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Abstract. In theory, multimodal EEG-fMRI recordings represent an
excellent tool for studying bioelectric-hemodynamic coupling in the hu-
man brain without incurring added complexity due to nonstationarity.
However, ballistocardiogram (BCG) artifacts as opposed to magnetic
gradient noise have made analysis of EEG data collected in the MRI
environment very challenging. Conventionally, BCG artifacts have been
removed only partially after meticulous user-guided identification of in-
dependent components associated with noise. In this paper, we present
a novel method for automatically removing BCG artifact from event re-
lated EEG data by leveraging sparsity in the time domain. Our method,
low rank + sparse decomposition (LR+SD) extends robust PCA and re-
quires tuning of only a single regularization parameter. We apply this
method first to simulated data,and then to real simultaneous EEG-
fMRI data, collected while subjects viewed photic stimuli. We found
that LR+4SD improved the signal-to-noise ratio by 34 and 36 percent, as
compared to either manual or automatic IC methods respectively. This
method appears quantitatively superior to IC methods, and may im-
prove the feasibility of analyzing event related EEG-fMRI data collected
concurrently.
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1 Introduction

Independently, electroencephalogram (EEG) and functional MRI (fMRI) offer
either rich temporal (EEG) or spatial (fMRI) information related to neuronal
dynamics in the brain. Ideally, these imaging techniques could be combined in
a complementary fashion to harness their respective strengths [3], [I6], and po-
tentially improve our ability to localize epileptiform generators [I5]. However,
analysis of EEG data collected in the MRI environment has proven quite chal-
lenging, given a number of artifacts introduced during concurrent recordings.
EEG recordings putatively reflect the superposition of electric dipoles as-
sociated with synchronous activity from neural populations measured at the



scalp [2]. When collected inside the MR scanning environment, these signals
are corrupted by noise due to the switching of magnetic fields, which creates a
prominent gradient artifact. This gradient signal intiially appeared problematic,
however, a number of template-subtraction methods have been developed that
can effectively remove this large signal [7].

More troublesome to this analysis is the quasi-periodic signal known as the
ballistocardiogram (BCG) artifact, which cannot be easily removed with tem-
plate based methods. The BCG is generated as EEG electrodes move due to
pulsatile motion during the cardiac cycle, and presents broadly in the spectral
frequencies often analyzed in EEG (0.5-25 Hz) []. The presence of these arti-
facts can dramatically change the spectral properties of the signal, and obscure
ability to perform trial-by-trial analyses.

Thus far, a variety of techniques have been tested to remove BCG artifact
from these data including template based average artifact subtraction based on
cardiac r-wave timing [1], filtering [I1]], independent component analysis (ICA)
[9], optimal basis sets (OBS) [13], clustering [20], and combined methods [4],
many of which can be applied using manual or automated algorithms. Although
each of these methods have acheived some degree of efficacy, most of these ei-
ther require collection of additional data (e.g. ECG data) for template charac-
terization purposes, require tedious manual artifact component identification, or
require cardiac signal identification within the EEG itself, which is often only
intermittently identifiable throughout a recording session.

Here, we introduce a new algorithm for removing artifact from EEG signals
that uses low rank + sparse decomposition (LR+SD). To do so, we propose a
mathematical model based on a reasonable experimental assumption that ar-
tifact components will be mathematically expressed differently than the data
themselves. Importantly, this method obviates the need for any reference or
template artifact signal. As such, the combined effects of many types of artifacts
can be removed in a single decomposition without the need for manual identifi-
cation of artifact components in the data. We then assess the utility of this new
algorithm on simulalted and real data.

2 Methods

2.1 Low Rank + Sparse Decomposition Method

We denote {f;(k)}Y, the set of recorded EEG signals. The index i corresponds
to the channel index, assuming we have a total of N electrodes distributed over
the scalp. Moreover, we assume that each signal is recorded over K samples,
ie. ke {1,...,K}. We consider J (unknown) artifacts, and will denote them
{ fjA(k:) 3-]:1 where the index j identifies different artifacts. The goal of the artifact
removal procedure is then to retrieve cleaned EEG signals, {f;(k)}Y .

In the proposed method we assume the following model: each recorded EEG
channel is a linear combination of its cleaned version and the different artifacts.



This model is equivalent to write:
. J
fi(k) :fi(k)+2@ijng(k)a (1)
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where the mixing coefficients a;; are unknown. In the following, we use a matrix
formalism to model the global processes. To do so, we cast each EEG and artifact
channels as columns of K x N matrices:

I | |
f|‘1f|2.f|]\] == flllf‘lz...fN (2)

o
|

where fA(k) = Z;'I:1 a;j f]‘-“ (k). The matrix F' contains all recorded EEG chan-

nels, F' the wanted cleaned EEG signals and FA contains the mixing of all
artifacts. The latter can be written as F4 = ijl FJA where

| | |
FJA = a1j|f]’-4 a2j|fjA aNj|‘fjA . (3)

The key to our method is to notice that each matrix F JA has its columns pro-
portional to the same vector fjA implying that rank(F]A) =1 and consequently
rank(F#) < J. Otherwise, the matrix F should contain events resulting from
true EEG data. In our case, we focus on event related spectral perturbations
(ERSPs), which occur at specific times and affect a limited number of elec-
trodes. Therefore, it is reasonable to assume that F' is a sparse matrix. Thus
the artifact removal problem is equivalent to performing a low-rank + sparse de-
composition of F. The resulting sparse component therefore corresponds to the
cleaned EEG signals. Such decomposition can be done by solving the following
minimization problem:

(F, F4) = argmin | F4. + || F||x (4)

such that F' = F 4+ F4,
where ||.||« denotes the nuclear norm of a matrix (i.e. the sum of its singular
values), ||.||1 denotes the sum of the absolute value of the matrix entries and A

is a positive parameter allowing us to control the rank of F4. Such model, also
called Robust PCA, was actively studied in the mathematics community [10]. In



our experiments we extend the Lin et al. (2009) algorithm for artifact removal,
and select the regularization parameter that maximizes signal to noise ration by
running a sweep across all possible ranks. Upon publication, all code developed
for this project will be available on the NITRC repository.

2.2 Simulated Dataset

In general, there is no ground truth EEG signal when data are empirical, mak-
ing it difficult to assess the utility of artifact-removal algorithms. We therefore
created a simulated dataset using the free BESA (Brain Electrical Source Anal-
ysis) to generate simulated EEG signals generated by three distributed dipole
sources corrupted by known artifacts using a spherical head forward model. In
order to add realistic noise to the data, we used ECG, EMG, and right and
left EOG reference artifact recordings extracted from the free sample of the
SHHS Polysomnography Database. These reference artifacts were normalized
and added to the pure simulated EEGs using randomized mixing coefficients
accordingly to a uniform distribution.

2.3 Empirical Data: Concurrent EEG-fMRI

Twenty healthy individuals (ages 23-30, 12 male) provided written informed con-
sent to participate in this study, which was approved by the UCLA IRB. Con-
current recordings took place while subjects passively viewed 140 Gabor flashes,
presented via an MR projector screen with a varied inter stimulus interval of
13.85 +/ -2.8 sec, a task known to generate reproducible occipital ERSPs in the
alpha (8-12 Hz) spectral band [8]. EEG were recorded using a 256-channel GES
300 Geodesic Sensor Net (Electrical Geodesics, Inc.) at 500 Hz. MRI clock sig-
nals were synced with EEG data collection for subsequent MR artifact removal.
Functional scans were acquired using 3-T Siemens Trio MRI Scanner using echo
planar imaging gradient-echo sequence with echo time (TE) of 25msec, repeti-
tion time of 1s, 6mm slices, 2mm gap, flip angle 90 degrees, with 3mm in-plane
resolution, ascending acquisition. EEG data then underwent MR gradient arti-
fact removal by subtracting an exponentially weighted moving average template,
according to methods described in [7].

We compare LR+SD to the established InfoMax ICA cleaning method, as
implemented in Brain Analyzer v.2.0.2 software (Brain Products) using manual
identification of cardiac signal within the EEG followed by the automated so-
lutions procedure for identifying IC components correlated with cardiac signal.
For comparison purposes, we also collected single modality EEG data outside
the MR environment using the same stimuli and parameters in a copper sheilded
room (referred to as ”Outside Scanner” in figures).

3 Results

3.1 Simulated Data Results. In the case of simulated data, we know the
“true” solution. We adopt the time-frequency representation (TFR) to visualize



results computed via a continuous wavelet transform (CWT) using the Morlet
wavelet, to assess the efficiency of the proposed method. Figure [I| shows the
TFRs for simulated data arising from three distributed dipole sources. The TFRs
corresponding to the pure and artifact signals are depicted in the two upper right
plots while the TFR obtained from the raw EEGs (pure EEGs mixed with pure
artifacts) is given on the upper left plot. Notice that the time-frequency energy
corresponding to pure EEGs is nearly undetectable due to the artifact energy.
The signatures of each event are not visible in the raw EEGs’ TFRs yet they are
clearly visible in the sparse component.In both the single and multiple source
experiments the regularization parameter A had value 5.107% which resulted in
ranks of 4 and 5 for the low-rank artifact components, respectively. The proposed
method shows excellent results in separating the artifact parts from the EEG
signals of interest.
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Fig. 1. Simulated Data Results. Three sources measured with an electrode located
close to the primary motor cortex (source 3). (Top Panel) CWT of original simulated
data consisting of three dipole sources corrupted by ECG, EMG and right and left
EOG template artifacts (left), the true EEG data alone (middle), and artifact alone
(right). (Bottom Panel) LR+SD result TFRs separating the cleaned EEG (left) from
artifact (right). Values are normalized to maximum for each display.

3.2 EEG-fMRI Empirical Data Results. Group level ERSP results for
LR+SD artifact removal of our experimental data are summarized and compared



to ICA artifact removal as well as out of scanner data in Figure a—d). Signal-
to-noise ratio (SNR) was computed by calculating the ratio of the maximum
absolute signal diminution in alpha power from 0 to 500 msec following stim-
ulus presentation to the standard deviation of alpha power from the following
1000msec post stimulus. SNR was 8.5, 11.4, and 15.2 for ICA, LR+SD, and out
of scanner data respectively. Figure (d) shows group level alpha spectral EEG
data projected topographically for pre-stimulus (-250 msec), ERSP (50msec),
and post stimulus (500 msec), with timings with respect to the stimulus occur-
ring at time equal to zero. Figure [3| shows single-patient alpha power averaged
over all stimuli for a window of 2sec pre stimulus to 8sec post. The raw data
is shown in comparison with the sparse component from LR+SD and ICA us-
ing an average of the time-frequency intensity over alpha band frequencies. The
strength at the specific frequency of 10Hz with bounds of one standard deviation
is also shown for each dataset.
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Fig. 2. Group Level Results comparing independent component analysis (ICA) and
LRA+SD based cleaning to EEG data collected outside of the MR scanner environment.
(TOP PANEL) Normalized Alpha Power time courses derived from the ocular EEG
channel averaged across all subjects plotted with mean +/- SEM for ICA, LR+SD and
Outside Scanner Results. Signal-to-Noise rations are shown in the lower left corner for
each result with the stimulus occurring at time equal to zero. (LOWER PANEL) Group
level alpha power results projected topographically for 500msec prior to stimulus onset
(PRE), 50 msec following stimulus onset(ERSD), and 500msec following stimulus onset
(POST).



CWT
Pseudo-Freq (Hz)

4
Time (s)

M (SRR pvN
30 A M e

Alpha
Intensity

S

Fig. 3. Single-subject alpha band TFR averaged over stimuli. Columns denote (left)
the raw MRI signal, (center) the ICA-cleaned signal (right) the sparse component
from LR4SD. For each dataset is shown (top row) TFR over a frequency range about
the alpha band and (bottom row) the signal strength at 10Hz with single standard
deviation bounds.

4 Discussion

In this paper, we introduce a novel method for removing artifacts from EEG
signals, which decomposes data into the sum of two matrices: a sparse matrix
representing the cleaned data, and a low-rank matrix, which corresponds to the
artifact portion of the data. We applied this algorithm to remove artifact from
simulated and empirical data. Overall, LR4SD was quantitatively more effective
EEG cleaning that ICA from an SNR perspective, and qualitatively more more
robust at recovering the diminution in alpha power topographically. Overall, the
LR+SD algorithm is quite similar to the robust PCA algorithm, which assumes
that the data events themselves are sparsely represented in the time domain.
Artifacts are conversely assumed to be broadly distributed at the channel level
across the scalp, which appears to be a relevant assumption given what has been
observed about the distribution of EEG artifacts, mentioned above, thus far.
Here, we used only the Infomax algorithm for comparison. We did this primarily
because previous studies have shown that this algorithm was most effective at
BCG removal, however, results using ICA for artifact removal of concurrent
EEG-fMRI have varied [6].

After optimization, we found that a rank of 25 was required for the low rank
matrix to describe the BCG artifact. Lower ranks were ineffective at isolating
the BCG noise, due to the complexity of the BCG signal itself. In the clinical
setting, the ECG cardiac signal is often low-pass filtered and gross changes of its
signature (e.g. ST segment elevation) are examined. However, lower amplitude
changes in higher frequencies of the ECG exist and have been shown to correlate
with cardiac ischemia even up to 250Hz [B]. Given this broad spectral signature, it
is unsurprising that more that a few sparse components were required to capture



the artifact signals in real data. In summary, LR4+SD provides an automatic
method for parsing data and artifact into separate groups, with the need to tune
only one regularization parameter. Further work may use spatial information
from electrode topographies as further constraints.
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