, called the penalty parameters. A variants of the choices of {λk} and
{µk} have been proposed.

However, solving the subproblem (16) is sometimes non-trivial, since E1 and E2 are strongly coupled
with each others under the constraint Ax = y. To simplify the problem, the alternating direction method
with multiplier (ADMM) has been proposed to decouple the minimization process as follows:

xk+1 = argmin{L(x, yk, λk, µk)}

yk+1 = argmin{L(xk+1, y, λk, µk)}

λk+1 = λk + µk(Axk+1 − yk+1)

(18)

More specifically, ADMM first solves for xk+1 by fixing y = yk, and then solves for yk+1 by fixing
x = xk+1. This simple decoupling leads to efficient and parallelizable optimization algorithms for the
subproblem (16).

ADMM dates back to 1975 but regains lots of attention recently due to its simple implementation and
extensive applications to image processing and compressive sensing. For details, we refer the readers to
[37–39].

4 Proposed algorithm

We restate our mathematical problem as follows. Let S1 and S2 be two corresponding domains, which
can either be 2D domains or Riemann surfaces embedded in R3. Our goal is to look for a diffeomorphism
f∗ : S1 → S2 that solves:

f∗ = argminf∈DiffE(f) (19)

where Diff is the collection of all surface diffeomorphisms between S1 and S2 and E : Diff → R is a
functional on Diff.

Solving the above DOP is generally challenging, since the bijectivity has to be ensured. It is especially
difficult when S1 and S2 has complicated geometry. In [1], we introduced the idea of using the Beltrami
coefficients to represent Diff. Every diffeomorphism f ∈ Diff is associated with a unique Beltrami coefficient
µ(f) : S1 → C. The Beltrami coefficient µ(f) also measures the local geometric (conformality) distortion
of the mapping f . Thus, it is sometimes desirable to incorporate µ(f) in the energy function in order to
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control the geometric distortion of the mapping. In other words, our optimization problem can generally
be written as finding f∗ : S1 → S2 that solves:

f∗ = argminf∈Diff {E1(f) + E2(µ(f))} (20)

subject to ||µ(f∗)||∞ := ||∂f
∗

∂z /
∂f∗

∂z ||∞ < 1, where E1 : Diff → R+ and E2 : B → R+ are energy
functionals defined on Diff and B respectively. E1 drives the mapping to satisfy some desired properties,
such as matching landmarks or curvatures. E2 controls the local geometric distortions of the mapping.

The above optimization can be further formulated as finding f∗ : S1 → S2 and ν∗ : S1 → C such that:

(f∗, ν∗) = argminf∈Diff,µ∈B {E1(f) + E2(µ)} (21)

subject to (i) ν∗ = µ(f∗) and (ii) ||ν∗||∞ < 1, where E1 : Diff → R+ and E2 : B → R+ are energy
functionals defined on Diff and B respectively.

Condition (i) guarantees that ν∗ is an admissible Beltrami coefficient, which is associated to a quasi-
conformal map f∗. Condition (ii) ensures that f∗ is diffeomorphic. It can be understood by the following
theorem.

Proposition 1 If ν∗ and f∗ : S1 → S2 satisfies the constraints (i) and (ii), then f∗ is a diffeomorphism.

Proof Suppose f∗ = u+iv under some local coordinates. According to condition (i), the Beltrami coefficient
of f∗ is ν∗. ν∗ is given by:

ν∗ =
∂f∗

∂z
/
∂f∗

∂z
(22)

where

∂f∗

∂z
= (ux − vy) + i(uy + vx);

∂f∗

∂z
= (ux + vy) + i(vx + uy); (23)

Now, the Jacobian of f∗, Jf∗ , is given by:

Jf∗ = uxvy − uyvx

=
(ux + vy)2 + (vx + uy)2 − (ux − vy)2 − (uy + vx)2

4

= |∂f
∗

∂z
|2 − |∂f

∗

∂z
|2 = |∂f

∗

∂z
|2(1− |ν∗|2)

(24)

Since ||ν∗||∞ < 1, |∂f
∗

∂z |
2 6= 0. Also, (1− |ν∗|2) > 0. Hence, Jf∗ > 0 everywhere.

Since the Jacobian is postive everywhere, by the inverse function theorem, the mapping f∗ is locally
invertible everywhere. In other words, f∗ is a diffeomorphism.

The incorporation of Beltrami coefficient into the optimization problem makes it easier to control the
bijectivity of the mapping.

Now, in order to solve the DOP (21), our strategry is to apply an ADMM-like alternating optimization
scheme. We consider the augmented Lagrangian of the problem (21), which is given by:

L(f, ν, λRe, λIm, ρ) = E1(f) + E2(ν)+ < λRe,Re(ν − µ(f)) > + < λIm, Im(ν − µ(f)) > +
ρ

2
||ν − µ(f)||22

(25)
where < α, β >:=

∫
S1
αβ and ||α|| := (

∫
S1
|α|2)1/2.

Following the minimization procedure of ADMM, we iteratively solve (21) as follows. Given fk, νk,
λkRe, λkIm and ρk at the k-th iteration, we compute

fk+1 = argminf{L(f, νk, λ
k
Re, λ

k
Im, ρ

k)} (26)

νk+1 = argminν{L(fk+1, ν, λ
k
Re, λ

k
Im, ρ

k)} (27)

λkRe, λ
k
Im and ρk are updated as follows.

If ||νk+1 − µ(fk+1)||2 < ηk, update:

λk+1
Re = λkRe + ρkRe(νk+1 − µ(fk+1); )

λk+1
Im = λkIm + ρkIm(νk+1 − µ(fk+1));

ρk+1 = ρk.

(28)
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If ||νk+1 − µ(fk+1)||2 ≥ ηk, update:

λk+1
Re = λkRe; λk+1

Im = λkIm;

ρk+1 = ρk(1 + γk).
(29)

We proceed to discuss how we can solve the subproblems (26) and (27).

4.1 Minimization of subproblem (27) involving ν

Subproblem (27) is often relatively easy to solve. In many situations, the Euler-Lagrange equation of E2(µ)
is an elliptic PDE. For example, if E2(µ) =

∫
S1
|∇µ|2 + |µ|2, then the Euler-Lagrange equation for the

subproblem (27) can be written as:

∆µ− 2µ− λkReRe(ν − µ(fk+1))− iλkImIm(ν − µ(fk+1))− ρk(ν − µ(fk+1)) = 0 (30)

In the discrete case, it becomes a sparse linear sytem and can be solved efficiently.
In the situation that E2(µ) is more difficult to optimize, we use the gradient descent method. For

example, if E2(µ) =
∫
S1
|∇µ|2 + |µ|p, then we optimize (27) iteratively by:

µnew = µold + dtdµ, where (31)

dµ = ∆µ−p(Re(µ))p−1− ip(Im(µ))p−1−λkReRe(ν−µ(fk+1))− iλkImIm(ν−µ(fk+1))−ρk(ν−µ(fk+1))
(32)

The stopping criteria is chosen to be ∇νL < εk

4.2 Minimization of subproblem (26) involving f

Solving the subproblem (26) involving the quasi-conformal map f is comparatively more challenging.
Subproblem (26) can be written as:

fk+1 = argminf{E1(f)+ < λRe,Re(ν − µ(f)) > + < λIm, Im(ν − µ(f)) > +
ρ

2
||ν − µ(f)||22}. (33)

By looking for a descent direction in each step, we iteratively minimize the above problem.
To minimize the first term, we compute the descent direction V1 for minimizing E1(f). f is then

updated by: f = fk +V1. For instance, suppose E1 is defined as the intensity mismatching error: E1(f) =
||I1 − I2(f)||22, where I1 and I2 are the intensity functions defined on S1 and S2 respectively. Then, the
descent direction V1 is given by: V1 = 2(I1 − I2(f))∇f .

The last three terms can be minimized as follows. Note that the gradient descent direction ∂ν̃ in term
of the Beltrami coefficient for minimizing the last three terms is given by:

∂ν̃ = −λRe − iλIm + ρ(ν − µ(f)). (34)

Doing gradient descent by several steps, we obtain a new Beltrami coefficient, ν̃, that reduces the value
of the last three energy terms. We can then look for a quasi-conformal map f̃ with BC ν̃. It is equivalent
to looking for f̃ satisfying:

∂f̃

∂z
= ν̃

∂f̃

∂z
(35)

subject to the boundary constraints that f̃ |∂S1
= ∂S2. In [1], the quasi-conformal map is obtained using

the integration formula (10) or (11). The computation is therefore quite time-consuming. Various efficient
algorithms have been introduced to compute the quasi-conformal map [26,48,25,49,47,52]. In this paper,

we approximate the quasi-conformal map f̃ with a Beltrami coefficient ν̃ by directy solving the Beltrami’s
equation (35) as in [49]. The details of the computation of the quasi-conformal map will be explained in
Section 4.3

Once f̃ is obtained, we get another descent direction V2 for the quasi-conformal map that minimizes
the last three terms of the energy functional. The gradient descent method can then be applied to solve
the subproblem (26):

dfk

dt
= V1 + V2 (36)

We set the stopping criteria for the gradient descent algorithm as ∇fL < εk to obtain a updated fk+1.
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4.3 Computation of quasi-conformal map of a given Beltrami coefficient

To solve the subproblem (26), a crucial step is to find a quasi-conformal map of a given Beltrami coefficient.
More specifically, given a map fµ with Beltrami coefficient µ, we need to deform fµ to a new fν of Beltrami
coefficient ν. Without loss of generality, we may assume the quasi-conformal maps are diffeomorphisms
between Ω1 and Ω2 in R2. If not, we can always parameterize the Riemann surfaces conformally onto the
2D parameter domains.

Let fµ : Ω1 → Ω2 be an initial quasi-conformal map, whose Beltrami coefficient is µ : Ω1 → C. Assume
µ changes to ν, and assume its associated quasiconformal map is denoted by fν . As in [49], our goal is to
obtain a sequence of quasi-conformal maps {fµn}∞n=1 such that fµ0 = fµ and fµ∞ = fν . To do this, the
basic idea is to flow µ to ν iteratively to obtain a sequence of Beltrami coefficients converging to ν. Their
associated quasi-conformal maps {fµn}∞n=1 converges to fµ∞ = fν . This procedure can be illustrated in
more details as follows:

µ0 := µ −→ µ1 −→ . . . −→ µn −→ . . . −→ µ∞ = ν
l l l l

fµ0 := fµ −→ fµ1 −→ . . . −→ fµn −→ . . . −→ fµ∞ = fν
(37)

More specifically, we first set fµ0 = fµ and µ0 = µ. We then flow fµ0 to fµ1 whose Beltrami coefficient
µ1 is close to ν1 := (1− ε)µ0 + εν (ε > 0). To find f1, we need to solve:

fµ1 = argminf{||
∂f

∂z
/
∂f

∂z
− ν1||∞} (38)

For a small variation ν1 − µ0, the above problem can be solved by a Lp-minimization of the following
Beltrmai energy (for sufficiently large p):

fµ1 = argminf∈Diff{||
∂f

∂z
− ν1

∂f

∂z
||pp} (39)

subject to the boundary constraint that fµ1 |∂Ω1
= ∂Ω2. This problem can be reformulated as finding

g1 : Ω1 → R2 such that:

g1 = argming:Ω1→R2{||
∂(fµ0 + g)

∂z
− ν1

∂(fµ0 + g)

∂z
||pp}. (40)

subject to the boundary constraints.
Equivalently, we find g1 that solves

g1 = argming:Ω1→R2{||A(ν1)g +A(ν1)fµ0 ||pp}, (41)

subject to the boundary constraints, where A(ν1) := ∂
∂z − ν1

∂
∂z .

To simplify the computation, we set p = 2 in our actual implementation. It is found that the per-
formance is already satisfactory. As a result, we get a new quasi-conformal map fµ1 := fµ0 + g1 whose
Beltrami coefficient is denoted by µ1.

Suppose at the nth iteration, we have the quasi-conformal map fµn with Beltrami coefficient µn. We
then flow fµn to fµn+1 whose Beltrami coefficient µn+1 is close to νn := (1 − ε)µn + εν (ε > 0). This is
again done by a Lp-minimization of the Beltrami energy (39) subject to the boundary constraint. More
explicitly, we find gn+1 that solves:

gn+1 = argming:Ω1→R2{||A(νn+1)g +A(νn+1)fµ0 ||pp}, (42)

subject to the boundary constraints, where A(νn+1) := ∂
∂z − νn+1

∂
∂z . fµn+1 is then obtained, whose

Beltrami coefficient is denoted by µn+1. Note that in each step, ε can be chosen so that ||µn+1 − ν||∞ is
minimized. In practice, we choose ε = 1 and it works well for all our numerical experiments. A sequence
of quasi-conformal maps {fn}∞n=1is obtained, whose Beltrami coefficients converge to ν. We call such a
process to deform fµ to fν iteratively the Beltrami holomorphic flow (BHF) from µ to ν, and denote it
by: BHF(µ→ ν).

The Beltrami holomorphic flow can be summarized as follows:

Algorithm 1 : (Beltrami holomorphic flow)
Input : fµ : Ω1 → Ω2 with Beltrami coefficient µ, target Beltrami coefficient ν, threshold ε′

Output : Sequence of quasi-conformal maps {fµn}∞n=1
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1. Set fµ0 = fµ. Solve Equation (42) to obtain g1;
2. Given fµn , compute µn := µ(fn) and νn := (1 − ε)µn + εν; solve Equation (42) to obtain gn+1; Set
fn+1 := fn + gn+1;

3. If ||µn+1 − µn|| ≥ ε′, repeat step 2. Otherwise, stop the iteration.

4.4 Summary of the splitting method

The proposed splitting method using the ADMM method can be summarized as follows:

Algorithm 2 : (Splitting method for DOP, version 1)
Input : Energy functional E(f, ν) = E1(f) + E2(ν)
Output : Optimal quasi-conformal map f∗ with Beltrami coefficient ν∗

1. Set ν0 = 0 and f0 = harmonic map between Ω1 and Ω2;
2. Given fn, νn, λn and ρn, compute fn+1 by:

fn+1 = argminfL(f, νn, λn, ρn);

3. Compute νn+1 by:
νn+1 = argminνL(fn+1, ν, λn, ρn);

4. Compute λn+1 and ρn+1;
5. If |E(fn+1, νn+1)− E(fn, νn)| ≥ ε, repeat step 2. Otherwise, stop the iteration.

In the situation when both the subproblem (26) and subproblem (27) are difficult to solve, the following
algorithm can be used.

Algorithm 3 : (Splitting method for DOP, version 2)
Input : Energy functional E(f, ν) = E1(f) + E2(ν)
Output : Optimal quasi-conformal map f∗ with Beltrami coefficient ν∗

1. Set ν0 = 0 and f0 = harmonic map between Ω1 and Ω2;
2. Given fn, νn, λn and ρn, put f̃ = fn and ν̃ = νn. Compute the gradient descent directions V1 and

V2 to minimize L(f, νn, λn, ρn); Update f̃ := f̃ + (V1 + V2)dt;
3. Compute the gradient descent direction ∂ν that minimizes L(fn+1, ν, λn, ρn); Update ν̃ := ν̃ + (∂ν)dt;

4. If |∇fL +∇νL| < εk, put fn+1 = f̃ and νn+1 = ν̃; Go to step 5. Otherwise, put fn = f̃ and νn = ν̃.
Go to step 2.

5. Compute λn+1 and ρn+1;
6. If |E(fn+1, νn+1)− E(fn, νn)| ≥ ε, go to step 2. Otherwise, stop the iteration.

5 Numerical implementation details

In this section, we will explain in detail the numerical implementation of the algorithms proposed in section
4.

In practice, 2D domains or surfaces in R3 are usually represented discretely by triangular meshes.
Suppose K1 and K2 are two meshes with the same topology representing S1 and S2. We define the set of
vertices on K1 and K2 by V 1 = {v1

i }ni=1 and V 2 = {v2
i }ni=1 respectively. Similarly, we define the set of

triangular faces on K1 and K2 by F 1 = {T 1
j }mj=1 and F 2 = {T 2

j }mj=1.

5.1 Implementation details of Algorithm 1

The major step in computing the Beltrami holomorphic flow as described in Algorithm 1 is to solve
equation (42). We first discretize the operator A in equation (42). Let f = (u +

√
−1v) : K1 → K2. To

compute A, we simply need to approximate the partial derivatives at each face T . We denote them by
Dxf = Dxu +

√
−1Dxv and Dyf = Dyu +

√
−1Dyv respectively. Note that f is piecewise linear. The

restriction of f on each triangular face T can be written as:

f |T (x, y) =

(
aTx+ bT y + rT
cTx+ dT y + sT

)
(43)
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Clearly, Dxu(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT and Dyv(T ) = dT . Now, the gradient ∇T f :=
(Dxf(T ), Dyf(T ))t on each face T can be computed by solving the linear system:(

v1 − v0

v2 − v0

)
∇T f =

(
f(v1)−f(v0)
|v1−v0|

f(v2)−f(v0)
|v2−v0|

)
, (44)

where [v0,v1] and [v0,v2] are two edges on T . By solving equation (44), aT , bT , cT and dT can be
obtained. Hence on each face T ,

∇T f =
1

2A

3∑
j=1

f(vj)sj , (45)

where A is the area of T and

s1(T ) = n× (v3 − v2)

s2(T ) = n× (v1 − v3)

s3(T ) = n× (v2 − v1),

(46)

where n is the unit normal of T . Let ν(T ) be a constant over the face T . Using the relations ∂
∂z =

(Dx−
√
−1Dy)/2 and ∂

∂z̄ = (Dx+
√
−1Dy)/2, the operator A can be discretized on each face T as follows:

Af(T ) =
1

4A
(1− ν(T ),

√
−1 +

√
−1ν(T ))

3∑
j=1

f(vj)sj . (47)

Note that the right hand side of the above equation is linear in every u(vj) and v(vj), j = 1, 2, 3.
Let g(v1

i ) = (Pi, Qi)
t and fµ(v1

i ) = ui +
√
−1vi, the optimization problem (42) can be discretized as

minimizing:

∑
Tj

| 1

4Area(Tj)
(1− ν(Tj),

√
−1 +

√
−1ν(Tj))

3∑
i=1

(PTj(i) +
√
−1QTj(i))si(Tj)

+
1

4Area(Tj)
(1− ν(Tj),

√
−1 +

√
−1ν(Tj))

3∑
i=1

(uTj(i) +
√
−1vTj(i))si(Tj)|

p,

(48)

where Tj(i) are the indices of the vertices of Tj , i.e. Tj = [v1
Tj(1),v

1
Tj(2),v

1
Tj(3)].

Secondly, the boundary constraint can be approximated by a linear constraint, so that the least square
method can be applied to solve the problem (48). For each boundary vertex v1

i ∈ γj , we only require
V(v1

i ) to be tangential to γ′j at fµ(vi). That is, if g(v1
i ) = (Pi, Qi)

t and (ai, bi)
t is the direction of the

tangent, then
biPi − aiQi = 0, (49)

which is a linear constraint. By putting p = 2, the optimization problem (48) together with the con-
straint (49) becomes a least square problem. For each iteration of Algorithm 1, gn(v1

i ) is solved as above.
Set f̃n+1(v1

i ) := fn(v1
i )+gn(v1

i ). For each boundary vertex v1
i ∈ γj , it is not necessary that f̃n+1(v1

i ) ∈ γ′j
because the boundary constraints are approximated. Nevertheless, when ||νn − µn||∞ is sufficiently small,
f̃n+1(v1

i ) shall not be far away from γ′j . Hence we can project f̃n+1(v1
i ) onto γ′j and obtain the solution

fn+1(v1
i ) such that fn+1(γj) = γ′j , i.e.

fn+1(v1
i ) := argminz∈γ′j

‖f̃n+1(v1
i )− z‖2. (50)

5.2 Implementation details of Algorithm 2 and Algorithm 3

In this subsection, we give the numerical implementation details for Algorithm 2 and Algorithm 3.
In the discrete setting, νn, µ(fn) and λn are all complex-valued functions defined on each triangular

faces. More precisely, they are functions from F 1 to C. ρn is a real-valued function defined on each triangular
faces. Given a piecewise linear homeomorphism fn between K1 and K2, the value of µ(fn) on each face T
is given by

µ(fn)(T ) =
(1, i)∇T fn

(1,−i)∇T fn
, (51)
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where ∇T is given by (45).
The augmented Lagrangian in (2) can then be discretized.
Step 2 of Algorithm 2 and Algorithm 3 requires us to compute the descent direction V1 + V2 that

minimize L(fn, νn, λn, ρn), where V1 is the descent direction for E1(f) and V2 is the descent direction
for < λRe,Re(ν − µ(f)) > + < λIm, Im(ν − µ(f)) > +ρ

2 ||ν − µ(f)||22.
The computation of V1 depends on the form of the energy E1(f). For example, if E1(f) is defined

as the intensity mismatching error ||I1 − I2(f)||22, then on each vertex vi, the value of V1 is given by
V1(vi) = 2(I1(vi)− I2(fn(vi)))∇I2(fn(vi)). Here we assume that we have the explicit form of I1, I2 and
∇I2 so that we can evaluate their values on arbitrary points. Otherwise, if the values of I1 and I2 are
only known on each vertices, we can use the method introduced in the last subsection to compute ∇I2.
Interpolations can be used to evaluate the values ∇I2(fn(vi)) and I2(fn(vi)).

To compute V2, we will use Algorithm 1 as follows. On each face T , the decent direction for µ(fn) is
given by

∂µ(T ) = λn(T ) + ρn(νn(T )− µ(fn)(T )) (52)

Use Algorithm 1, we obtain a quasiconformal map f ′ such that its Beltrami coefficient µ(f ′) is approxi-
mately equal to µ(fn) + ∂µdτ , where dτ is a small number. Then we set V2 = (f ′ − fn)/dτ .

After computing V1 and V2, we set f̃ = fn + (V1 + V2)dt and project the boundary points to the
corresponding boundaries. For Algorithm 2, we simply set fn+1 = f̃ . For Algorithm 3, we repeat the above
computations but replacing fn by f̃ at each time. When the computations converge, we set fn+1 = f̃ .

Now, step 3 of both Algorithm 2 and Algorithm 3 require us to minimize L(fn+1, ν, λn, ρn) with respect
to ν:

E2(ν)+ < λnRe,Re(ν − µ(fn+1)) > + < λnIm, Im(ν − µ(fn+1)) > +
ρn
2
||ν − µ(fn+1)||22.

Depend on the form of E2(ν), the minimizer can either be found by solving a linear system directly , or
by the gradient descent method. For example, if E2(ν) = ||∇ν||22 + ||ν||22, then on each face, the minimizer
ν̃ satisfies the linear equation

Ifv∆Ivf ν + 2ν + λnReRe(ν − µ(fn+1)) + iλnImIm(ν − µ(fn+1)) + ρn(ν − µ(fn+1)) = 0. (53)

In the above, Ivf is the interpolating matrix that converts functions defined on faces into functions on

vertices and Ifv is the interpolating matrix from vertices to faces. ∆ is the Laplace operator constructed
by the cotangent formula. Let T1 = [vi, vj , vk] and T2 = [vi, vj , vl]. The mesh Laplacian is defined as:

∆(f(vi)) =
∑
T∈Ni

cotαij + cotβij
2

(f(vj)− f(vi)) (54)

where αij and βij are the two interior angles of T1 and T2 which are opposite to the edge [vi, vj ]. To
find αij andβij , we follow the idea of [45]. Let lij be the length of the edge [vi, vj ]. By law of cosines:
l2ij = l2jk + l2ki − 2ljklki cosαij , we have

cosαij =
−l2ij + l2jk + l2ki

2ljklki
. (55)

Similar, by the law of sines: Area(T1) = 1
2 ljklki sinαij , we have

sinαij =
2Area(T1)

ljklki
. (56)

Therefore we have

cotαij =
−l2ij + l2jk + l2ki

4Area(T1)
(57)

and the discrete Laplacian operator can then be constructed. Similarly, βij can be computed. The minimizer
ν̃ can be computed by solving the above linear system (53) , and we set νn+1 = ν̃.

In the situation when E2(ν) is not easy to minimize, we can use example the gradient descent to
compute the minimizer. As an example, consider E2(ν) = ||∇ν||22 + ||ν||44. The descent direction for νn(T )
is given by

∂ν = −Ifv∆Ivf νn − p|νn|p−2νn − λnReRe(ν − µ(fn+1))− iλnImIm(ν − µ(fn+1))− ρn(ν − µ(fn+1)). (58)



Splitting method for diffeomorphism optimization problem 13

On each face T , we set ν̃(T ) = νn(T )+∂ν(T )dτ . After that, we repeat the procedure as above but replacing
νn by ν̃. When the computation reach convergence, we set νn+1 = ν̃.

Finally, in Step 4 of both algorithms, λn+1 and ρn+1 are updated as follows. If the gradient ||∇fL +
∇νL|| > δ for some predefined parameter δ, then we set λn+1 = λn and ρn+1 = ρn. Otherwise we will
check the magnitude of the residue ||νn+1 − µ(fn+1)||2. If ||νn+1 − µ(fn+1)||2 < η for some parameter η,
then we set

λn+1 = λn + ρn(νn+1 − µ(fn+1)) (59)

and ρn+1 = ρn. Otherwise, we will set λn+1 = λn and set ρn+1 = ρ1+δ
n , where δ is some positive number.

6 Experimental results

6.1 Solving DOPs on simply-connected domains

Example 1: We first test our proposed algorithm to compute a diffeomorphism of the unit disk D =
{(x, y) ∈ R2 : (x− 0.5)2 + (y − 0.5)2 = 1} matching the intensity functions.

Define F : D→ R and G : D→ R by:

F (x, y) = exp(−40x2 − 40(y − 0.5)2) + exp(−40x2 − 40(y + 0.5)2)

G(x, y) = exp(−40(x− 0.25)2 − 40(y − 0.5)2) + exp(−40(x− 0.25)2 − 40(y + 0.5)2)
(60)

We proceed to look for a diffeomorphism f : D→ D that matches the intensities by minimizing:

E(f) = α||F −G(f)||22 + β||µ(f)||44 (61)

(with α = 50 and β = 0.0005).
Using the proposed splitting algorithm, we solve the above DOP with stopping criteria as ||fk+1 −

fk||1 < 10−4 and ||µk+1 − µk||1 < 10−5. Figure 2(A) shows the input mesh of D. (B) and (C) shows
the intensity F (x, y) and G(x, y) respectively. The optimal diffeomorphism f obtained from our proposed
algorithm is shown in Figure 3(A) (which is visualized as an output mesh obtained by deforming the
input mesh using the optimal diffeomorphism). Figure 3(B) shows the intensity function G◦f(x, y), which
closely resemble to F (x, y). It means the registration matches the intensity functions well. Figure 4(A),
(B) and (C) shows the intensity mismatching energy, conformality distortion and total energy versus
iterations respectively. Note that the number of iterations to minimize the subproblems might differ in
each ADMM iterations. Hence, in our plots, the energy values at each sub-iterations are also shown. The
red dots in (C) indicate the energy values at each actual ADMM iterations. With that, the number of
sub-iterations in each ADMM iterations can be demonstrated. From the energy plots, we observe that
the intensity mismatching error reduces as iterations increase. The conformality disortion increases as
iterations increase, since the initial map is the identity map with no conformality distortion. Conformality
distortion is iteratively induces in order to tolerate for more intensity matching.

We also compare our proposed method with the algorithm in [1]. The result is shown in Figure 5.
The optimal diffeomorphism is shown in Figure 5(A), which looks similar to the one we obtain (Figure
2(A)). However, the intensity mismatching error at the optimal state is higher than that of our proposed
algorithm, as shown in (B). In fact, the total energy at the optimal state is higher than that of our proposed
method, as shown in (C). It indicates that the proposed splitting method can optimize the map to a smaller
energy value.

Example 2: In this example, we test our algorithm to compute the landmark-matching diffeomorphism
of D. Figure 6(A) shows the input mesh. We look for a diffeomorphism that moves the initial landmark
point p (labeled by ◦) to the target landmark point q (labeled by ×). We compute the diffeomorphism by
minimizing:

E(f) = α|f(p)− q|2 + β||µ(f)||22 (62)

(with α = 100 and β = 10).
Using the splitting method, we solve the above DOP and obtain the diffeomorphism f∗, which is shown

in Figure 6(B). Landmark point is matched consistently. We also optimize the DOP using the algorithm in
[1]. The obtained diffeomorphism is shown in Figure 6(C). Note that the landmark point cannot be matched
consistently. Figure 7(A) and (B) show the landmark mismatching error and conformality distortion versus
iterations using the splitting method. Note that the landmark mismatching error converges to 0. (C) shows
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Fig. 2 Example 1: (A) shows the input mesh. (B) shows the intensity F (x, y) defined on D. (C) shows the intensity
G(x, y) defined on D.

Fig. 3 Example 1: (A) shows the output mesh, obtained by deforming the input mesh by the optimal diffeomorphism f .
(B) shows the intensity function G ◦ f(x, y) defined on D, which closely resembles to F (x, y).

Fig. 4 Example 1: (A) shows the intensity mismatching error versus iterations. (B) shows the conformality distortion
versus iterations. (C) shows the total energy versus iterations. The red dots indicate each actual ADMM iterations.

the total energy versus iterations. The red dots indicate the actual ADMM iterations. Figure 7(C), (D)
and (E) show the landmark mismatching error, conformality distortion and total energy versus iterations
using the integral method proposed in [1]. The landmark mismatching error converges at about 0.06. The
algorithm get stuck at a local minimum with higher total energy value than our proposed splitting method.

Example 3: We have also compared our proposed splitting method to solve the DOP with the method
proposed in [1] on more examples. Table 6.1 records the computational times to solve the DOP using the
two different methods on 5 different examples. Two experiments to compute intensity matching diffeomor-
phisms (similar to Example 1) and three experiments to compute landmark matching diffeomorphisms
(similar to Example 2) have been carried out. Results show that our proposed splitting method is much
more efficient than the previous approach. Also, the optimal solutions we obtained using our proposed
splitting method have much smaller final energy values.
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Fig. 5 Example 1: (A) shows the output mesh by deforming the input mesh by the optimal diffeomorphism obtained
using the method in [1]. (B) shows the intensity mismatching error versus iterations. (C) shows the total energy versus
iterations.

Fig. 6 Example 2: (A) shows the input mesh, with the initial landmark point and target landmark point labeled by
◦ and × respectively. (B) shows the output mesh obtained by deforming the initial mesh with the landmark-matching
diffeomorphism using the proposed splitting method. The point labeled by ◦ is moved to · under the diffeomorphism. (C)
shows the output mesh obtained by deforming the initial mesh with the landmark-matching diffeomorphism using the
integral method in [1].

Examples Splitting method Integral method [1]
Time Taken Final Energy Time Taken Final Energy

Intensity matching 1 19s 1.46× 10−3 1680s 4.03× 10−3

Intensity matching 2 23s 8.88× 10−3 1650s 2.27× 10−2

Landmark matching 1 116s 2.03× 10−4 1731s 1.50× 10−2

Landmark matching 2 78s 4.18× 10−4 2163s 2.99× 10−2

Landmark matching 3 77s 2.91× 10−4 2356s 2.13× 10−1

Table 1 Comparisons between the proposed splitting method and the previous method in [1].

Example 4: We test our algorithm on a rectangular domain R = [−0.5, 1.5] × [−0.5, 1.5]. We look for an
optimal diffeomorphism f∗ : R → R that matches two intensity functions F : R → R and G : R → R
defined by:

F (x, y) = exp(−10(x− 0.5)2 − 10(y − 0.5)2)

G(x, y) = exp(−10(x− 0.5)2 − 10(y − 0.75)2)
(63)

We minimize: E(f) = 500||F −G(f)||22 + 5||µ(f)||44. Figure 8(A) shows the input mesh of R. (B) and (C)
shows the intensity functions F (x, y) and G(x, y) respectively. Using the splitting method, we solve the
above DOP and obtain the diffeomorphism f∗, which is shown in Figure 9(A). (B) shows the intensity
mismatching error versus iterations. (C) shows the total energy versus iterations. Again, the red dots
indicate the energy values at the actual ADMM iterations.
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Fig. 7 Example 2: (A), (B) and (C) show the landmark mismatching error, conformality distortion and total energy vesus
iterations respectively using the splitting method. (D), (E) and (F) show the landmark mismatching error, conformality
distortion and total energy vesus iterations respectively using the integral method in [1].

Fig. 8 Example 3: (A) shows the input mesh. (B) shows the intensity F (x, y) defined on R. (C) shows the intensity
G(x, y) defined on R.

Example 5: In this example, we solve the DOP to find a quasi-conformal map f : D→ D of the unit disk
D with BC = ν that minimizes: E(f) = ||µ(f)− ν||44. We set ν = 0.3. Figure 10(A) shows the input mesh.
By solving the DOP, we find the optimal diffeomorphism f∗ minimizing E and deform the input mesh
through f∗. The deformed mesh is shown in (B). The total energy versus iterations is shown in (C). The
red dots indicate the actual ADMM iterations. (D) shows the histogram of the norm of the BC, which
accumulates at 0.3 as desired.

6.2 Solving DOPs on multiply-connected domains

Example 6: We test our proposed algorithm on a multiply-connected domain Ω. In this example, we solve
the DOP to find a quasi-conformal map f : Ω → Ω with BC = ν := 0.3 that minimizes: E(f) = ||µ(f)−ν||44.
Figure 11(A) shows the input mesh. By solving the DOP, we find the optimal diffeomorphism f∗ minimizing
E and deform the input mesh through f∗. The deformed mesh is shown in (B). The total energy versus
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Fig. 9 Example 4: (A) shows the output mesh deformed from the initial mesh with the intensity matching diffeomorphism.
(B) shows the intensity mismatching error versus iterations. (C) shows the total energy versus iterations. The red dots
indicate the actual ADMM iterations.

Fig. 10 Example 5: (A) shows the input mesh. (B) shows the output mesh deformed by the optimal diffeomorphism. (C)
shows the total energy versus iterations. (D) shows the histogram of the norm of the BC, which accumulates at 0.3 as
desired.

Fig. 11 Example 6: (A) shows the input mesh of a triply-connected domain. (B) shows the output mesh deformed from
the inital mesh using the optimal diffeomorphism. (C) shows the total energy versus iterations. (D) shows the histogram
of the norm of the BC of the optimal diffeomorphism.

iterations is shown in (C). The red dots indicate the actual ADMM iterations. Note that a quasi-conformal
map of a multiply-connected domain with a given Beltrami coefficient ν may not exist. By minimizing
E, one can find a diffeomorphism whose BC is closest to the given BC ν in the L4-sense. (D) shows the
histogram of the norm of the BC of the optimal diffeomorphism.

Example 7: In this example, we test our proposed algorithm to find an intensity matching diffeomorphism
of a multiply-connected domain. Figure 12(A) shows an input mesh of a triply-connected domain Ω. Define
F : Ω → R and G : Ω → R by:

F (x, y) = exp(−10(x− 0.5)2 − 10(y − 0.5)2)

G(x, y) = exp(−10(x− 0.5)2 − 10(y − 0.75)2),
(64)
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Fig. 12 Example 7: (A) shows the input mesh. (B) shows the intensity F (x, y) . (C) shows the intensity G(x, y).

which is shown in Figure 12(B) and (C).

We proceed to look for a diffeomorphism f : D→ D that matches the intensities by minimizing:

E(f) = α
2∑
i=1

|f(pi)− qi|2 + γ1||µ(f)||44 + γ2||∇µ(f)||22 (65)

(where α = 104, γ1 = 10 and γ2 = 0.5 × 10−6). Using the splitting method, we obtain the optimal
diffeomorphism f∗ as shown in Figure 13(A). Figure 13(B), (C) and (D) shows the intensity mismatching
error, conformality distortion and total energy versus iterations. Next, we take α = 50 and β = 5. In
other words, we like to obtain more conformality. Figure 14(A) shows the obtained diffeomorphism. Note
that the diffeomorphism has less squeezing than that in Figure 12(A). Figure 14(B) and (C) shows the
intensity mismatching error and conformality distortion versus iterations. As shown in the energy plots, the
conformality distortion at the optimal state is much less than the previous results. However, more intensity
mismatching error at the optimal state is higher than the previous results. Note that the algorithm in [1]
cannot apply to multiply-connected domains. Thus, this problem cannot be solved by the method in [1].

Example 8: In this example, we test the algorithm to compute the landmark matching diffeomorphism
of a triply-connected domain Ω. Figure 15(A) shows an input mesh of Ω. We look for a diffeomorphism
f∗ : Ω → Ω that matches the initial landmark points {p1, p2} (labeled by ◦) to the target landmark points
{q1, q2} (labeled by ×). The obtained diffeomorphism using the splitting method is shown in Figure 15(B),
which matches landmark consistently. Figure 16(B) and (C) shows the landmark mismatching error and
the conformality distortion versus iterations respectively.

Example 9: In this example, we test the algorithm to compute a diffeomorphism f∗ : Ω → Ω that matches
both intensity functions and landmark constraints on a triply-connected domain Ω. Figure 17(A) shows
the input mesh of Ω. The initial landmarks {p1, p2} are labeled by ◦ and the target landmarks {q1, q2}
are labeled by ×. The intensity functions F : Ω → R and G : Ω → R, which are shown in Figure 17(B)
and (C), are defined as in Equation (63). Using the splitting method, we compute f∗ by minimizing the
following energy functional:

E(f) = α
2∑
i=1

|f(pi)− qi|2 + β||G(f)− F ||22 + γ||µ(f)||44 (66)

(where α = 102, β = 102 and γ = 10−2). The obtained diffeomorphism is shown in Figure 18(A).
Landmarks are matched consistently. (B) shows the intensity function G◦f∗(x, y), which closely resembles
to F (x, y). It demonstrates the optimal diffeomorphism matches the intensity functions. Figure 19(A),
(B), (C) and (D) show the conformality distortion, intensity mismatching error, landmark mismatching
error and total energy versus iterations respectively. The landmark mismatching error converges to 0 at
the optimal state.
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Fig. 13 Results of Example 7: (A) shows the output mesh deformed from the initial mesh using the intensity matching
diffeomorphism. (B) shows the intensity mismatching error versus iterations. (C) shows the conformality distortion versus
iterations. (D) shows the total energy versus iterations. The red dots indicate the actual ADMM iterations.

Fig. 14 Results of Example 7 with larger parameter for the conformality distortion energy (to preserve more conformality).
(A) shows the output mesh deformed from the initial mesh using the optimal diffeomorphism. The output mesh has less
squeezing. (B) shows the total energy versus iterations. The red dots indicate the actual ADMM iterations.

6.3 Solving DOPs on Riemann surfaces

Example 10: Our proposed method can be easily applied to solving DOPs on Riemann surfaces through
conformal parameterization. Every connected Riemann surfaces can be parameterized conformally onto the
unit disk D or multiply-connected punctured disk. Solving the DOP on Riemann surfaces is then equivalent
to solving a DOP on the 2D domains. To illustrate the idea, we test our method to find an optimized
registration between two human faces that matches both landmarks and curvatures. Figure 20(A) and (B)
show two human faces, with corresponding landmarks labeled on each of them. The colormaps on each
surfaces are given by their mean curvatures. Their conformal parameterizations are shown in (C) and (D)
respectively. We find a diffeomorphism that minimizes the following energy functional:

E(f) = α
2∑
i=1

|f(pi)− qi|2 + β||H2(f)−H1||22 + γ1||µ(f)||44 (67)
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Fig. 15 Example 8: (A) shows the input mesh. The initial landmark point and target landmark point are labeled by
◦ and × respectively. (B) shows the output mesh deformed by the optimal diffeomorphism. The initial landmark points
(labeled by ◦) are moved to ·, which are close to the target landmark points (labeled by ·).

Fig. 16 Example 8: (A) shows the landmark mismatching error versus iterations. (B) shows the conformality distortion
versus iterations. (C) shows the total energy versus iterations. The red dots indicate the actual ADMM iterations.

Fig. 17 Example 9: Landmark and intensity matching diffeomorphism. (A) shows the input mesh. The initial landmark
points and target landmark points are labeled by ◦ and × respectively. (B) shows the intensity F (x, y). (C) shows the
intensity G(x, y).

where α = 104, β = 102, γ1 = 102, γ2 = 102 and H1 and H2 are the mean curvature functions on Face 1
and Face 2 respectively.

Figure 21(A) shows the registration result. The colormap (mean curvature) on Face 1 is mapped to
Face 2 using the computed registration. Note that the high curvature regions (red colored regions) on Face
1 are mapped to corresponding high curvature regions on Face 2. Landmarks on Face 1 are also mapped
to Face 2 using the obtained registration. Note that landmarks are matched quite consistently. (B) shows
registration result on the conformal parameter domain. The energy plots of intenisity mismatching error,
landmark mismatching error and the total energy versus iterations are shown in Figure 22(A), (B) and
(C) respectively. The red dots indicate the energy values at the actual ADMM iterations.
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Fig. 18 Example 9: (A) shows the output mesh obtained by deforming the initial mesh using the optimal diffeomorphism.
(B) shows the intensity function G◦f∗(x, y), which closely resembles to F (x, y). It demonstrates the optimal diffeomorphism
matches the intensity functions.

Fig. 19 Example 9: (A) shows the conformality distortion versus iterations. (B) shows the intensity mismatching error
versus iterations. (C) shows the landmark mismatching error versus iterations. (D) shows the total energy versus iterations.
The red dots indicate the actual ADMM iterations.

7 Conclusion

This paper introduces an efficient algorithm to solve the diffeomorphism optimization problem (DOP),
using quasi-conformal theories. DOP is a type of optimization problems which minimizes an energy func-
tionals defined over the space of diffeomorphisms. In [1], the method of Beltrami holomorphic flow (BHF)
was proposed to solve the DOP by representing the diffeomorphisms using the Beltrami coefficients. The
optimal Beltrami coefficient associated to the diffeomorphism minimizing the energy functional can then
be effectively found. However, the algorithm is computational expensive. In this work, we propose an
efficient splitting algorithm, based on the classical alternating direction method of multiplier (ADMM),
to solve the DOP. The basic idea is to split the energy functional into two energy terms: one involves
the BC whereas the other involves the quasi-conformal map. Alternating minimization scheme can then
be applied to minimize the energy functional. The proposed method significantly speeds up the previous
BHF approach. It also extends the previous BHF algorithm to Riemann surfaces of arbitrary topologies.
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Fig. 20 Example 10: Solving DOP on Riemann surfaces. (A) and (B) show the meshes of two human faces. Corresponding
feature landmarks on the human faces are shown. (C) shows the conformal parameter domain of Face 1. (D) shows the
conformal parameter domain of Face 2. The colormaps are given by the mean curvatures of the human faces.

Fig. 21 Example 10: (A) shows the registration result. The colormap and landmarks on Face 1 is mapped to Face 2 using
the obtained registration. Note that the high curvature regions are mapped to the corresponding high curvature regions.
Landmarks are also consistently matched. (B) shows the registration result on the confomral parameter domain.

Fig. 22 Example 10: (A) shows the intensity mismatching error versus iterations. (B) shows the landmark mismatching
error versus iterations. (C) shows the total energy versus iterations. The red dots indicate the actual ADMM iterations.

Experiments have been carried out on synthetic together with real surface data, which demonstrate the
efficiency and efficacy of the proposed algorithm to solve the DOP.
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