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Abstract

We present a video compressive sensing framework, termed kt-CSLDS, to accelerate
the image acquisition process of dynamic magnetic resonance imaging (MRI). We are
inspired by a state-of-the-art model for video compressive sensing that utilizes a linear
dynamical system (LDS) to model the motion manifold. Given compressive measure-
ments, the state sequence of an LDS can be first estimated using system identification
techniques. We then reconstruct the observation matrix using a joint structured sparsity
assumption. In particular, we minimize an objective function with a mixture of wavelet
sparsity and joint sparsity within the observation matrix. We derive an efficient convex
optimization algorithm through alternating direction method of multipliers (ADMM),
and provide a theoretical guarantee for global convergence. We demonstrate the per-
formance of our approach for video compressive sensing, in terms of reconstruction
accuracy. We also investigate the impact of various sampling strategies. We apply this
framework to accelerate the acquisition process of dynamic MRI and show it achieves the
best reconstruction accuracy with the least computational time compared with existing
algorithms in the literature.

1 Introduction

Our fascination with detail has lead to sensors of ever increasing capabilities. In many
modalities, the traditional sampling theory associated with Nyquist sampling theorem fails
to deliver high spatio-temporal resolution or at best, delivers this at prohibitive costs.
Compressive sensing [9, 8, 17] has recently arisen as a paradigm to revolutionize the design
of sensors and signal processing [5], and is promised to deliver better sensors. The key
insight of compressive sensing is that one can design a sensing system that only acquires a
few linear measurements and recover the signals via convex optimization or greedy pursuit.
Two assumptions are essential to the success of compressive sensing: a) the signal can be
approximated using sparse representation under a suitable basis or dictionary; b) linear
measurements are suitably incoherent with the basis or dictionary in which the signal is
represented. Compressive sensing enables one to acquire highly undersampled data during
the acquisition process, with the sampling rate way below the Nyquist sampling frequency.
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A prominent application of compressive sensing is to accelerate the acquisition pro-
cess of magnetic resonance imaging (MRI). In fact, the discovery of compressive sensing
was largely motivated by the MRI problem [9], where one wishes to reconstruct an object
based on incomplete Fourier samples. The physical mechanism of MRI [14, 28, 34] requires
scanning in the Fourier space in order to reconstruct an object. The speed of imaging is
fundamentally limited by physical constraints such as gradient amplitude and slew rate, as
well as physiological constraints [31]. Compressive sensing has proven to be very successful
in accelerating the acquisition process of MRI and has opened up many possibilities for
new clinical applications [31, 32]. Dynamic MRI reconstructs a dynamic sequence of images
based on measurements in spatial frequency versus time (k-t) domain, roughly speaking,
video acquired in the Fourier space. As pointed out in [32], dynamic MRI is challenging due
to the time-varying nature of the imaging object and the spatio-temporal tradeoff. More-
over, the discrepancy between the dynamic nature of the moving object and a static scene
assumption for sensing creates a spatio-temporal recovery error [45, 39]. To tackle such a
challenge, we leverage ideas from state-of-the-art video compressive sensing frameworks.

Video compressive sensing is nontrivial due to its high-dimensional representation and
the ephemeral nature of videos. In order to achieve recovery using as few samples as pos-
sible, it requires one to exploit the redundancy in the ambient space and go beyond a
frame-by-frame reconstruction [52]. The general philosophy is to identify a model in which
signal can be represented parsimoniously, and identify the basis or dictionary to sparsify the
signal under the signal model. Several signal models have been employed to perform video
compressive sensing. One early approach considered sparse representation in both spatial
and temporal domains by treating video as a three-dimensional matrix, and employed 3D
wavelet transform to sparsify the video [52]. A later approach took advantage of the small
inter-frame differences together with spatial 2D wavelet transform within each frame, which
was implemented in the compressive coded aperture video camera [35]. Further work along
the video coding ideas sought to reconstruct individual frames based on wavelet sparsity
in the spatial domain, while modeling temporal dependencies between frames using motion
compensation methods, such as lifting based wavelet sparsity [48] and optical flow [44].
Multi-scale recovery algorithms along with various motion compensation mechanisms were
investigated in [38, 45, 39]. Work based on the separation of background and moving objects
were investigated in [10]. Video compressive sensing models based on the entire image typ-
ically involve a dense measurement matrix, which is computationally expensive, therefore
block-based video compressive sensing [20] divided each frame into small blocks in order
to accelerate computation. Dictionary learning-based methods were proposed to identify
task specific basis for compressive sensing reconstruction [41, 13, 42]. Another approach of
exploiting the redundancy was to consider motion manifold and build a global model for
the video cube. The key idea is to project the original video cube onto a motion manifold,
and perform reconstruction within a low-dimensional space. Motion manifold models arise
in many computer vision and machine learning problems, such as dynamical textures mod-
eling [18, 11], human activity tracking [6, 50], video-based face recognition [2], data-driven
motion synthesis [29], video compressive sensing [46], coded strobing photography [49]. A
key promise of the motion manifold model is to obtain a compact representation of high-
dimensional data by exploring the spatio-temporal structures, hence enabling computation
on the low-dimensional manifold.
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Prior work on compressively sensed dynamic MRI include k-t SPARSE [33], k-t FO-
CUSS [25], Modified CS [30], MASTeR [4], Subtraction Sparsity [43], and L+S reconstruc-
tion [36]. k-t SPARSE and k-t FOCUSS both use the wavelet transform to model sparsity
in the temporal domain. Modified CS identifies signal support in the first frame to facilitate
reconstruction of the rest video frames using compressive sensing. MASTeR uses motion
adaptive spatio-temporal regularization to perform reconstruction based on compressive k-t
data. Subtraction Sparsity is designed for contrast-enhanced magnetic resonance angiogra-
phy, which subtracts a pre-contrast mask from all post-contrast frames to promote sparsity
in the resulting difference images. L+S reconstruction uses a low rank and sparse matrix
decomposition to separate background and dynamic components.

In this paper, we have chosen to build upon CS-LDS [46], a video compressive sensing
approach for time varying signals modeled as a linear dynamical system (LDS). Encouraged
by its high-fidelity reconstruction quality for a wide arrange of videos and its ability to
achieve high compression rates, we extend the CS-LDS model to the k-t domain. We
propose a novel and efficient algorithm, which we call kt-CSLDS. Our proposed algorithm
takes advantage of the orthonormal property of the Fourier operator and uses a number
of numerical techniques to achieve high computational efficiency. We provide theoretical
guarantee for its global convergence. We use the kt-CSLDS model to accelerate the image
acquisition process of dynamic MRI. Finally, we investigate the impact of sampling strategies
on the reconstruction quality of dynamic MRI.

2 Compressive Sensing Dynamic MRI Model

Learning a low-dimensional signal model based on video data is an important topic in
computer vision, signal processing and machine learning. Linear dynamical systems (LDSs)
are a particularly useful model which builds a compact representation of the spatial and
temporal variations in image sequences. This arises in a range of applications including
object recognition, video segmentation, and video synthesis. We are primarily motivated
by video synthesis, since it aligns perfectly with goal of compressive sensing. Our video
compressive sensing model is largely inspired by CS-LDS [46], which couples compressive
sensing with linear dynamical systems to perform video compressive sensing. Since we are
interested in accelerating the image acquisition process of MRI, we extend the CS-LDS
model from the spatial domain to the Fourier domain.

2.1 Notations

We clarify the notations in this section. A video can be denoted by a 3D tensor Y 3 ∈
R
nx×ny×l. For ease of notation, we vectorize each frame of the video and represent it using

2D matrices; hence, for the rest of the paper, we represent videos as Y ∈ R
n×l, where

n = nxny. We use X ∈ R
d×l to denote the state sequence over time, where at each time

t the state vector is xt. We denote the compressive sensed k-t video cube as Z ∈ R
m×l,

where m is the number of measurements.
We use different notations for row space and column space of matrices. In particular, for

the observation matrix C ∈ R
n×d, we define the row vector and column vector as follows.

We denote each row of C using a row vector c(i) := e(i)C, where e(i) = (0, . . . , 1 . . . , 0)⊤ is a
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row selector with the ith element being 1, i = 1, 2, . . . , n. Similarly, we denote each column
of C using a column vector cj := Cej, where ej = (0, . . . , 1, . . . , 0) is a column selector with
the jth element being 1, j = 1, 2, . . . , d.

We use ψ2 to denote the 2D wavelet transform. We define the following operator to
denote frame-by-frame wavelet transform for each frame of the video cube C ∈ R

n×d as

Ψcj = Ψ(cj) := vec(ψ2c
2
j ), (1)

where c2j denotes matricization of the 3D tensor cj by collapsing the first two dimension,
resulting in a 2D matrix,

c2j = mat(cj), (2)

for j = 1, 2, . . . , d.
With such a notation, the frame-by-frame wavelet transform for the entire video cube

can be represented by

Ψ(C) =





| | |
vec(ψ2c

2
1) vec(ψ2c

2
2) . . . vec(ψ2c

2
d)

| | |



 . (3)

2.2 Compressive Sensed Dynamic MRI

We first introduce the signal model for compressive sensing dynamic MRI. Dynamic MRI
imaging typically takes measurements of a moving object yt ∈ R

n in the Fourier space,
which result in a sequence of Fourier measurements zt ∈ R

n,

zt = Fyt + ξt, (4)

where ξt ∈ R
n is the measurement noise. Traditional imaging system takes the full Fourier

space samples and reconstructs a video using inverse Fourier transform,

ŷt = F
−1zt. (5)

With the traditional imaging sequence, the sampling rate needs to satisfy the Nyquist
sampling theorem, which fundamentally limits the temporal resolution of the dynamic MRI
imaging.

Now with compressive sensing, we take partial measurements in the k-t space and in-
crease the temporal resolution of the imaging acquisition process,

zt = ΦtFyt + ξt, (6)

where Φt ∈ R
m×n is the measurement matrix, and zt ∈ R

m represents partial Fourier
measurements. Note Φt is a row selector in the Fourier space, and takes the form of a
subsampled identity matrix. Our goal is recover yt based on measurement matrix and
partial Fourier measurements.
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Figure 1: (A) Illustration of the LDS model for a sample heart video: (top) sequence of
individual frames of a video Y , (middle) observation matrix C, (bottom) state sequence X.
(B) LDS as a good approximation of the original video, where we plot SNR as a function
of d.

2.3 Linear Dynamical Systems

Linear time-invariant dynamical systems (LDS) can be expressed using three components:
1) an observation model that defines the state space and the observation matrix linking
observations to state space, 2) state transition model that captures dynamics on the state
space, and 3) an initial condition.

More specifically, the discrete form of LDS can be expressed as

yt = Cxt + ωt ωt ∼ N (0, Q) (7a)

xt+1 = Axt + νt νt ∼ N (0, R) (7b)

at each time instant (t = 1, 2, · · · , l), together with the initial condition x0. In the above,
yt ∈ R

n represents the observation (in our case, the original video frames), xt ∈ R
d are

the hidden states, C ∈ R
n×d is the observation matrix, A ∈ R

d×d is the transition matrix.
ωt ∈ R

n is the process noise, which include excitation driving the stochastic process and
error in the Markov model. νt ∈ R

n is the observation noise, modeling inaccuracies in the
LDS model.

We first illustrate the concept of LDS model using a sample video, see Figure 1(A).
With such a model, observations yt can be represented as linear transformation of the state
xt, corrupted by observation noise, whereas the states xt evolve according to a first-order
Markov process corrupted by process noise. The noise terms ωt and νt are assumed to be
temporally white, independent of each other, the states and the observations. If the noises
are assumed to be zero-mean Gaussian spatially, then the LDS model corresponds to a first-
order Gaussian Markov random process. We focus on the Gaussian noise case throughout
this paper, with ωt ∼ N (0, Q) and νt ∼ N (0, R).

In the case where d ≪ n, the motion manifold is a good model to reduce the high-
dimensional video cube into a low-dimensional representation. We illustrate such a concept
in Figure 1(B). The key promise of using LDS relies on the assumption that high-dimensional
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signal yt ∈ R
n can be faithfully represented using low-dimensional state sequence xt ∈ R

d,
with d≪ n.

Given Y = (y1, y2, . . . , yl), we can obtain a d-dimensional LDS approximation of the
original video cube Y through SVD, and measure the accuracy of such an approximation.
When we have an estimate of Y , Ŷ = C(d)X(d), the reconstruction SNR of Ŷ is given as

SNR = 10 log10
‖Y ‖2F

‖Ŷ − Y ‖2F
, (8)

which is a function of d. We obtain reasonably good SNR even at low d, as shown in
Figure 1(B).

2.4 Compressive Measurement Model

Now with compressive measurements in the Fourier space, we have

zt = ΦtFCxt + ωt ωt ∼ N (0, Q) (9a)

xt+1 = Axt + νt νt ∼ N (0, R), (9b)

where F is the multi-dimensional Fourier transform in the image domain Ω. Φt ∈ R
m×n is

the measurement matrix, essentially the row selector which stipulates where we sample in
the k space during the image acquisition process,

Φt =











1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1











.

Our measurement model is comprised of two components, a time-invariant component
and a time-variant component, as proposed in [46, 47],

zt =

(

z̄t
z̃t

)

=

(

Φ̄F

Φ̃tF

)

yt. (10)

Note that Φ̄ is the time-invariant component, which is designed to facilitate estimation
for the state sequence. Φ̃t is the time-variant component to allow innovation during the
acquisition process, due to the ephemeral nature of videos.

The overall architecture of kt-CSLDS is shown in Figure 2, where we take compressive
measurements of the original video signal. Each frame of the video is a high-dimensional
signal is projected to a low-dimensional representation that follows a Markov process.

The design of the measurement model is critical to the success of video compressive
sensing. The time-invariant component needs to satisfy the observability condition for LDS.
In the Fourier domain, the low-frequency content of a video changes marginally, while the
high-frequency content changes more drastically from frame to frame. We therefore sample
the low-frequency content more densely. Note in both kt-FOCUSS and MASTeR, low-
frequency domain is sampled in a similar fashion. The time-variant component is designed
to satisfy the incoherence assumptions for compressive sensing, promoting randomness of
the Fourier samples in the temporal domain. Within each frame, we sample the Fourier
space according to the theoretical results obtained by [26].
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High-dimensional Signal

Low-dimensional Representation

Figure 2: Architecture of the kt-CSLDS model. High-dimensional signal is projected to a
low-dimensional representation that follows a Markov process. The compressive measure-
ments are observations drawn from the high-dimensional signal.

3 Compressive Sensing Reconstruction Algorithm

3.1 Algorithm Flow

The overall architecture of imaging acquisition and video reconstruction process is sum-
marized in Figure 3. Upon acquiring Fourier samples using the aforementioned sampling
strategy, we reconstruct the video frames for dynamic MRI via a two-step procedure.

We first estimate the state sequence X̂ based on the time-invariant samples using system
identification. We then reconstruct the observation matrix Ĉ based on both time-invariant
and time-variant measurements by exploring certain sparsity assumptions. The final video
reconstruction can be obtained by

Ŷ = ĈX̂. (11)

Here we set up the general framework for algorithm flow, whose details will be discussed
in the following two sections. In Section 3.2 we discuss two different methods for state se-
quence estimation. In Section 3.3, we derive an efficient numerical algorithm for observation
matrix reconstruction and prove its theoretical convergence.

3.2 State Sequence Estimation

State sequence xt can be estimated based on the time-invariant component,

z̄t = Φ̄FCxt + ωt ωt ∼ N (0, Q) (12a)

xt+1 = Axt + νt νt ∼ N (0, R). (12b)

Since that Fourier transform is a linear operator, this sub-system is a linear time-invariant
system. Given that there is no input data, the system is driven purely by stochastic noise.
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Figure 3: Architecture of the kt-CSLDS imaging and reconstruction processes. During
the imaging acquisition process of dynamic MRI, compressive samples are obtained in the
Fourier space. We then perform video reconstruction based on the compressive measure-
ments.

Given compressive measurements of video data Z̄ = (z̄1, z̄2, . . . , z̄t, . . . , z̄l), we assume
they are generated by the time-invariant LDS described in Eq. (12). Our goal is to determine
the order of the unknown system d, and the forward Kalman filter state sequence X̂ =
(x1, x2, . . . , xt, . . . , xl) up to a similarity transformation.

There exist many ways to perform state inference and system identification for the
LDS model. State inference refers to the process of estimating hidden states over time
X̂ := (x1, . . . , xt, . . . , xl) given the observations Z̄ := (z̄1, . . . , z̄t, . . . , z̄l) and parameters
θ := {A,C,Q,R}. On the other hand, system identification involves finding the parameters
θ and the distribution over hidden states p(X|Z̄, θ) that maximizes the likelihood of the
observed data Z̄.

When one uses the recursive formulation as stated in (12), it has a connection to the
Kalman filter. The stochastic LDS models the distribution of outputs p(z̄1:l), and the
inference problem for LDS aims to estimate the distribution over hidden states p(xt|z̄1:l).
The inference can be carried out recursively, by combining a forward pass and a backward
pass. The forward pass takes the initial state x0 together with a collection of observation
states y1:t, and computes xt recursively, resulting in the Kalman filter. The backward pass
takes the observations from z̄l to z̄t+1, and corrects the results from the forward pass by
evaluating the influence of future observations, which is also known as the Rauch-Tung-
Striebel (RTS) equation.

3.2.1 Review of System Identification

Generally speaking, there are two types of methods for system identification. One approach
is to obtain parameters θ and distribution p(X|Z̄, θ) using maximum likelihood solution
through iterative techniques such as expectation maximization (EM). The EM approach
utilizes the Kalman filter and Kalman smoother, which requires the entire observation
sequences. EM guarantees convergence to a local maximum in the likelihood surface, and is
sensitive to initial condition. Another approach for system identification is to use subspace
methods to obtain solutions, which is known as subspace identification.
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In subspace identification, it is desirable to find the minimal model order for the state
space representation under the constraint that the reduced model approximates the output
data. It is well-known that the minimal order is equal to the rank of the block Hankel
matrix, defined as

Hd(z) =











z1 z2 · · · zl−d+1

z2 z3 · · · zl−d+2
...

...
. . .

...
zd zd+1 · · · zl











. (13)

Therefore, subspace identification methods typically exploit the rank of block Hankel ma-
trix, and relies on matrix decomposition to obtain state sequence estimates X̂ as well as
the realization of the state space model parameterized by {A,C,Q,R}. Algorithm details
vary among different subspace identification methods: a) construction of the block Hankel
matrices differ depending on whether it is covariance driven or data driven, b) the matrix
decomposition methods vary using different user defined weighting matrices in the projec-
tion methods. In several classical subspace identification algorithms, oblique projection is
employed when there exist both output data and input data, which reduces to orthogonal
projection in the case of stochastic identification. These algorithms include principle com-
ponent analysis (PCA), unweighted principle component analysis (UPCA) [3], canonical
variate analysis (CVA) [27], numerical algorithms for subspace identification (N4SID) [37],
and multivariate output error state space (MOESP) [51]. These methods can determine the
order of the system for the state space model, and estimate system matrices {A,C} up to a
similarity transformation. Note that subspace identification methods mentioned above use
orthogonal projections and can be computationally expensive. It is noteworthy that N4SID
provides asymptotically optimal solution for the forward Kalman filter state sequence X̂ ,
in the sense of maximum likelihood. However, the memory storage and computation re-
quirement of N4SID and other subspace methods are prohibitively expensive for video data.
As pointed out in [18], under mild conditions, one can obtain a closed-form solution for a
canonical model realization. We adopt such a strategy in this paper in favor of its algebraic
simplicity and computational efficiency.

3.2.2 Canonical Model Realization

In stochastic identification, the goal is typically to determine the system matrices θ =
{A,C,Q,R} up to a similarity transformation. Obtaining {A,C,Q,R} is also called a
realization of the system. The ambiguity of the system identification is well-known, in a
sense that there is no unique choice of system matrices which can generate the same sample
path given suitable initial condition. As long as T ∈ R

d×d is invertible, one can generate
the same dynamics by substituting A with TAT−1, C with CT−1, Q with TQT−1, and
initial condition x0 with Tx0. Given the bilinear product between C and xt, it immediately
follows that any estimate of the forward Kalman filter state sequence X̂ is accurate only up
to a similarity transformation.

In order to obtain a unique realization for the LDS, one chooses a representative from
these equivalent solutions, which results in the so-called canonical model realization [18].
This can be achieved by imposing additional constraints or imposing regularization on the
solution.
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Algorithm 1 State Sequence Estimate with SVD

Input: Fourier measurements Z̄ acquired by time-invariant measurement matrix Φ̄ and
system order d
1◦ Formulate block Hankel matrix Hd(z̄)
2◦ Perform SVD Hd(z) = UΣV ⊤

3◦ Keep the first d eigensystems Ud, Σd, Vd
4◦ Calculate state sequence estimate X̂ = ΣdV

⊤
d

3.2.3 Canonical Model Realization with Truncated SVD

Corollary 3.1 (Canonical model realization, [18]) Suppose one has access to the full
video data in the spatial domain Y = (y1, y2, . . . , yt, . . . , yl). Assuming the observation
matrix C ∈ R

n×d of the canonical model has orthonormal columns, i.e., C⊤C = I, then
one can obtain a closed-form solution for the forward Kalman filter state sequence X̂ and
canonical model realization Ĉ based on the simplest form of Hankel matrix H1,l.

Proof. Once formulating the simplest form of block Hankel matrix H1(y), we note the
following relationship with state sequence X = (x1, x2, . . . , xt, . . . , xl) and noise term W =
(ω1, ω2, . . . , ωt, . . . , ωl),

H1(y) = CX +W.

The estimation for observation matrix C and state sequence X can be formulated as

Ĉ, X̂ = argmin
C,X
‖H1,l(y)− CX‖

2
F .

Given the bilinear product between C and X, one can immediately inspect that the solution
is not unique. Since we have imposed additional constraint C⊤C = I, one can obtain a
canonical model realization. It follows from the fixed rank property of SVD [24] that a
unique closed-form solution can be obtained through the SVD:

H1(y) = UΣV ⊤ where U⊤U = I V ⊤V = I.

Note the system order d can be determined from the rank of the block Hankel matrix, which
leads to the following

Ĉ = U X̂ = ΣV ⊤, (14)

where both estimates are closed-form solutions.
The above result sheds light on a simpler path of estimating state sequence X̂, without

the computational burden of system identification methods. We remark that canonical
model realization based on the simplest form of Hankel matrix [18] essentially does not
exploit the structure of LDS. Once we consider a higher degree Hankel matrix, the structure
and observability of LDS comes into consideration.

Formally, an LDS is said to be observable if, for any possible state sequence, the current
state can be determined in finite time using only the outputs. Less formally, observability
refers to the idea that it is possible to determine the behavior of the entire system based
on merely the system’s outputs. Conversely, an LDS is said to be unobservable if the
current values of some states cannot be determined through output sensors. There exists a
convenient test for observability.
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Lemma 3.2 (Observability, [7]) For an LDS, equipped with system matrices (C,A) and
state space dimension d, the system is observable if the observability matrix

O(C,A) =















C
CA
CA2

...
CAd−1















(15)

is full rank.

The rationale for this test is that if O(C,A) is rank d, then each of the d states is viewable
through linear combinations of the system output Y = (y1, y2, . . . , yt, . . . , yl).

Theorem 3.3 Given time-invariant compressive measurements Φ̄ and Fourier video data
Z̄ = (z̄1, z̄2, . . . , z̄t, . . . , z̄l), suppose the observability matrix O(Φ̄FC,A) is full rank, then
there exists a closed-form solution for the forward filter state sequence X̂.

Proof. Given the video compressive sensing model, we use the time-invariant component
to estimate the state sequence. We formulate the block Hankel matrix based on the Fourier
measurements Hd, and by denoting C̄ = Φ̄FC,

Hd(z̄) =:











z̄1 z̄2 . . . z̄l−d+1

z̄2 z̄3 . . . z̄l−d+2
...

...
. . .

...
z̄d z̄d+1 . . . z̄l











=











C̄x1 C̄x2 . . . C̄xl−d+1

C̄Ax1 C̄Ax2 . . . C̄Axl−d+1
...

...
. . .

...
C̄Ad−1x1 C̄Ad−1x2 . . . C̄Ad−1xl−d+1











=











C̄
C̄A
...

C̄Ad−1











(

x1 x2 . . . xl−d+1

)

= O(Φ̄FC,A)
(

x1 x2 . . . xl−d+1

)

.

Under the assumption that O(Φ̄FC,A) is full-rank, the LDS is observable, according to
Lemma 3.4. Therefore, one can obtain a canonical model realization through the SVD

Hd(z̄) = O(Φ̄FC,A)
(

x1 x2 . . . xl−d+1

)

= Ũ Σ̃Ṽ ⊤. (16)

This leads to the estimate for the state sequence:

X̂ = Σ̃Ṽ ⊤, (17)

as a modified closed-form solution.
The above result leads to Algorithm 1, where one can estimate the state sequence based

on a very simple procedure using SVD.
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Algorithm 2 State Sequence Estimate without SVD

Input: video data Z̄, system order d
1◦ Formulate simplest block Hankel matrix H1,1,l(z) = [z̄1, z̄2, . . . , z̄t, . . . , z̄l]
2◦ Initialize k = 0, C0 ∈ R

n×d, X0 ∈ R
d×l, ω = 1, ω̃ > 1, δ > 0, γ1 ∈ (0, 1)

while not converged do
3◦ Set (C,X,M) = (Ck,Xk,Mk)
4◦ Compute Mω ← ωMk + (1− ω)CkXk

5◦ Compute C+(ω)←MωX
⊤(XX⊤)†

6◦ Compute X+(ω)← (C+(ω)
⊤C+(ω))

†(C+(ω)
⊤Mω)

7◦ Compute M+(ω)←H1,1,l(z)
8◦ Compute residual ratio γ(ω)← ‖M − C+(ω)X+(ω)‖F /‖M − CX‖F
if γ(ω) ≥ 1 then

Set ω = 1 and go to 4◦

end if
9◦ Update (Ck+1,Xk+1,Mk+1) = (C+(ω),X+(ω),M+(ω))
Update k ← k + 1
if γ(ω) ≥ γ1 then

Set δ = max(δ, 0.25(ω − 1)) and ω = min(ω + δ, ω̃)
end if

end while

3.2.4 Canonical Model Realization without SVD

Algorithm 1 exploits the full rank of the block Hankel matrix, which represents the model
complexity. It is well-known the rank of block Hankel matrix can be corrupted when there
is noise in the data. Moreover, it is often desirable in system identification to reduce the
model complexity. In the view of video compressive sensing, it is favorable to obtain a most
compact representation of the video data and perform computation on the corresponding
low-dimensional manifold. We thus extend Algorithm 1 to the low rank case.

We formulate the system identification problem as follows:

Ĉ, X̂ = argmin
C,X
‖CX −M‖2F s.t. M = H1,1,l(z) rank(CX) = d (18)

where a low-rank factorization is sought, resulting in spatial factor C ∈ R
n×d and temporal

factor X ∈ R
d×l. Such an approach is designed to alleviate possible corruption of noise,

which can increase the rank of block Hankel matrix. We adopt a low-rank factorization
algorithm based on nonlinear successive over-relaxation (SOR) [53]. This results in Algo-
rithm 2, which avoids the computation burden of SVD and obtains estimation for both the
observation matrix Ĉ and state sequence X̂.

Corollary 3.4 There exists at least a subsequence {(Ck,Xk,Mk)} generated by Algorithm 2
that satisfies the first-order optimality conditions of (18) in the limit.

Proof. We omit the proof here, since it is an immediate result of Theorem 3.5 in [53].
The estimated state sequence by factorizing the Hankel matrix is only accurate up to

a linear transformation. In other words, there is no unique solution for the state sequence
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estimation. Such an ambiguity poses difficulty for reconstruction of the observation matrix.
This difficulty is resolved by a joint sparsity assumption, as we will describe in the next
session.

3.3 Observation Matrix Reconstruction

Once we have estimated the state sequence x̂t, the next component of the algorithm is to
reconstruct the observation matrix C.

3.3.1 Joint Structured Sparsity

Denoting observation matrix as C ∈ R
n×d, we formulate the reconstruction model as follows:

min
C

α

n
∑

i=1

‖e(i)Ψ(C)‖2 + β

d
∑

j=1

‖Ψ(C)ej‖1 +
l

∑

t=1

1

2
‖zt − ΦtF(Cx̂t)‖

2
2, (19)

where Ψ denotes the frame-by-frame wavelet transform operator, defined in (3). The first
two regularization terms concern structured sparsity for the observation matrix. The first
term is the joint sparsity regularization,

∑n
i=1 ‖e(i)Ψ(C)‖2, which encourages all the columns

Ψ(C) to share a common yet small support. The second term,
∑d

j=1 ‖Ψ(C)ej‖1, demands
Ψ(C)ej to be sparse under wavelet transform, based on the assumption that each frame
of the observation matrix is image-like. The joint sparsity is critical to the success of
reconstruction, due to the ambiguity introduced by the non-uniqueness within the state
sequence estimation.

Computationally one immediately notices the first two terms are non-smooth and both
involve C. Moreover, the first term operates on the row space of matrix C while the second
term operates on the column space of matrix C. In addition, the amount of data and the
number of variables are large in our application. For these reasons, it is difficult to solve
the optimization problem by off-the-shell algorithms for ℓ1 minimization. We propose to
apply the alternating direction method of multipliers (ADMM) [21] in such a way that all
subproblems are easy to solve and can handle a large amount of data in a short time.

3.3.2 Alternating Direction Method of Multipliers

ADMM combines variable splitting techniques with the augmented Lagrangian method
for solving constrained optimization with separable objective functions. It is also referred
to as the alternating direction augmented Lagrangian method by several groups in the
community. Alternating direction methods originated from solving PDEs [19, 40] and were
later extended to solving variational problems associated with PDEs [21]. Recently, there
has been a surge of interest in fast optimization algorithms using ADMM methodology for
solving ℓ1 and TV regularized problems [23, 1, 22, 54]. A state-of-art algorithm solved for
group sparsity problems, which include joint sparsity [16]. Our new algorithm is based on
ADMM and is optimized for the best computational efficiency.
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Algorithm 3 Joint Structured Sparsity Optimization

Initialize U ∈ R
n×d, V ∈ R

n×d, C ∈ R
n×d, k = 0.

while convergence criteria not met do
U-subproblem:
Uk+1 = argmin

U

∑n
j=1 α‖u(i)‖2 +

αµ
2 ‖u(i) − e(i)Ψ(Ck)− κk(i)‖

2
2

V -subproblem:
V k+1 = argmin

V

∑d
j=1 β‖vj‖1 +

βµ
2 ‖vj −Ψ(Ck)ej − λ

k
j ‖

2
2

C-subproblem:
Ck+1 = argmin

C

αµ
2

∑n
i=1 ‖u

k+1
(i) −e(i)Ψ(C)−κk(i)‖

2
2+

βµ
2

∑d
j=1 ‖v

k+1
j −Ψ(C)ej −λ

k
j‖

2
2

+
∑l

t=1
1
2‖zt − ΦtF(Cx̂t)‖

2
2

Multipliers update:
κk+1
(i) = κk(i) − γ(u

k+1
(i) −Ψck+1

(i) )

λk+1
j = λkj − γ(v

k+1
j −Ψck+1

j )
k = k + 1

end while

We first introduce additional variables to split the energy between different regulariza-
tion terms, which results in the following constrained optimization,

min
U,V,C

α

n
∑

i=1

‖u(i)‖2 + β

d
∑

j=1

‖vj‖1 +
l

∑

t=1

1

2
‖zt − ΦtF(Cx̂t)‖

2
2

s.t. u(i) = e(i)Ψ(C) vj = Ψ(C)ej,

(20)

where we have introduced variables U and V . The rows of U ∈ R
n×d are u(i), i = 1, 2, · · · , n,

and the columns of V ∈ R
n×d are vj , j = 1, 2, · · · , d.

To apply ADMM, we introduce the augmented Lagrangian of problem (20),

min
U,V,C

α

n
∑

i=1

‖u(i)‖2 + β

d
∑

j=1

‖vj‖1 +
l

∑

t=1

1

2
‖zt −ΦtF(Cx̂t)‖

2
2

+
αµ

2

n
∑

i=1

‖u(i) − e(i)Ψ(C)− κ(i)‖
2
2 +

βµ

2

d
∑

j=1

‖vj −Ψ(C)ej − λj‖
2
2,

(21)

where we use L(U, V,C) to denote the augmented Lagrangian, and use κ(i) and λj to denote
the scaled Lagrange multipliers. When C is fixed, minimizing over U and V are independent.
Therefore, we apply ADMM to (21) in which we alternate between minimizing its objective
function over U, V with fixed C and minimizing it over C with fixed U, V , along with the
updates to λj , κ(i). We summarize the algorithm flow in Algorithm 3 and explain in the
next few subsections how to efficiently solve each of its subproblems.

3.3.3 Joint Sparsity

The U -subproblem models the joint sparsity between the different spatial factors within the
observation matrix. Noticing the optimization is independent with respect to each row u(i)
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of U , we therefore solve for i = 1, 2, . . . , n,

uk+1
(i) = argmin

u(i)

α‖u(i)‖2 +
αµ

2
‖u(i) − e(i)Ψ(Ck)− κk(i)‖

2
2. (22)

Lemma 3.5 (Shrinkage for ℓ2 norm, [16]) For any λ, µ > 0 and x, y ∈ R
n, the mini-

mizer to
min
y
λ‖y‖2 +

µ

2
‖y − x‖22

is given by

y = S2
(

x,
λ

µ

)

:= max
{

‖x‖2 −
λ

µ
, 0
}

⊙
x

‖x‖2
, (23)

where ⊙ denotes component-wise product and S2 stands for ℓ2-shrinkage.

One can derive closed-form solution to the U-subproblem (22),

uk+1
(i) = S2

(

e(i)Ψ(Ck) + κk(i),
1

µ

)

, i = 1, 2, . . . , n. (24)

3.3.4 Wavelet Sparsity

The V -subproblem concerns the wavelet sparsity, and is reduced to a sequence of the same ℓ1
minimization problems with different data. Since computation on each column of V matrix
vj is completely decoupled, we solve for each column independently. For j = 1, 2, . . . , d,

vk+1
j = argmin

vj

β‖vj‖1 +
βµ

2
‖vj −Ψ(Ck)ej − λ

k
j ‖

2
2. (25)

For any λ, µ > 0 and x, y ∈ R
n, the minimizer to

min
y
λ‖y‖1 +

µ

2
‖y − x‖22

is given by

y = S1
(

x,
λ

µ

)

:= max
{

|x| −
λ

µ
, 0
}

⊙ sgn(x). (26)

where ⊙ denotes component-wise product and S1 stands for ℓ1-shrinkage.
The closed-form solution to the V -subproblem (25) is

vk+1
j = S1

(

Ψ(Ck)ej + λkj ,
1

µ

)

, j = 1, 2, . . . , d. (27)

3.3.5 Reconstruction Fidelity

The C-subproblem, as it involves multiple terms and all the input data, is the most time
consuming to solve. Specifically, it is

Ck+1 = argmin
C

αµ

2

n
∑

i=1

‖uk+1
(i) − e(i)Ψ(C)− κk(i)‖

2
2 +

βµ

2

d
∑

j=1

‖vk+1
j −Ψ(C)ej − λ

k
j ‖

2
2

+
l

∑

t=1

1

2
‖zt − ΦtF(Cx̂t)‖

2
2.
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Once we further write out the fidelity term, and utilizing the linearity property of the
discrete Fourier transform, we have

H(C) :=
l

∑

t=1

1

2
‖zt − ΦtF(Cx̂t)‖

2
2

=
l

∑

t=1

1

2
‖zt − ΦtF

d
∑

j=1

cj x̂t,j‖
2
2

=

l
∑

t=1

1

2
‖zt −

d
∑

j=1

x̂t,jΦtFcj‖
2
2.

This leads to the following equivalent problem:

Ck+1 = argmin
C

αµ

2

n
∑

i=1

‖uk+1
(i) − e(i)Ψ(C)− κk(i)‖

2
2 +

βµ

2

d
∑

j=1

‖vk+1
j −Ψ(C)ej − λ

k
j ‖

2
2

+

l
∑

t=1

1

2
‖zt −

d
∑

j=1

x̂t,jΦtFcj‖
2
2.

(28)

In the C-subproblem, the first term operates in the row space while the second and third
terms operate in the column space of the observation matrix C; this is undesirable compu-
tationally. However, it is easy to see

n
∑

i=1

‖uk+1
(i) − e(i)Ψ(C)− κk(i)‖

2
2 = ‖U

k+1 −Ψ(C)−Υk‖2F =
d

∑

j=1

‖uk+1
j −Ψ(C)ej − κ

k
j ‖

2
2,

which allows us to rewrite the C-subproblem as follows:

Ck+1 = argmin
C

αµ

2

d
∑

j=1

‖uk+1
j −Ψcj − κ

k
j ‖

2
2 +

βµ

2

d
∑

j=1

‖vk+1
j −Ψcj − λ

k
j ‖

2
2

+
l

∑

t=1

1

2
‖zt −

d
∑

j=1

x̂t,jΦtFcj‖
2
2.

(29)

We rewrite the above objective function as

αµ

2

d
∑

j=1

(Ψcj)
⊤(Ψcj)− 2(Ψcj)

⊤(uk+1
j − κkj ) + (uk+1

j − κkj )
⊤(uk+1

j − κkj )

+
βµ

2

d
∑

j=1

(Ψcj)
⊤(Ψcj)− 2(Ψcj)

⊤(vk+1
j − λkj ) + (vk+1

j − λkj )
⊤(vk+1

j − λkj )

+
1

2

l
∑

t=1

d
∑

j=1

(x̂t,jΦtFcj)
⊤(x̂t,jΦtFcj) +

1

2

l
∑

t=1

∑

j 6=j′

(x̂t,jΦtFcj)
⊤(x̂t,j′ΦtFcj′)

−
l

∑

t=1

d
∑

i=1

(x̂t,jΦtFcj)
⊤zt +

1

2

T
∑

t=1

z⊤t zt.

(30)
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By taking the first derivative of the objective function and setting it to zero, we derive the
normal equation to problem (29). Note we use Ψ to denote the wavelet operator, and Ψ†

to denote its adjoint operator. We use Φt to denote the row selector operator, and Φ†
t to

denote its adjoint operator. Similarly, we use F to denote the Fourier operator, and F† to
denote its adjoint operator. The normal equation is as follows:

αµ

2











Ψ†Ψ 0 · · · 0
0 Ψ†Ψ · · · 0
...

...
. . .

...
0 0 · · · Ψ†Ψ





















c1
c2
...
cd











+
βµ

2











Ψ†Ψ 0 · · · 0
0 Ψ†Ψ · · · 0
...

...
. . .

...
0 0 · · · Ψ†Ψ





















c1
c2
...
cd











+
1

2











∑

t x̂
2
t,1(ΦtF)

†ΦtF
∑

t x̂t,1x̂t,2(ΦtF)
†ΦtF · · ·

∑

t x̂t,1x̂t,d(ΦtF)
†ΦtF

∑

t x̂t,2x̂t,1(ΦtF)
†ΦtF

∑

t x̂
2
t,2(ΦtF)

†ΦtF · · ·
∑

t x̂t,2x̂t,d(ΦtF)
†ΦtF

...
...

. . .
...

∑

t x̂t,dx̂t,1(ΦtF)
†ΦtF

∑

t x̂t,dx̂t,2(ΦtF)
†ΦtF · · ·

∑

t x̂
2
t,d(ΦtF)

†ΦtF





















c1
c2
...
cd











=αµ











Ψ†(uk+1
1 − κk1)

Ψ†(uk+1
2 − κk2)
...

Ψ†(uk+1
d − κkd)











+ βµ











Ψ†(vk+1
1 − λk1)

Ψ†(vk+1
2 − λk2)
...

Ψ†(vk+1
d − λkd)











+











∑

t x̂t,1(ΦtF)
†zt

∑

t x̂t,2(ΦtF)
†zt

...
∑

t x̂t,d(ΦtF)
†zt











.

(31)

We simplify the notation of the normal equation (31) as

LHS











c1
c2
...
cd











= RHS,

and one can immediately notice that the normal equation (31) is not a diagonal system. In
other words, cj ’s are coupled. Solving for linear system (31) directly can be computationally
expensive.

We use the prox-linear method [12] to decouple the system. In stead of solving for
Eqn. (29) directly, we solve for the following problem using the prox-linear method that
decouples all the cj ’s:

ck+1
j = argmin

cj

q(ckj )
⊤(cj − ckj ) +

1

2δ
‖cj − ckj ‖

2
2, (32)

where q(ckj ) = ∇CL(U, V,C). This allows us to solve for each cj using block coordinate
descent in the Jacobian fashion,

ck+1
j = ckj − δq(c

k
j ). (33)

More careful inspection on q(ckj ) reveals

q(ckj ) = 2αµΨ†
(

Ψckj − (uk+1
j − κkj )

)

+ 2βµΨ†
(

Ψckj − (vk+1
j − λkj )

)

+
∑

t

x̂2t,j(ΦtF)
†ΦtFc

k
j −

∑

t

x̂t,j(ΦtF)
†zt.

(34)
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Algorithm 4 ADMM for Constrained Optimization

Initialize B ∈ R
n×d, C ∈ R

n×d, k = 0.
while convergence criteria not met do

B-subproblem:
Bk+1 ← min

B
L(B,Ck, λk)

C-subproblem:
Ck+1 ← min

C
L(Bk+1, C, λk)

Multiplier update:
Λk+1 ← min

Λ
Λk − γ(Bk+1 − Ck+1)

k = k + 1
end while

3.3.6 Theoretical Convergence

We now establish the convergence of Algorithm 2. We first rewrite the objective function
of joint structured sparsity, in the unconstrained optimization form

min
C

α

n
∑

i=1

‖e(i)Ψ(C)‖2 + β

d
∑

j=1

‖Ψ(C)ej‖1 +
l

∑

t=1

1

2
‖zt − ΦtF(Cx̂t)‖

2
2,

as the constrained optimization

min
B,C

α
n
∑

i=1

‖e(i)Ψ(B)‖2 + β
d

∑

j=1

‖Ψ(B)ej‖1 +
l

∑

t=1

1

2
‖zt − ΦtF(Cx̂t)‖

2
2

s.t. B − C = 0.

We can further group the first two terms in the above constrained optimization together,

min
B,C

f(B) + g(C)

s.t. B − C = 0,

with f(B) = α
∑n

i=1 ‖e(i)Ψ(B)‖2+β
∑d

j=1 ‖Ψ(B)ej‖1 and g(C) =
∑l

t=1
1
2‖zt−ΦtF(Cx̂t)‖

2
2.

Consider the augmented Lagrangian function,

L(B,C, λ) = f(B) + g(C) +
µ

2
‖B − C − Λ‖2F , (37)

where Λ ∈ R
n×d is the scaled Lagrangian multiplier and µ > 0 is a penalty parameter.

With the above reformulation, we can consolidate Algorithm 2 into a simplified version, see
Algorithm 4. Global and linear convergence for generalized ADMM was analyzed in [15] for
constrained convex optimization problems. We extend those theoretical results from vector
case to matrix case below.

Theorem 3.6 (Global Convergence) The sequence {W k} := {Bk, Ck,Λk} generated by
Algorithm 4 is guaranteed to be bounded. Moreover, if we assume there exists a saddle
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point W ∗ := (B∗, C∗,Λ∗) to problem (35), and Hessian Hg = ∇2g satisfies the following
condition,

max(αµ, βµ)
1
µ − ‖Hg‖

+ γ < 2, (38)

then the sequence {W k} generated by Algorithm 3 converges to a KKT point of W ∗,

lim
k→∞

‖W k −W ∗‖2F = 0.

Proof. First, we assume there exists a saddle point W ∗, which means (B∗, C∗,Λ∗) satisfies
the KKT conditions of problem (35):

Λ∗ ∈ ∂f(B∗), Λ∗ ∈ ∂g(C∗), B∗ − C∗ = 0.

Second, we verify that both functions f(·) and g(·) are convex. We have f(B) =
α
∑n

i=1 ‖e(i)Ψ(B)‖2+β
∑d

j=1 ‖Ψ(B)ej‖1 and g(C) =
∑l

t=1
1
2‖zt−ΦtF(Cx̂t)‖

2
2. Since ‖ · ‖p

is convex when p ≥ 1, and the fact sum of convex functions is also convex, we can easily
verify that both functions are convex.

Third, based on Theorem 2.3 remark 3 condition (i) in [15], we know that the sequence
{W k} is bounded.

Having obtained these assumptions, it follows from Theorem 2.3 in [15] that {W k} has
a converging subsequence {W k′}, whose limit is W ∗ := limk′→∞W k′ . Hence we have global
convergence.

4 Dynamic MRI Reconstruction Quality

4.1 Impact of Sampling Strategies

We now apply our algorithm to accelerate the acquisition process of dynamic MRI. Since
the sampling strategy in the k-space has an impact on the reconstruction quality, we test
three types of sampling strategies following the work of [26].
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A

B

C

D

Figure 4: Impact of measurement matrix on the state sequence estimate, sampling distri-
bution. Illustrated are four measurement matrices design for the time-invariant component
Φ̄, with all compressive sensing cases using 200 samples: (A) measurement matrix cover-
ing all samples in k-space, (B) measurement matrix following distance distribution, (C)
measurement matrix with hyperbolic distribution, (D) measurement matrix with uniform
distribution. Left column shows the measurement matrix, right column shows the estimated
state sequence using Algorithm 1.

We first illustrate the impact of measurement matrix on the state sequence estimate.
Figure 4 shows three measurement matrices that cover all range of frequencies, however
follow different probability distributions:

• distance:
probability of sampling falls over as inverse of squared distance to the k-space center.

• hyperbolic:
probability of sampling falls over as a hyperbolic function in the k-space.

• uniform:
probability of sampling is uniform in the k-space.
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Sampling Strategy = distance SNR = 19.1 dB

A B

C D

Figure 5: Reconstruction result for dynamic MRI data, based on 10% k-space data. Sam-
pling strategy adopts the distance distribution. Shown are (A) measurement matrix Φt at
t = 1, (B) observation matrix C with d = 4, (C) original video frames yt (D) reconstructed
video frames ŷt. The reconstruction SNR is 19.1 dB.

Our numerical results indicate the best measurement matrix design is to sample k-space
according to the distance strategy, where one samples the k-space in a density that falls off
as 1 over the squared distance to the center of k-space.

We show the reconstruction quality of dynamic MRI using different sampling strategies.
The cardiac MRI dataset used in this experiment was described in [55]. We obtained
the reconstructed video for real-time MRI of a human heart, whose spatial resolution is
subsampled at 128×128 and temporal resolution is 33 ms, with 300 frames in total.

Note we only simulated a single coil with a homogeneous coil sensitivity map. We
simulated k-t data by taking the Fourier transform and performing subsampling. Define
the samples in Fourier space as

Ω = {(ωk
1 , ω

k
2 )}

m
k=1 ⊂ {−

nx
2

+ 1, . . . ,
nx
2
,−

ny
2

+ 1, . . . ,
ny
2
} (39)

assuming a uniform Cartesian grid.
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Sampling Strategy = hyperbolic SNR = 15.3 dB

A B

C D

Figure 6: Reconstruction result for dynamic MRI data, based on 10% k-space data. Sam-
pling strategy adopts the hyperbolic distribution. Shown are (A) measurement matrix Φt at
t = 1, (B) observation matrix C with d = 4, (C) original video frames yt (D) reconstructed
video frames ŷt. The reconstruction SNR is 15.3 dB.

We show the reconstruction result for dynamic MRI with 10% k-t data, using the dis-
tance sampling strategy in Figure 5. We construct Ω by subsampling the Fourier space i.i.d.
according to density

η(ω1, ω2) ∝ (ω2
1 + ω2

2 + 1)−1. (40)

We attain a SNR of 19.1 dB in the reconstruction using the distance sampling strategy.
We show the reconstruction result for the dynamic MRI with 10% k-t data, using the

hyperbolic sampling strategy in Figure 6. We construct Ω by subsampling the Fourier space
i.i.d. according to density

η(ω1, ω2) ∝ (ω2
1 + ω2

2 + 1)−3/2. (41)

We attain a SNR of 15.3 dB in the reconstruction using the hyperbolic sampling strategy.
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Sampling Strategy = uniform SNR = 7.1 dB

A B

C D

Figure 7: Reconstruction result for dynamic MRI data, based on 10% k-space data. Sam-
pling strategy adopts the uniform distribution. Shown are (A) measurement matrix Φt at
t = 1, (B) observation matrix C with d = 4, (C) original video frames yt (D) reconstructed
video frames ŷt. The reconstruction SNR is 7.1 dB.

We show the reconstruction result for the dynamic MRI with 10% k-t data, using the
uniform sampling strategy in Figure 7. We construct Ω by subsampling the Fourier space
i.i.d. according to density

η(ω1, ω2) ∝ 1. (42)

We attain a SNR of 7.1 dB in the reconstruction using the uniform sampling strategy.

4.2 Comparison with Prior Art

We compare kt-CSLDS with prior art in the literature, which includes kt-SPARSE, MAS-
TeR, and L+S. Figure 8 and Figure 9 show the numerical results on two datasets described
in [55]. Both datasets can be downloaded from the paper website provided by the authors.
Our numerical results show that kt-CSLDS achieves excellent reconstruction quality.
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Original

kt-SPARSE

L+S

MASTeR

kt-CSLDS

A

B

Figure 8: Comparison of kt-CSLDS with prior art in the literature. Numerical results
are based on one dataset for dynamic heart imaging, with 1.5 mm resolution, 8 mm section
thickness. The original dynamic MRI is acquired at 30 ms acquisition time with 300 frames.
We downsample the heart video to 128×128 spatial resolution and simulate a single coil
acquisition. We use 10× compression rate for this experiment, and employ the distance
sampling strategy for compressive measurement. (A) Sample frames from the original heart
video. (B) Reconstructed frames based on different video compressive sensing algorithms.
Their respective reconstruction SNRs are as follows: kt-SPARSE (13.0 dB), MASTeR (18.8
dB), L+S (15.8 dB), kt-CSLDS (19.1 dB).
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Original

kt-SPARSE

L+S

MASTeR

kt-CSLDS

A

B

Figure 9: Comparison of kt-CSLDS with prior art in the literature. Numerical results are
based on another dataset for dynamic heart imaging, with 2.0 mm resolution, 8 mm section
thickness. The original dynamic MRI is acquired at 22 ms acquisition time with 360 frames.
We downsample the heart video to 128×128 spatial resolution and simulate a single coil
acquisition. We use 10× compression rate for this experiment and employ the distance
sampling strategy for compressive measurement. (A) Sample frames from the original heart
video. (B) Reconstructed frames based on different video compressive sensing algorithms.
Their respective reconstruction SNRs are as follows: kt-SPARSE (14.0 dB), MASTeR (19.4
dB), L+S (16.3 dB), kt-CSLDS (20.3 dB).
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Table 1: Comparison of reconstruction SNR

Model 10× 20× 30× 40× 50×

kt-SPARSE 13.0 dB 11.3 dB 10.5 dB 9.9 dB 9.5 dB
MASTeR 18.8 dB 14.6 dB 12.7 dB 11.6 dB 11.0 dB

L+S 15.8 dB 12.4 dB 10.7 dB 9.7 dB 9.3 dB
kt-CSLDS 19.1 dB 16.3 dB 15.0 dB 13.3 dB 12.8 dB

Table 2: Comparison of computation time

Model 10× 20× 30× 40× 50×
kt-SPARSE 371.7 s 401.9 s 455.0 s 491.1 s 585.2 s
MASTeR 422.6 s 430.9 s 425.7 s 423.6 s 433.9 s

L+S 1390.2 s 1403.6 s 1402.8 s 1406.4 s 1406.4 s
kt-CSLDS 7.6 s 5.0 s 4.9 s 4.5 s 4.4 s

Table 1 compares the reconstruction SNR of different video compressive sensing models
under various compression rate. Table 2 shows their respective computation time. In
comparison, kt-CSLDS achieves the best reconstruction quality while consuming the least
computational time.

5 Conclusions

In this paper, we built upon video compressive sensing ideas to accelerate the imaging ac-
quisition process of dynamic MRI. We extended CS-LDS model to the Fourier-time space,
resulting in so-called kt-CSLDS. Efficient numerical algorithm was derived based on ADMM.
Theoretical analysis was carried out to ensure global convergence. Numerical results show
that kt-CSLDS achieves favorable reconstruction quality while being computationally effi-
cient, in comparison with state-of-the-art dynamic MRI compressive sensing literature.

LDS provides a compact model for video sequences, which approximates high-dimensional
signal using low-dimensional representation. Therefore, kt-CSLDS benefits from such a
compact representation, since the number of unknowns are much smaller compared with
the original video cube. This explains why our model achieves high-fidelity reconstruction
results given compressive measurements. The computational speed we gain is a result of
both smaller dimensionality of the optimization problem and customized algorithm based
on ADMM.

There are many ways to build upon the current kt-CSLDS framework. Our current
methodology takes all the video data and performs batch process. Future work seeks online
version of the current reconstruction algorithm. Regarding the measurement strategy, we
have shown empirically that the best strategy is to sample the k-space according to the
distance strategy. Such a result is consistent with theory for Fourier compressive sensing
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for static MR imaging [26]. It remains an open theoretical question why such a strategy is
optimal for video compressive sensing.
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