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In this paper, we present an algorithm to automatically detect meaningful modes in a
histogram. The proposed method is based on the behavior of local minima in a scale-space
representation. We show that the detection of such meaningful modes is equivalent in a
two classes clustering problem on the length of minima scale-space curves. The algorithm
is easy to implement, fast and does not require any parameter. We present several results
on histogram and spectrum segmentation, grayscale image segmentation and color image
reduction.
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1. Introduction

Despite an extensive literature on this topic, image segmentation remains a difficult

problem in the sense there does not exist a general method which works in all cases.

One reason is in that the expected segmentation generally depends on the final ap-

plication goal. Generally researchers focus on the development of specific algorithms

according to the type of images they are processing and their final purpose (image

understanding, object detection, . . . ). Different types of approaches were developed

in the past which can be broadly classified into histogram based, edge based, region

based and clustering (and mixes between them).

Although the more conceptually straightforward types of histogram methods are

usually less efficient, they are still widely used because of their simplicity and the

few computational resources needed to perform them. Despite their drawbacks,
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these types of methods satisfy important criteria for computer vision applications.

The idea behind such methods is that the final classes in the segmented image

correspond to “meaningful” modes in an histogram built from the image charac-

teristics. For instance, in the case of grayscale images, each class is supposed to

correspond to a mode in the histogram of the gray values. Finding such modes is

basically equivalent to finding a set of thresholds separating the mode supports in

the histogram.

The body of literature regarding histogram-based segmentation is steadily increas-

ing. Within this literature two main philosophies emerge, based on different ap-

proaches to the problem: techniques using histograms to drive a more advanced

segmentation algorithm or techniques based on the segmentation of the histogram

itself. For instance, Chan et al.5 compare the empirical histograms of two regions

(binary segmentation) by using the Wasserstein distance in a levelset formulation.

In Yuan et al.,24 local spectral histograms (i.e obtained by using several filters) are

built. The authors show that the segmentation process is equivalent to solving a

linear regression problem. Based on their formalism, they also propose a method to

estimate the number of classes. In Puzicha et al.,20 a mixture model for histogram

data is proposed and then used to perform the final clustering (the number of clus-

ters is chosen according to rules based on statistical learning theory). In SUral et

al.,21 it is shown that the HSV color space is a better color representation space

than the usual RGB space. The authors use k´Means to obtain the segmentation.

They also show that this space can be used to build feature histograms to perform

an image retrieval task. Another approach, called JND (Just Noticeable Difference)

histogram, is used in Bhoyar et al.3 to build a single histogram which describes the

range of colors. This type of histogram is based on the human perception capabil-

ities. The authors propose a simple algorithm to segment the JND histogram and

get the final classes. This method still has some parameters and therefore we do not

see it as being optimal. In Kurugollu et al.,14 the authors build 2D histograms from

the pairs RB-RG-GB (from the RGB cube), then segment them by assigning each

histogram pixel to their most attractive closest peak. The attraction force is based

on distances to each histogram peak and their weights. This last step consists of

the fusion of each segmentation to form a global one. In Yildizoglu et al.,23 a vari-

ational model embedding histograms is proposed to segment an image where some

reference histograms are supposed to be known. While all these methods can have

several parameters, can be difficult to implement and computationally expensive, an

interesting approach was investigated in Delon et al.6 The authors propose a fully

automatic algorithm to detect the modes in an histogram H . It is based on a fine

to coarse segmentation of H . The algorithm is initialized with all local minima of

H . The authors defined a statistical criteria, based on the Grenander estimator, to

decide if two consecutive supports correspond to a common global trend or if they

are parts of true separated modes; this criteria is based on the ǫ´meaningful events

theory (see Delon et al.6 or Desolneux et al.8, 9). The (parameterless) algorithm

can be resumed as following: start from the finest segmentation given by all local
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minima, choose one minimum and check if adjacent supports are part of a same

trend or not. If yes then merge these supports by removing this local minima from

the list. Repeat until no merging is possible. This work is extended to color images

in Delon et al.:7 the previous algorithm is applied to each of the different compo-

nents H,S,V. The segmentation results of this application are used to initialize a

k´Means algorithm to get the final segmentation. While this approach provides a

fully automatic algorithm, it becomes computationally expensive (both in terms of

time and memory) for histograms defined on a large set of bins.

One could think of a spectrum as a histogram that counts the occurrence of each

frequency within a signal/function. Through this lens, we see that histogram mode

detection methods can also be used to identify “harmonic modes” in Fourier spectra.

For instance, the ability to find the set of supports of such modes is fundamental

to build the new empirical wavelets proposed in Gilles et al.10, 11 Although har-

monic modes and histogram modes are intuitively comparable, it is essential to

remember that the expected behavior of a spectrum can vary dramatically from

that of a histogram. For instance, spectra are generally less regular than classic

histograms. With spectra it can be more difficult to have an a priori idea of how

many modes should be identified during segmentation. These characteristic differ-

ences will many times affect the performance of a segmentation method; thus the

intended applications (spectral vs. histogram) must be taken into consideration be-

fore selecting/evaluating any methods.

In this paper, our aim is to propose a parameterless algorithm to automatically

find meaningful modes in an histogram or spectrum. Our approach is based on a

scale-space representation of the considered histogram which permits us to define

the notion of “meaningful modes” in a simpler way. We will show that finding N

(where N itself is unknown) modes is equivalent to perform a binary clustering.

This method is simple and runs very fast. The remainder of the paper is orga-

nized as follows: in section 2, we recall the definition and properties of a scale-space

representation. In section 3, we expose how the scale-space representation can be

used to automatically find modes in an histogram. In section 4, we present several

experiments in histogram segmentation, grayscale image segmentation and color

reduction as well as the detection of harmonic modes in a signal spectrum. Finally,

we draw conclusions in section 5.

2. Scale-space representation of a function

2.1. Continuous scale-space

Let a function fpxq be defined over an interval r0, xmaxs and let the kernel gpx; tq “
1?
2πt

e´x2{p2tq where t is called the scale parameter. Then the operator defined by

(˚ denotes the standard convolution product)

Lpx, tq “ Ttrf spxq “ gpx; tq ˚ fpxq (2.1)
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is a continuous scale-space representation (see Lindeberg,15Witkin22) of f if it fulfills

the following axioms:

‚ Linearity: Ttrf1 ` f2spxq “ Ttrf1spxq ` Ttrf2spxq,
‚ Shift invariance: TtrS∆xf spxq “ S∆x

Ttrf spxq where S∆x
fpxq “ fpx ´ ∆xq,

‚ Semi-group structure: Tt2 rTt1rf sspxq “ Tt1`t2 rf spxq,
‚ Kernel scale invariance, positivity and normalization,

‚ Non-creation of local extrema,

some complimentary axioms are needed when the dimension is larger than one,

see Lindeberg.15 The scale-space representation can be interpreted in the following

manner: when t increases, Lpx, tq becomes smoother in the sense that this operation

removes all “patterns” of characteristic length smaller than
?
t. It is proven that

the Gaussian kernel is the only kernel (in the continuous case) which fulfills these

axioms (see Lindeberg15).

2.2. Discrete scale-space

From this point on, we will consider a sampled version of the function f . Hence,

we need a discrete scale-space representation of f . Although the Gaussian kernel is

the only admissible kernel in the continuous case, several kernel choices are viable

in the discrete case. In this paper, we adopt the sampled Gaussian kernel:

Lpm, tq “
`8
ÿ

n“´8

fpm ´ nqgpn; tq, (2.2)

where

gpn; tq “ 1?
2πt

e´n2{2t. (2.3)

It is important to note that the semi-group property is not valid for a discretized

Gaussian kernel except if the ratio t2{t1 is odd (see Proposition 12 in Lindeberg16).

In practice we use a truncated filter in order to have a finite impulse response filter:

Lpm, tq “
`M
ÿ

n“´M

fpm ´ nqgpn; tq, (2.4)

with M large enough that the approximation error (measured by 2
ş8

M
gpu, tqdu, see

Lindeberg16) of the Gaussian is negligible. A common choice is to set M “ C
?
t`1

with 3 ď C ď 6 (meaning that the filter’s size is increasing with respect to t). In

our experiments we fix C “ 6 in order to ensure an approximation error smaller

than 10´9.

2.3. Discretization of the scale parameter

For numerical implementation purposes, we sample the scale parameter t in the

following manner:
?
t “ s

?
t0 where s “ 1, . . . Smax are integers. We choose to start
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with
?
t0 “ 0.5 because it corresponds to half the distance between two samples

of f . Moreover, since we work with finite length signals, there is no interest to go

further than
?
tmax “ xmax. Finally, we want to perform a finite maximum number

of steps, denoted Smax, to go from the initial scale to the final one. Thus we can

write:
?
tmax “ Smax

?
t0 which implies Smax “ 2xmax.

3. Scale-space histogram segmentation

3.1. Meaningful scale-space histogram modes

Our objective is to find meaningful modes in a given histogram; hence we first need

to define the notion of “meaningful mode”. We will begin by defining what is a

mode, and explaining its representation in the scale-space plane. Let us consider an

histogram like the one depicted in figure 1 (a). It is clear that to find boundaries

delimiting consecutive modes is equivalent to finding intermediate valleys (local

minima) in the histogram. In order to be able to define the notion of “meaningful”

x x

s

scale-space planehistogram

Fig. 1. Example of an histogram (on left, rotated by 90o) and its scale-space plane representation
(on right). Each initial local minima (for s “ 1) give rise of scale-space curves of different lengths.

modes, we will use a pivotal property of scale-space representations. The following

notion is already used by the computer vision community for edge detection appli-

cations. The number of minima with respect to x of Lpx, tq is a decreasing function

of the scale parameter t, or the scale-step parameter s as defined in the previous

section, and no new minima can appear as t increases. Figure 1 gives an example

of an histogram and its scale-space representation. Observe that each of the initial

(for s “ 1) minima generates a curve in the scale-space plane.

Let us fix some notations. The number of initial minima will be denoted N0, and

each of these local minima defines a “scale-space curve” Ci (i P r1, N0s) of length
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x x

s
T

mode 1

mode 2

mode 3

mode 4

mode 5

mode 6

Fig. 2. Histogram modes detection principle: all scale-space curves larger than the threshold T

provide boundaries (dashed lines) of supports of different modes.

Li. The (integer) length Li is understood as the life span of the minimum i (and

not as the arc length of Ci) and is defined by

Li “ maxts{the i-th minimum existsu

We can now define the notion of “meaningful modes” of an histogram.

Definition 1 A mode in an histogram is called meaningful if its support is delimited

by two local minima corresponding to two long (i.e above a certain length T ) scale-

space curves Ci.

As a consequence, finding meaningful modes is equivalent to finding a threshold

T such that scale-space curves of length larger than T are the curves corresponding

to minima delimiting modes’ supports. This principle is illustrated in figure 2. This

means that the problem of finding such modes is equivalent to a two class clustering

problem on the set tLiuiPr1,N0s. The following three sections explore independent

ways to automatically determine such optimal threshold T . Section 3.2 presents a

probabilist approach providing an analytical expression for T , an existing algorith-

mic method is used in section 3.3 and section 3.4 suggests to use a k´Means (k “ 2)

clustering algorithm to find T .

3.2. Probabilist approach

Probabilistic models are often used to help solve detection problems. In order to use

a probabilistic approach within our scale-space framework, we must adapt our def-

inition of ”meaningful mode”. The following definition is inspired from the Gestalt

theory ideas developed in Desolneux et al.8, 9
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Definition 2 Given a positive small number ǫ, the i-th local minimum will to be

said ǫ-meaningful if the length Li of its associated scale-space curve Ci is larger

than a threshold T . Hence, by considering Li as a random variable and for a given

probability distribution, we have

PpLi ą T q ď ǫ. (3.1)

Based on this definition, the following proposition gives an explicit expression of T

when the considered distribution law is a half-normal distribution.

Proposition 1 Let Li be independent random variables (where 1 ď Li ď Lmax)

and ǫ be a positive small number. Define HL to be the histogram representing the

occurrences of the lengths of a scale-space curve, and suppose P follows a half-normal

distribution. Then:

T ě
?
2σ2erf´1

ˆ

erf

ˆ

Lmax?
2σ2

˙

´ ǫ

˙

(where σ “
a

π
2
MeanpHLq according to the definition of the half-normal distribu-

tion).

Before we give the proof of this proposition, let us comment on the choice of this

distribution law. In many problems, a Gaussian law is chosen as the default dis-

tribution law. In our context, we know that the random variables Li are always

positives and in many experiments we can observe that they follow a monotone

decreasing law hence our choice of the half-normal law (see Azzalini2). However, we

emphasize that other exponential laws could also be considered. In the Gestalt the-

ory, the parameter ǫ corresponds to “how much” an event is meaningful. The idea

is to fix the value of ǫ to be very small. In this paper we choose the same ǫ “ 1{n
for all cases to avoid introducing any new parameters. Of course it is possible to

use ǫ as a parameter. This point of view will not be explored in this paper as we

seek a parameterless algorithm.

Proof. Considering the half-normal distribution, we have

PpLi ą T q “
ż Lmax

T

c

2

πσ2
exp

ˆ

´ x2

2σ2

˙

dx

“
«

ż Lmax

0

c

2

πσ2
exp

ˆ

´ x2

2σ2

˙

dx ´
ż T

0

c

2

πσ2
exp

ˆ

´ x2

2σ2

˙

dx

ff

“ erf

ˆ

Lmax?
2σ2

˙

´ erf

ˆ

T?
2σ2

˙

,

then applying (3.1) gives

erf

ˆ

Lmax?
2σ2

˙

´ erf

ˆ

T?
2σ2

˙

ď ǫ

ô T ě
?
2σ2erf´1

ˆ

erf

ˆ

Lmax?
2σ2

˙

´ ǫ

˙

.



October 18, 2014 18:49 WSPC/WS-IJWMIP SSHS

8 J.Gilles and K.Heal

This concludes the proof.

3.3. Otsu’s method

In Otsu,19 the author proposed an algorithm to separate an histogram HL (defined

as in the previous section) into two classes H1 and H2. The goal of Otsu’s method

is to find the threshold T such that the intra-variances of each class H1, H2 are

minimal while the inter class variance is maximal. This corresponds to finding T (an

exhaustive search is done in practice) which maximizes the between class variance

σ2
B “ W1W2pµ1 ´ µ2q2, where Wr “ 1

n

ř

kPHr
Hpkq and µr “ 1

n

ř

kPHr
kHpkq, see

Otsu19 for details.

3.4. k´Means

The k´Means algorithm (see Hartigan et al12) is a very popular clustering al-

gorithm; it aims to partition a set of points into k clusters. In our context, we

apply the k´Means algorithm to the histogram HL to get the two clusters H1, H2

(meaningful/non-meaningful minima). This is equivalent to solving the following

problem:

pH1, H2q “ argmin
H1,H2

2
ÿ

r“1

ÿ

HpkqPHr

}Hpkq ´ µr}2, (3.2)

where µr is the mean evaluated over all points in the cluster Hr. In this paper, we

experiment with both the ℓ1 and ℓ2 normsa and two types of initialization: random or

uniformly distributed. In practice, it is usual to run the k´Means several times and

keep the solution that provides the smallest minimum of (3.2) (in our experiments

we chose to perform ten iterations).

4. Experiments

In this section, we present several types of experiments to illustrate the relevance

of the proposed approach. We first start to present the detected modes in 1D his-

tograms. The used histograms are of two main categories: grayscale image his-

tograms and Fourier spectra (which can be viewed as histograms showing the

amount of each frequency). For each experiment we plot the detected boundaries

(dashed lines) on the considered histogram.

Then we address the grayscale image segmentation problem which split the image

into a certain number of class. Each class corresponds to the pixel grayscale values

which lie in a specific modes detected on the image histogram by our algorithm.

Finally, we present a simplified version of the algorithm presented in7 to perform

some color reduction in a given color image.

athe ℓp norm of a sequence x “ txkuk“1...K is defined by }x}ℓp “
´

řK
k“1

|xk|p
¯

1{p
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x16 x21 Sig1 Sig2 Sig3 EEG Textures

ℓ2 ´ k´Means (Random) 6 2 1 2 3 11 4

ℓ2 ´ k´Means (Uniform) 6 2 1 2 3 11 4

ℓ1 ´ k´Means (Random) 6 2 1 2 3 11 3

ℓ1 ´ k´Means (Uniform) 6 2 1 2 3 11 3

Otsu 6 3 2 3 4 12 5

Half-Normal law 6 3 2 2 3 30 3

Table 1. Number of detected boundaries per histogram for each detection method.

4.1. 1D histogram segmentations

In this section, we present results obtained on 1D histograms by the method de-

scribed in this paper. In figures 3 and 4, the used histograms correspond to his-

tograms of grayscale values of two input images (denoted, as in the Kodak database,

x16 and x21, respectively). Each histogram contains 256 bins. Figures 5, 6, 7, 9 and

8 depict the segmentation method performed on various Fourier spectra rather than

on classical histograms. These spectra were introduced in Gilles10 and Gilles et al11

with the labels sig1, sig2, sig3, EEG and Textures, respectively. Table 1 contains

the number of boundaries found by the proposed method for each experiment.

We can observe that for x16 and x21 all methods give acceptable sets of boundaries.

For sig1, sig2, sig3 and Textures spectra, Otsu’s method and ℓ2 ´ k´Means seem

to provide the most consistent results throughout the different cases. Except for x16

and Textures, the half-normal distribution give similar results as Otsu’s method.

It can also be observed that the type of initialization (uniform or random) of the

k´Means algorithm has no influence on the obtained boundaries. Moreover, except

for the Textures case, the ℓ1 ´ k´Means and ℓ2 ´ k´Means provide exactly the

same results. Let us now shift our focus to the special case of EEG spectrum. This

spectrum is associated with an electroencephalogram (EEG) signal and is much

more complicated than usual spectra. As such it is difficult to have an a priori idea

of a relevant number of modes as well as where they may occur. However, we can

see that Otsu’s method and k´Means give very similar outputs. Notice that, the

half-normal distribution generate a significantly higher number of modes.

4.2. Grayscale image segmentation

In this section, we illustrate the use of the proposed method for grayscale im-

age segmentation purposes. Here we consider images where classes provided by a

segmentation algorithm correspond to distinct modes in the image histogram. Re-

stricting our focus to such images forces us to avoid the segmentation of textured

images; as of yet, pixel intensities alone are not sufficient to characterize textures

(we refer the reader interested to texture segmentation to Acharyya,1 Liu17 and
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k´Means and Half-Normal law Otsu

Fig. 3. Boundaries (dashed lines) for x16 image histogram.

k´Means Otsu and Half-Normal law

Fig. 4. Boundaries (dashed lines) for x21 image histogram.

Muneeswaran18). For images following this assumption, this segmentation problem

can be easily solved by our method; we segment the grayscale values histogram of

the image which will automatically provide a certain number of classes. Based on

the previous section on 1D histograms, we choose to use Otsu’s method in all follow-

ing experiments (as well as in the next section). In these experiments, we consider

only visual evaluations. A quantitative assessment of this segmentation approach is

out of the scope of this paper.

In figures 10 and 11, we present the images corresponding to the previous x16 and

x21 histograms (the original image is on left and the segmented one on right). In

both cases, this simple segmentation algorithm gives pretty good results as, for in-

stance, it can separate important features in the images (clouds, sky, house’s roof,

light house, . . . ). It is also to notice that main segmentation algorithms in the liter-
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k´Means Otsu and Half-Normal law

Fig. 5. Boundaries (dashed lines) for Sig1 Fourier spectrum.

k´Means Otsu and Half-Normal law

Fig. 6. Boundaries (dashed lines) for Sig2 Fourier spectrum.

ature need to, a priori, know the number of classes while our method automatically

finds the number of classes.

4.3. Image color reduction

In Delon et al,7 the authors use their histogram segmentation algorithm to reduce

the number of colors in an image. Their method uses the following steps: first the

image is converted into the HSV color system. Secondly, a first segmentation is ob-

tained by segmenting the histogram of the V component. Thirdly, for each previous

obtained class they segment the corresponding S’s histograms. This step gives them

a more refined set of color classes. Finally, they perform the same step, but on the

H’s histograms of each new class. The final set of color classes is provided as an

initialization to a k´Means algorithm that performs the final color extraction. In
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k´Means Otsu and Half-Normal law

Fig. 7. Boundaries (dashed lines) for Sig3 Fourier spectrum.

ℓ2 ´ k´Means ℓ1 ´ k´Means

Half-Normal Otsu

Fig. 8. Boundaries (dashed lines) for Textures Fourier spectrum.
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k´Means Otsu

Half-Normal

Fig. 9. Boundaries (dashed lines) for EEG Fourier spectrum.

Original Segmented (8 classes)

Fig. 10. Grayscale image segmentation: x16 case. The corresponding histogram and its set of modes
are given in figure. 3 left.
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Original Segmented (4 classes)

Fig. 11. Grayscale image segmentation: x21 case. The corresponding histogram and its set of modes
are given in figure. 4 right.

practice, the HSV conversion and the segmentation of the V’s histogram is sufficient

to keep the most important colors in the image. In the presented experiments, we

consider only the first step of the previous method: we apply our histogram segmen-

tation approach to the V component to get a new Ṽ and then recompose a color

image from the HSṼ representation.

In figure 12, 13, 14 and 15, we show some example of such color reduction. We can

see that this simple algorithm performs very well by reducing the number of colors

used in the image but still retains the image’s significant features.

Original Reduced

Fig. 12. Color reduction: c15 case. The V component is reduced to four classes.

5. Conclusion

In this paper, we proposed a very simple and fast method to find meaningful modes

in an histogram or a spectrum. The algorithm is based on the consistency of local

minima in a scale-space representation. We show with several experiments that this
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Original Reduced

Fig. 13. Color reduction: c16 case. The V component is reduced to four classes.

Original Reduced

Fig. 14. Color reduction: c21 case. The V component is reduced to five classes.

Original Reduced

Fig. 15. Color reduction: c22 case. The V component is reduced to four classes.

method efficiently finds such modes. We also provide straightforward image seg-

mentation and color reduction results. It would be of great interest to perform a
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complete evaluation of the proposed segmentation method on well-known datasets

with quantitative metrics rather than using visual inspections.

A future avenue of inquiry could be characterizing the behavior of the scale-space

curves compared to the intrinsic characteristics of the input histogram. We are

particularly interested in the application of this new method to EEG spectra, as

success with EEG could have profound implications within the neuroscience com-

munity. One noteworthy result of our research is that the Scale-Space method yields

a segmentation on EEG spectra that for the most part agrees with the traditionally-

employed set of neural spectral bands (delta, theta, alpha, beta, gamma). Next our

research will move towards performing our algorithm on a large dataset of EEG

signals.

Finally, it will be interesting to extend the proposed approach to find higher dimen-

sional modes in larger dimension histograms or spectra.
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