
Sparse Bilinear Logistic Regression

Jianing V. Shi1,2∗, Yangyang Xu3, and Richard G. Baraniuk1

1 Department of Electrical and Computer Engineering, Rice University

2 Department of Mathematics, UCLA

3 Department of Computational and Applied Mathematics, Rice University

February 08, 2014

Abstract

In this paper, we introduce the concept of sparse bilinear logistic regression for

decision problems involving explanatory variables that are two-dimensional matrices.

Such problems are common in computer vision, brain-computer interfaces, style/content

factorization, and parallel factor analysis. The underlying optimization problem is bi-

convex; we study its solution and develop an efficient algorithm based on block coordi-

nate descent. We provide a theoretical guarantee for global convergence and estimate

the asymptotical convergence rate using the Kurdyka- Lojasiewicz inequality. A range

of experiments with simulated and real data demonstrate that sparse bilinear logistic

regression outperforms current techniques in several important applications.

1 Introduction

Logistic regression [1] has a long history in decision problems that arise in computer vi-

sion [2], bioinformatics [3], gene classification [4], and neural signal processing [5]. Recently

sparsity has been introduced into logistic regression to combat the curse of dimensionality,

by stipulating that only a subset of explanatory variables are informative about classifica-

tion [6]. The indices of the non-zero weights correspond to features that are informative

about classification, therefore leading to feature selection. Sparse logistic regression has

many attractive properties such as robustness to noise and logarithmic sample complexity

bounds [7].

In the classical form of logistic regression the explanatory variables are treated as i.i.d.

vectors. However, in many real-world applications, the explanatory variables take the form

of matrices. In image recognition tasks [8], each feature is an image. Visual recognition tasks

∗Corresponding author’s email address: jianing@math.ucla.edu

1



for video data often use a feature-based representation, such as the scale-invariant feature

transform (SIFT) [9] or histogram of oriented gradient (HOG) [10], to construct features for

each frame, resulting in histogram-time feature matrices. Brain-computer interfaces based

on electroencephalography (EEG) make decisions about motor action [11] using channel-

time matrices.

For these and other applications, bilinear logistic regression [12] extends logistic re-

gression to explanatory variables that take two-dimensional matrix form. The resulting

dimensionality reduction of the feature space in turn yields better generalization perfor-

mance. In contrast to standard logistic regression, which collapses each feature matrix into

a vector and learns a single weight vector, bilinear logistic regression learns weight factors

along each dimension of the matrix to form the decision boundary. It has been shown that

the unregularized bilinear logistic regression outperforms linear logistic regression in several

applications, including brain-computer interface [12]. It has also been shown that in certain

visual recognition tasks, a support vector machine (SVM) applied in the bilinear feature

space outperforms an SVM applied in the standard linear feature space as well as an SVM

applied to a dimensionality-reduced feature space using PCA [13].

Moreover, bilinear logistic regression has found application in style and content sepa-

ration [14], which can improve the performance of object recognition tasks under various

nuisance variables such as orientation, scale, and viewpoint. Bilinear logistic regression

identifies subspace projections that factor out informative features and nuisance variables,

thus leading to better generalization performance.

Finally, bilinear logistic regression reveals the contributions of different dimensions to

classification performance, similarly to parallel factor analysis [15]. This leads to better

interpretability of the resulting decision boundary.

In this paper, we introduce sparsity to the bilinear logistic regression model and demon-

strate that it improves generalization performance in a range of classification problems. Our

contributions are three-fold. First, we propose a sparse bilinear regression model that fuses

the key ideas behind both sparse logistic regression and bilinear logistic regression. Second,

we study the properties of the solution of the bilinear logistic regression problem. Third, we

develop an efficient algorithm based on block coordinate descent for solving the sparse bi-

linear regression problem. Both the theoretical analysis and the numerical optimization are

complicated by the bi-convex nature of the problem, since the solution may become stuck

at a non-stationary point. In contrast to the conventional block coordinate descent method,

we solve each subproblem using the proximal method, which significantly accelerates con-

vergence. We also provide a theoretical guarantee for global convergence, and estimate the

asymptotical convergence rate using a result based on the Kurdyka- Lojasiewicz inequality.

2



2 Sparse bilinear logistic regression

2.1 Problem Definition

We consider the following problem in this paper: Given n sample-label pairs {(Xi, yi)}ni=1,

where Xi ∈ Rs×t is an explanatory variable in the form of a matrix and yi ∈ {−1,+1} is a

categorical dependent variable, we seek a decision boundary to separate these samples.

2.2 Prior Art

Logistic Regression

The basic form of logistic regression transforms each explanatory variable from a matrix

to a vector, x̄i = vec(Xi) ∈ Rp, where p = st. One seeks a hyperplane, defined as {x :

w>x + b = 0}, to separate these samples. For a new data sample x̄i, its category can be

predicted using a binomial model based on the margin w>x̄i + b. Figure 1 illustrates such

an idea.

Category
Feature Matrix

Feature Vector

Figure 1: Illustration for logistic regression.

Essentially the logistic regression constructs a mapping from the feature vector x̄i to

the label yi,

ΨLR : w>x̄i + b 7→ yi.

Assuming the samples of both classes are i.i.d., the conditional probability for classifier label

yi based on sample x̄i, according to the logistic model, takes the form of

p(yi|x̄i,w, b) =
exp[yi(w

>x̄i + b)]

1 + exp[yi(w>x̄i + b)]
, i = 1, · · · , n.

3



To perform the maximum likelihood estimation (MLE) of w and b, one can minimize the

empirical loss function

`(w, b) =
1

n

n∑
i=1

log
(

1 + exp[−yi(w>x̄i + b)]
)
. (1)

Sparse Logistic Regression

We assume some sparsity promoting prior on w, typically the Laplacian prior. The

maximum a posteriori (MAP) estimate for sparse logistic regression can be derived,

min
w,b

`(w, b) + λ‖w‖1, (2)

where λ is a regularization parameter.

Bilinear Logistic Regression

A key insight of bilinear logistic regression is to preserve the matrix structure of the

explanatory variables. The decision boundary is constructed using a weight matrix W,

which is further factorized into W = UV> with two factors U ∈ Rs×r and V ∈ Rt×r.
Figure 2 illustrates the concept of bilinear logistic regression.

Category

Feature Matrix

Figure 2: Illustration for bilinear logistic regression.

Bilinear logistic regression constructs a new mapping from the feature matrix Xi to the

label yi,

ΨBLR : tr(U>XiV) + b 7→ yi,

where tr(A) =
∑

i aii for a square matrix A. Under these settings, the empirical loss

function in (1) becomes

`(U,V, b) =
1

n

n∑
i=1

log
(

1 + exp[−yi(tr(U>XiV) + b)]
)
. (3)

4



2.3 Our New Model

Sparse Bilinear Logistic Regression

We assume some sparsity promoting priors on U and V, and derive the MAP estimate

for sparse bilinear logistic regression. The variational problem is

min
U,V,b

`(U,V, b) + r1(U) + r2(V), (4)

where r1 and r2 are assumed to be convex functions incorporating the priors to promote

structures on U and V, respectively. Due to space limitation, in this paper we focus on the

elastic net regularization term

r1(U) = µ1‖U‖1 +
µ2
2
‖U‖2F , (5a)

r2(V) = ν1‖V‖1 +
ν2
2
‖V‖2F , (5b)

where ‖U‖1 ,
∑

i,j |uij |. Depending on the applications, some other regularizers can be

used. For example, one can use the total variation regularization, which we will explore in

future work.

3 Numerical Algorithm to Solve (4)

3.1 Block Coordinate Descent

We propose efficient numerical algorithm to solve for the variational problem (4). It is based

on the block coordinate descent method, which iteratively updates (U, b) with V fixed and

then (V, b) with U fixed. The original flavor of block coordinate descent alternates between

the following two subproblems:

(Uk, b̂k) = argmin
(U,b)

`(U,Vk−1, b) + r1(U), (6a)

(Vk, bk) = argmin
(V,b)

`(Uk,V, b) + r2(V). (6b)

The pseudocode for block coordinate descent is summarized in Algorithm 1.

Note that even though various optimization methods exist to solve each block, due to

the nonlinear form of the empirical loss function `(·), solving each block accurately can be

computationally expensive.

3.2 Block Coordinate Proximal Descent

In order to accelerate computation, we have chosen to solve each block using the proximal

method. We call it block coordinate proximal descent method. Specifically, at iteration k,

5



Algorithm 1 Block Coordinate Descent

Input: {Xi, yi}ni=1

Initialization: Choose (U0,V0, b0)

while convergence criterion not met do

Compute (Uk, b̂k) by solving (6a)

Compute (Vk, bk) by solving (6b)

Let k = k + 1

end while

we perform the following updates:

Uk = argmin
U
〈∇U`(U

k−1,Vk−1, bk−1),U−Uk−1〉

+
Lku
2
‖U−Uk−1‖2F + r1(U), (7a)

b̂k = argmin
b
〈∇b`(Uk−1,Vk−1, bk−1), b− bk−1〉

+
Lku
2

(b− bk−1)2, (7b)

Vk = argmin
V
〈∇V`(U

k,Vk−1, b̂k),V −Vk−1〉

+
Lkv
2
‖V −Vk−1‖2F + r2(V), (7c)

bk = argmin
b
〈∇b`(Uk,Vk−1, b̂k), b− b̂k〉

+
Lkv
2

(b− b̂k)2, (7d)

where Lku and Lkv are stepsize parameters to be specified in Section 3.4. Note that

we have decoupled (U, b)-subproblem to (7a) and (7b) since the updates of U and b are

independent. Similarly, (V, b)-subproblem has been decoupled to (7c) and (7d).

Denote the objective function of (4) as

F (U,V, b) , `(U,V, b) + r1(U) + r2(V).

Let F k , F (Uk,Vk, bk) and Wk , (Uk,Vk, bk). We define convergence criterion as qk ≤ ε,
where

qk , max
{‖Wk −Wk−1‖F

1 + ‖Wk−1‖F
,
|F k − F k−1|

1 + F k−1

}
, (8)

and ‖W‖2F , ‖U‖2F + ‖V‖2F + |b|2.

The pseudocode for block coordinate proximal descent is summarized in Algorithm 2.

6



Algorithm 2 Block Coordinate Proximal Descent

Input: {Xi, yi}ni=1

Initialization: Choose (U0,V0, b0)

while convergence criterion not met do

Compute (Uk, b̂k) by (7a) and (7b)

Compute (Vk, bk) by (7c) and (7d)

Let k = k + 1

end while

3.3 Solving the Subproblems

The b-subproblems (7b) and (7d) are simply gradient descent,

b̂k = bk−1 − 1

Lku
∇b`(Uk−1,Vk−1, bk−1), (9a)

bk = b̂k − 1

Lkv
∇b`(Uk,Vk−1, b̂k). (9b)

The U-subproblem (7a) and V-subproblem (7c) are both strongly convex and can be

solved by various convex programming solvers. However, the algorithm may need to run a

few iterations to converge, therefore it is important to solve them very efficiently.

The beauty of using the proximal method is its admission for closed-form solutions.

More specifically, for elastic net regularization terms r1 and r2 defined as (5), both (7a) and

(7c) admits closed form solutions,

Uk =Sτu
(
LkuU

k−1 −∇U`(U
k−1,Vk−1, bk−1)

Lku + µ2

)
, (10a)

Vk =Sτv

(
LkvV

k−1 −∇V`(U
k,Vk−1, b̂k)

Lkv + ν2

)
, (10b)

where τu = µ1
Lku+µ2

, τv = ν1
Lkv+ν2

, and Sτ (·) is the component-wise shrinkage defined by

(
Sτ (Z)

)
ij

=


zij − τ, if zij > τ ;

zij + τ, if zij < −τ ;

0, if |zij | ≤ τ.

The proximal method leads to closed-form solution for each subproblem, and the entire

algorithm only involves matrix-vector multiplication and component-wise shrinkage opera-

tor. Therefore our numerical algorithm is promised to be computationally efficient. We will

corroborate such a statement using numerical experiments.

7



3.4 Selection of Lku and Lkv

To ensure the sequence generated by Algorithm 2 attains sufficient decrease in the objective

function, Lku is typically chosen as a Lipschitz constant of ∇(U,b)`(U,V
k−1, b) with respect

to (U, b). More precisely, for all (U, b) and (Ũ, b̃), it holds that

‖∇(U,b)`(U,V
k−1, b)−∇(U,b)`(Ũ,V

k−1, b̃)‖F
≤Lku‖(U, b)− (Ũ, b̃)‖F , ,

where ‖(U, b)‖F :=
√
‖U‖2F + b2. Similarly, Lkv can be chosen as a Lipschitz constant

of ∇(V,b)`(U
k,V, b) with respect to (V, b). The next lemma shows that the two partial

gradients ∇(U,b)`(U,V, b) and ∇(V,b)`(U,V, b) are Lipschitz continuous with constants de-

pendent on V and U respectively.

Lemma 3.1 The partial gradients ∇(U,b)`(U,V, b) and ∇(V,b)`(U,V, b) are Lipschitz con-

tinuous with constants

Lu =

√
2

n

n∑
i=1

(
‖XiV‖F + 1

)2
, (11a)

Lv =

√
2

n

n∑
i=1

(
‖X>i U‖F + 1

)2
, (11b)

Proof. By straightforward calculation, we have

∇U`(U,V, b) = − 1

n

n∑
i=1

(
1 + exp

[
yi
(
tr(U>XiV) + b

)])−1
yiXiV, (12a)

∇V`(U,V, b) = − 1

n

n∑
i=1

(
1 + exp

[
yi
(
tr(U>XiV) + b

)])−1
yiX

>
i U, (12b)

∇b`(U,V, b) = − 1

n

n∑
i=1

(
1 + exp

[
yi
(
tr(U>XiV) + b

)])−1
yi. (12c)

For any (U, b) and (Ũ, b̃), we have

‖∇(U,b)`(U,V, b)−∇(U,b)`(Ũ,V, b̃)‖F

≤ 1

n

n∑
i=1

∣∣∣∣(1 + exp
[
yi
(
tr(U>XiV) + b

)])−1
−
(

1 + exp
[
yi
(
tr(Ũ>XiV) + b̃

)])−1∣∣∣∣ (‖XiV‖F + 1
)

≤ 1

n

n∑
i=1

(
‖U− Ũ‖F ‖XiV‖F + |b− b̃|

) (
‖XiV‖F + 1

)
≤ 1

n

n∑
i=1

(
‖XiV‖F + 1

)2 (‖U− Ũ‖F + |b− b̃|
)

≤
√

2

n

n∑
i=1

(
‖XiV‖F + 1

)2‖(U, b)− (Ũ, b̃)‖F ,

8



where in the third inequality we have used the inequality

|(1 + es)−1 − (1 + eq)−1| ≤ |s− q|,

and the last inequality follows from

‖U− Ũ‖F + |b− b̃| ≤
√

2‖(U, b)− (Ũ, b̃)‖F

by Cauchy-Schwarz inequality. This completes the proof of (11a), and (11b) can be shown

in the same way.

However, Lku and Lkv chosen in such a manner may be too large and slow down the

convergence. Therefore we have chosen to use an alternative and efficient way to dynamically

update them. Specifically, we let

Lku = max(Lmin, L
k−1
u ηn

k
u) (13)

where Lmin > 0, η > 1, and nku ≥ −1 is the smallest integer such that

`(Uk,Vk−1, b̂k)

≤ `(Uk−1,Vk−1, bk−1)

+ 〈∇U`(U
k−1,Vk−1, bk−1),Uk −Uk−1〉

+ 〈∇b`(Uk−1,Vk−1, bk−1), b̂k − bk−1〉

+
Lku
2
‖Uk −Uk−1‖2F +

Lku
2

(b̂k − bk−1)2, (14)

and let

Lkv = max(Lmin, L
k−1
v ηn

k
v ), (15)

where nkv ≥ −1 is the smallest integer such that

`(Uk,Vk, bk)

≤ `(Uk,Vk−1, b̂k)

+ 〈∇V`(U
k,Vk−1, b̂k),Vk −Vk−1〉

+ 〈∇b`(Uk,Vk−1, b̂k), bk − b̂k〉

+
Lkv
2
‖Vk −Vk−1‖2F +

Lkv
2

(bk − b̂k)2. (16)

The inequalities (14) and (16) guarantee sufficient decrease of the objective and are re-

quired for convergence. If Lku and Lkv are taken as Lipschitz constants of ∇(U,b)`(U,V
k−1, b)

and ∇(V,b)`(U
k,V, b), then the two inequalities must hold. In our dynamical updating rule,

note that in (13) and (15), we allow nku and nkv to be negative, namely, Lku and Lkv can be

smaller than their previous values. Moreover, nku and nkv must be finite if the sequence

{(Uk,Vk)} is bounded, and thus the updates in (13) and (15) are well-defined.

9



4 Convergence Analysis

We now establish the global convergence of our algorithm, as well as estimate its asymptotic

convergence rate.

Assumption 4.1 Assume the objective function F is lower bounded and the problem (4)

has at least one stationary point. In addition, assume the sequence {Wk} is bounded.

Remark 4.1 According to (11), Lku, L
k
v must be bounded if {Wk} is bounded. In addition,

for the regularization terms, r1 set by (5a) and r2 taken as (5b), then F is lower bounded

by zero, and (4) has at least one solution.

Theorem 4.1 (Subsequence Convergence) Under Assumption 4.1, let {Wk} be the

sequence generated from Algorithm 2. Then any limit point W̄ of {Wk} is a stationary

point of (4).

Proof. From Lemma 2.3 of [16], we have

F (Wk−1)− F (Uk, b̂k,Vk−1) ≥ Lku
2

(
‖Uk−1 −Uk‖2F + |bk−1 − b̂k|2

)
,

and

F (Uk, b̂k,Vk−1)− F (Wk) ≥ Lkv
2

(
‖Vk−1 −Vk‖2F + |b̂k − bk|2

)
.

Assume min(Lku, L
k
v) ≥ Lmin for all k. Summing up the above two inequality gives

F (Wk−1)−F (Wk) ≥ Lmin

2

(
‖Uk−1−Uk‖2F +‖Vk−1−Vk‖2F +|bk−1− b̂k|2+|b̂k−bk|2

)
, (17)

which yields

F (W0)− F (WN ) ≥
N∑
k=1

(
‖Uk−1 −Uk‖2F + ‖Vk−1 −Vk‖2F + |bk−1 − b̂k|2 + |b̂k − bk|2

)
.

Letting N →∞ and observing F ≥ 0, we have

∞∑
k=1

(
‖Uk−1 −Uk‖2F + ‖Vk−1 −Vk‖2F + |bk−1 − b̂k|2 + |b̂k − bk|2

)
≤ ∞.

Hence, Wk −Wk−1 → 0.

Let W̄ be a limit point. Hence, there exists a subsequence {Wk}k∈K converging to W̄.

Passing to another subsequence, we can assume that {Lku}k∈K and {Lkv}k∈K converge to L̄u

and L̄v respectively. Note that {Wk−1}k∈K also converges to W̄ and {b̂k}k∈K → b̄. Letting

k ∈ K and k →∞ in (7a), we have

Ū = argmin
U
〈∇U`(Ū, V̄, b̄),U− Ū〉+

L̄u
2
‖U− Ū‖2F + r1(U),

10



which implies 0 ∈ ∇U`(Ū, V̄, b̄) + ∂r1(Ū). Similarly, one can show 0 ∈ ∇V`(Ū, V̄, b̄) +

∂r2(V̄) and ∇b`(Ū, V̄, b̄) = 0. Hence, W̄ is a critical point.

In order to establish global convergence, we utilize Kurdyka- Lojasiewicz inequality [17–

19] defined below.

Definition 4.1 (Kurdyka- Lojasiewicz Inequality) A function F is said to satisfy the

Kurdyka- Lojasiewicz inequality at point W̄, if there exists θ ∈ [0, 1) such that

|F (W)− F (W̄)|θ

dist(0, ∂F (W))
(18)

is bounded for any W near W̄, where ∂F (W) is the limiting subdifferential [20] of F at

W, and dist(0, ∂F (W)) , min{‖Y‖F : Y ∈ ∂F (W)}.

Theorem 4.2 (Global Convergence) Suppose Assumption 4.1 holds and F satisfies the

Kurdyka- Lojasiewicz inequality at a limit point W̄ of {Wk}. Then Wk converges to W̄.

Proof. The boundedness of {Wk} implies that all intermediate points are bounded. Hence,

there exists a constant Lmax such that Lku, L
k
v ≤ Lmax for all k, and also there is a constant

LG such that for all k

‖∇U`(W
k)−∇U`(W

k−1)‖F ≤LG‖Wk −Wk−1‖F , (19a)

‖∇V`(W
k)−∇V`(U

k,Vk−1, b̂k)‖F ≤LG‖Wk − (Uk,Vk−1, b̂k)‖F , (19b)

‖∇b`(Wk)−∇b`(Uk,Vk−1, b̂k)‖F ≤LG‖Wk − (Uk,Vk−1, b̂k)‖F . (19c)

Let W̄ be a limit point of {Wk} and assume F satisfies KL-inequality within Bρ(W̄) ,

{W : ‖W − W̄‖F ≤ ρ}, namely, there exists constants 0 ≤ θ < 1 and C > 0 such that

|F (W)− F (W̄)|θ

dist(0, ∂F (W))
≤ C, ∀W ∈ Bρ(W̄). (20)

Noting Wk −Wk−1 → 0, |bk − b̂k| → 0, and the continuity of φ(s) = s1−θ, we can take

sufficiently large k0 such that

2‖Wk0 −Wk0+1‖F + ‖W̄−Wk0‖F + |bk0+1 − b̂k0+1|+ 1

C̃2
φ(F (Wk0)− F (W̄)) ≤ ρ, (21)

where C̃ =
√

(1−θ)Lmin

8C·(3LG+2Lmax)
. Without loss of generality, we assume k0 = 0 (i.e., take Wk0

as starting point), since the convergence of {Wk}k≥0 is equivalent to that of {Wk}k≥k0 .

In addition, we denote Fk = F (Wk) − F (W̄) and note Fk ≥ 0 from the non-increasing

monotonicity of {F (Wk)}.

11



From (7), we have

−∇U`(W
k−1) +∇U`(W

k)− Lku(Uk −Uk−1) ∈ ∂r1(Uk) +∇U`(W
k), (22a)

−∇V`(U
k,Vk−1, b̂k) +∇V`(W

k)− Lkv(Vk −Vk−1) ∈ ∂r2(Vk) +∇V`(W
k), (22b)

−∇b`(Uk,Vk−1, b̂k) +∇b`(Wk)− Lkv(bk − b̂k) = ∇b`(Wk). (22c)

Hence,

dist(0, ∂F (Wk))

≤‖∇U`(W
k)−∇U`(W

k−1)‖F + Lku‖Uk −Uk−1‖F + ‖∇V`(W
k)−∇V`(U

k,Vk−1, b̂k)‖F
+ Lkv‖Vk −Vk−1‖F + ‖∇b`(Wk)−∇b`(Uk,Vk−1, b̂k)‖F + Lkv |bk − b̂k|

≤(3LG + 2Lmax)
(
‖Wk −Wk−1‖F + |bk − b̂k|

)
. (23)

Note (17) implies

Fk − Fk+1 ≥
Lmin

4

(
‖Wk+1 −Wk‖2F + |bk+1 − b̂k+1|2

)
.

Assume Wk ∈ Bρ(W̄) for 0 ≤ k ≤ N . We go to show WN+1 ∈ Bρ(W̄). By the

concavity of φ(s) = s1−θ and KL-inequality (20), we have

φ(Fk)− φ(Fk+1) ≥ φ′(Fk)(Fk −Fk+1) ≥
(1− θ)Lmin

(
‖Wk+1 −Wk‖2F + |bk+1 − b̂k+1|2

)
4C · (3LG + 2Lmax)

(
‖Wk −Wk−1‖F + |bk − b̂k|

) ,
(24)

which together with Cauchy-Schwart inequality gives

C̃
(
‖Wk−Wk+1‖F +|bk+1− b̂k+1|

)
≤ C̃

2

(
‖Wk−1−Wk‖F +|bk− b̂k|

)
+

1

2C̃

(
φ(Fk)−φ(Fk+1)

)
.

(25)

Summing up the above inequality gives

C̃

2

N∑
k=1

(
‖Wk−Wk+1‖F+|bk+1−b̂k+1|

)
≤ C̃

2

(
‖W0−W1‖F+|b1−b̂1|

)
+

1

2C̃

(
φ(F0)−φ(FN+1)

)
.

(26)

Hence,

‖WN+1 − W̄‖F ≤
N∑
k=1

‖Wk −Wk+1‖F + ‖W0 −W1‖F + ‖W̄ −W0‖F

≤2‖W0 −W1‖F + ‖W̄ −W0‖F + |b1 − b̂1|+ 1

C̃2
φ(F0) ≤ ρ,

where the last inequality is from (21). Hence, WN+1 ∈ Bρ(W̄), and by induction, Wk ∈
Bρ(W̄) for all k. Therefore, (26) holds for all N . Letting N →∞ in (26) yields

∞∑
k=1

‖Wk −Wk+1‖F <∞.

12



Hence, {Wk} is a Cauchy sequence and thus converges to the limit point W̄.

Remark 4.2 Note that the logistic function ` is real analytic. If r1 and r2 are taken as

in (5), then they are semi-algebraic functions [21], and, according to [22], F satisfies the

Kurdyka- Lojasiewicz inequality at every point.

Theorem 4.3 (Convergence Rate) Depending on θ in (18), we have the following con-

vergence rates:

1. If θ = 0, then Wk converges to W̄ in finite iterations;

2. If θ ∈ (0, 12 ], then Wk converges to W̄ at least linearly, i.e., ‖Wk − W̄‖F ≤ Cτk for

some positive constants C and τ < 1;

3. If θ ∈ (12 , 1), then Wk converges to W̄ at least sublinearly. Specifically, ‖Wk−W̄‖F ≤
Ck−

1−θ
2θ−1 for some constant C > 0.

Proof. We estimate the convergence rates for different θ in (20).

Case 1: θ = 0. We claim Wk converges to W̄ in finite iterations, i.e., there is k0 such

that Wk = W̄ for all k ≥ k0. Otherwise, F (Wk) > F (W̄) for all k since if F (Wk0) = F (W̄)

then Wk = W̄ for all k ≥ k0. By KL-inequality (20), we have C · dist(0, ∂F (Wk)) ≥ 1 for

all k. However, (22) indicates dist(0, ∂F (Wk)) → 0 as k → ∞. Therefore, if θ = 0, then

Wk converges to W̄ in finite iterations.

Case 2: θ ∈ (0, 12 ]. Denote SN =
∑∞

k=N

(
‖Wk −Wk+1‖F + |bk+1 − b̂k+1|

)
. Note that

(25) holds for all k. Summing (25) over k gives SN ≤ SN−1 − SN + 1
2C̃2

F 1−θ
N . By (20) and

(23), we have

F 1−θ
N = (F θN )

1−θ
θ ≤

(
C · (3LG + 2Lmax)

) 1−θ
θ (SN−1 − SN )

1−θ
θ .

Hence,

SN ≤ SN−1 − SN + Ĉ(SN−1 − SN )
1−θ
θ , (27)

where Ĉ = 1
2C̃2

(
C · (3LG + 2Lmax)

) 1−θ
θ . Note that SN−1−SN ≤ 1 as N is sufficiently large,

and also 1−θ
θ ≥ 1 when θ ∈ (0, 12 ]. Therefore, (SN−1 − SN )

1−θ
θ ≤ SN−1 − SN , and thus (27)

implies SN ≤ (1 + Ĉ)(SN−1 − SN ). Hence, SN ≤ 1+Ĉ
2+Ĉ

SN−1 ≤
(
1+Ĉ
2+Ĉ

)N
S0. Notting that

‖WN − W̄‖F ≤ SN , we have

‖WN − W̄‖F ≤
(1 + Ĉ

2 + Ĉ

)N
S0.

Case 3: θ ∈ (12 , 1). Note 1−θ
θ < 1. Hence, (27) implies

SN ≤ (1 + Ĉ)(SN−1 − SN )
1−θ
θ .

13



Through the same argument in the proof of Theorem 2 of [23], we can show

SN ≤ c ·N−
1−θ
2θ−1 ,

for some constant c. This completes the proof.

Remark 4.3 Note that the value of θ depends not only on F but also on W̄. The paper [22]

gives estimates for different classes of functions. Since the limit point is not known ahead, we

cannot estimate θ. However, our numerical results in Section 7 indicate that our algorithm

converges asympototically superlinearly and thus θ should be less than 1
2 for our tests.

5 Statistical Analysis

6 Extensions to multi-class model

We can further generalize binary-class bilinear logistic regression (B-BLR) to multi-class

bilinear logistic regression (M-BLR), which assumes each sample {xi} to belong to (m +

1) classes and label yi ∈ {1, 2, · · · ,m + 1}. M-LR aims at finding (m + 1) hyperplanes

{x : w>c x + bc = 0}m+1
c=1 to seperate these samples. According to the logistic model, the

conditional probability for yi based on sample xi is

P (yi = c|xi,w,b) =
exp[w>c xi + bc]∑m+1
j=1 exp[w>j xi + bj ]

, c = 1, · · · ,m+ 1. (28)

Because of the normalization condition
∑m+1

c=1 P (yi = c|xi,w,b) = 1, one (wc, bc) needs not

be estimated. Without loss of generality, we set (wm+1, bm+1) to zero. Let yic = 1 if yi = c

and yic = 0 otherwise. Then (28) becomes

P (yi|xi,w,b) =
exp[

∑m
c=1 yic(w

>
c xi + bc)]

1 +
∑m

c=1 exp[w>c xi + bc]
.

The average negative log-likelihood function is

L(w,b) = − 1

n

n∑
i=1

logP (yi|xi,w,b) =
1

n

n∑
i=1

(
log
(
1 +

m∑
c=1

exp[w>c xi + bc]
)
−

m∑
c=1

yic(w
>
c xi + bc)

)
(29)

To perform MLE for (w,b), one can minimize L(w,b). Under the setting of BLR, namely,

each sample is a matrix and each weight wc has the form of UcV
>
c , the loss function in

(29) becomes

L(U ,V ,b) =
1

n

n∑
i=1

(
log
(
1 +

m∑
c=1

exp[tr(U>c XiVc) + bc]
)
−

m∑
c=1

yic(tr(U
>
c XiVc) + bc)

)
,

(30)

14



and (4) can be generalized to the regularized multi-class BLR (M-BLR)

min
U ,V,b

L(U ,V ,b) +R1(U) +R2(V), (31)

where U = (U1, · · · ,Um),V = (V1, · · · ,Vm) with Uc ∈ RS×K and Vc ∈ RT×K for each

class c, and R1 and R2 are used to promote priori structures on U and V , respectively.

The algorithm for solving (31) can be derived in a similar way as that for (4). We

alternatively update (U ,b) and (V ,b) by

Uk = argmin
U
〈∇UL(Uk−1,Vk−1,bk−1),U − Uk−1〉+

γku
2
‖U − Uk−1‖2F +R1(U), (32a)

b̂k = argmin
b
〈∇bL(Uk−1,Vk−1,bk−1),b− bk−1〉+

γku
2
‖b− bk−1‖22, (32b)

Vk = argmin
V
〈∇VL(Uk,Vk−1, b̂k),V − Vk−1〉+

γkv
2
‖V − Vk−1‖2F +R2(V), (32c)

bk = argmin
b
〈∇bL(Uk,Vk−1, b̂k),b− b̂k〉+

γkv
2
‖b− b̂k‖22. (32d)

The pseudocode is shown in Algorithm 3.

Algorithm 3 Alternating proximal gradient method for (31)

Input: training data {Xi, yi}ni=1 with yi ∈ {1, · · · ,m+ 1};
Initialization: choose starting points U−1 = U0,V−1 = V0 and b−1 = b0.

for k = 1, 2, · · · do

Update (U ,b) to (Uk, b̂k) by (32a) and (32b);

Update (V ,b) to (Uk,bk) by (32c) and (32d).

if Some stopping criterion is satisfied then

Stop and output (Uk,Vk,bk).

end if

end for

We choose γku and γku in a similar way as Lku and Lkv in (13) and (15). As long as {Uk}
and {Vk} are bounded, γku and γku are finite due to the following lemma. Hence, the selection

of γku and γku are well defined.

Lemma 6.1 The partial gradients ∇(U ,b)L(U ,V ,b) and ∇(V,b)L(U ,V ,b) are Lipschitz

continuous with constants

γu =

√
2m

n

m∑
c=1

n∑
i=1

(
‖XiVc‖F + 1

)(
max
j
‖XiVj‖F + 1

)
, (33a)

γv =

√
2m

n

m∑
c=1

n∑
i=1

(
‖X>i Uc‖F + 1

)(
max
j
‖X>i Uj‖F + 1

)
. (33b)

15



Proof. By straightforward calculation, we have

∇UcL(U ,V ,b) =
1

n

n∑
i=1

(
exp[tr(U>c XiVc) + bc]

1 +
∑m

j=1 exp[tr(U>j XiVj) + bj ]
XiVc − yicXiVc

)
,

∇VcL(U ,V ,b) =
1

n

n∑
i=1

(
exp[tr(U>c XiVc) + bc]

1 +
∑m

j=1 exp[tr(U>j XiVj) + bj ]
X>i Uc − yicX>i Uc

)
,

∇bcL(U ,V ,b) =
1

n

n∑
i=1

(
exp[tr(U>c XiVc) + bc]

1 +
∑m

j=1 exp[tr(U>j XiVj) + bj ]
− yic

)
.

Hence, for any (U ,b) and (Ũ , b̃),

‖∇Uc(U ,V ,b)−∇Uc(Ũ ,V , b̃)‖F

≤ 1

n

n∑
i=1

∣∣∣∣∣ exp[tr(U>c XiVc) + bc]

1 +
∑m

j=1 exp[tr(U>j XiVj) + bj ]
− exp[tr(Ũ>c XiVc) + b̃c]

1 +
∑m

j=1 exp[tr(Ũ>j XiVj) + b̃j ]

∣∣∣∣∣ ‖XiVc‖F

≤
√
m

n

n∑
i=1

∥∥∥∥[(tr(U>j XiVj) + bj
)
−
(
tr(Ũ>j XiVj) + b̃j

)]
1≤j≤m

∥∥∥∥
2

‖XiVc‖F

≤
√
m

n

n∑
i=1

m∑
j=1

(
‖Uj − Ũj‖F ‖XiVj‖F + |bj − b̃j |

)
‖XiVc‖F

≤
√

2m

n

(
n∑
i=1

‖XiVc‖F
(

max
j
‖XiVj‖F + 1

))∥∥∥(U ,b)− (Ũ , b̃)
∥∥∥
F
,

where in the second inequality we have used∣∣∣∣∣ exp(sc)

1 +
∑m

j=1 exp(sj)
− exp(qc)

1 +
∑m

j=1 exp(qj)

∣∣∣∣∣ ≤ √m‖s− q‖2,

and the last inequality uses

m∑
j=1

(
‖Uj − Ũj‖F + |bj − b̃j |

)
≤
√

2m
∥∥(U ,b)− (Ũ , b̃)

∥∥
F
.

Similarly, we have

|∇bc(U ,V ,b)−∇bc(Ũ ,V , b̃)| ≤
√

2m

n

(
n∑
i=1

(
max
j
‖XiVj‖F + 1

))∥∥∥(U ,b)− (Ũ , b̃)
∥∥∥
F

Noting ∇(U ,b) = (∇U1 , · · · ,∇Um ,∇b1 , · · · ,∇bm) gives

‖∇(U ,b)(U ,V ,b)−∇(U ,b)(Ũ ,V , b̃)‖F

≤
m∑
c=1

(
‖∇Uc(U ,V ,b)−∇Uc(Ũ ,V , b̃)‖F + |∇bc(U ,V ,b)−∇bc(Ũ ,V , b̃)|

)
≤

m∑
c=1

√
2m

n

(
n∑
i=1

(
‖XiVc‖F + 1

)(
max
j
‖XiVj‖F + 1

))∥∥∥(U ,b)− (Ũ , b̃)
∥∥∥
F
.

16



This completes the proof of (33a), and (33b) can be shown in the same way.

We will take R1(U) =
∑m

c=1 r1(Uc) and R2(V) =
∑m

c=1 r2(Vc), where r1 and r2 are

the same as those in (4). Note that each subproblem in (32) can be decoupled into m

independent problems, and they can be solved by the same method as discussed in section

3.3. We do not repeat it here.

7 Numerical Results

7.1 Implementation

Since the variational problem (4) is non-convex, the starting point is significant for both the

solution quality and convergence speed of our algorithm. Throughout our tests, we simply

set b0 = 0 and chose (U0,V0) as follows.

Let Xav = 1
n

∑n
i=1 Xi. Then set U0 to the negative of the first r left singular vectors

and V0 to the first r right singular vectors of Xav corresponding to its first r largest singular

values.

The intuition of choosing such (U0,V0) is that it is one minimizer of 1
n

∑n
i=1 tr(U>XiV),

which is exactly the first-order Taylor expansion of `(U,V, 0) at the origin, under constraints

U>U = I and V>V = I. Unless specified, the algorithms were terminated if they ran over

500 iterations or the relative error qk ≤ 10−3.

7.2 Scalability

In order to demonstrate the computational benefit of proximal method, we compared

Algorithm 2 with Algorithm 1 on randomly generated data. Each data point1 in class

“+1” was generated by MATLAB command randn(s,t)+1 and each one in class “-1” by

randn(s,t)-1. The sample size was fixed to n = 100, and the dimensions were kept by

s = t with s varying among {50, 100, 250, 500, 750, 1000}. We tested two sets of parameters

for the scalability test. We ran each algorithm with one set of parameters for 5 times with

different random data.

Table 1 shows the average running time and the median number of iterations. From the

table, we see that both Algorithm 1 and Algorithm 2 are scalable to large-scale dataset and

converge within the given tolerance after quite a few iterations. The per-iteration running

time increases almost linearly with respect to the data size. In addition, Algorithm 2 is

much faster than Algorithm 1 in terms of running time. Note the degree of speedup depends

on the parameters. In the first testing, where `2 regularization dominates (µ1 = ν1 = 0.1,

µ2 = ν2 = 1), Algorithm 2 is twice as fast as Algorithm 1. In the second testing, where

1We use synthetic data simply for scalability and speed test. For other numerical experiments, we use

real-world datasets.

17



`1 regularization dominates (µ1 = ν1 = 0.1, µ2 = ν2 = 0), Algorithm 2 is about 20 times

faster than Algorithm 1.

Table 1: Scalability and comparison of Algorithm 1 and Algorithm 2. Shown are the average

running time and median number of iterations.

Algorithm 1 Algorithm 2

µ1 = ν1 = 0.1, µ2 = ν2 = 1

(s, t) time (sec.) iter time (sec.) iter

(50, 50) 0.79 5 0.03 9

(100, 100) 1.13 6 0.06 11

(250, 250) 3.89 6 0.56 31

(500, 500) 9.96 5 1.80 4

(750, 750) 18.60 7 4.04 4

(1000, 1000) 16.25 3 7.92 4

µ1 = ν1 = 0.1, µ2 = ν2 = 0

(s, t) time (sec.) iter time (sec.) iter

(50, 50) 6.87 17 0.37 282

(100, 100) 14.39 29 0.38 47

(250, 250) 21.73 8 3.49 28

(500, 500) 78.32 7 4.07 11

(750, 750) 129.23 8 4.31 4

(1000, 1000) 218.49 9 8.19 4

7.3 Convergence Behavior

We ran Algorithm 2 up to 600 iterations for the unregularized model (µ1 = ν1 = µ2 =

ν2 = 0), and 104 iterations for the regularized model where we set µ1 = ν1 = 0.01 and

µ2 = ν2 = 0.5. For both models, r = 1 was used. The last iterate was used as W∗. The

dataset is described in Section 6.1.1.

Figure 3 shows the convergence behavior of Algorithm 2 for solving (4) with different

regularization terms. From the figure, we see that our algorithm converges pretty fast and

the difference ‖Wk−W∗‖F appears to decrease linearly at first and superlinearly eventually.

18



0 100 200 300 400 500 60010−2

10−1

100

101

102

Iteration k
0 2000 4000 6000 8000 1000010−5

10−4

10−3

10−2

10−1

100

Iteration k

0 100 200 300 400 500 60010−10

10−5

100

105

Iteration k

O
bj

ec
tiv

e

Unregularized

0 2000 4000 6000 8000 10000

100

101

102

Iteration k

O
bj

ec
tiv

e

L1−regularized

R
es

id
ua

l

R
es

id
ua

l

Figure 3: Convergence behavior for solving (4) using block coordinate proximal descent

method. Top panel plots the objective function as a function of iteration. Bottom panel

plots the residual ‖Wk −W∗‖F as a function of iteration.

19



8 Applications

We apply sparse bilinear logistic regression to several real-world applications, and compare

its generalization performance with logistic regression, sparse logistic regression and bilinear

logistic regression. We also extend the sparse bilinear logistic regression from the binary

case to multi-class case in several experiments.

8.1 Brain Computer Interface

8.1.1 Binary Case

We tested the classification performance of sparse bilinear logistic regression (4) on some

EEG dataset with binary labels. We used the EEG dataset IVb from from BCI competition

III 2 . Dataset IVb concerns motor imagery with uncued classification task. The 118 channel

EEG was recorded from a healthy subject sitting in a comfortable chair with arms resting

on armrests. Visual cues (letter presentation) were showed for 3.5 seconds, during which

the subject performed: left hand, right foot, or tongue. The data was sampled at 100 Hz,

and the cues of “left hand” and “right foot” were marked in the training data. We chose

all the 210 marked data points for test and downsampled each point to have 100 temporal

slices, namely, s = 118, t = 100 in this test.

In (4), there are five parameters µ1, µ2, ν1, ν2 and r to be tuned. Leave-one-out cross

validation was performed on the training dataset to tune these data. First, we fixed µ1 =

µ2 = ν1 = ν2 = 0 (i.e., unregularized) and tuned r. Then, we fixed r to the previously

tuned one (r = 1 in this test) and selected the best (µ1, µ2, ν1, ν2) from a 6× 5× 6× 5 grid.

Table 2: Classification performance for BCI EEG dataset.

Models Prediction Accuracy

Logistic Regression 0.75

Sparse Logistic Regression 0.76

Bilinear Logistic Regression 0.84

Sparse Bilinear Logistic Regression 0.89

Table 2 shows the prediction accuracy on the testing dataset 3. We use the ROC analysis

to compute the Az value (area under ROC curve) for both the unregularized model and the

regularized model, where the best hyperparameters for the regularized model are tuned on

the validation dataset using cross validation. We compare (sparse) logistic regression with

2http://www.bbci.de/competition/iii/
3In Table 2 - Table 5, higher prediction accuracy indicates better generalization performance.

20



(sparse) bilinear logistic regression. We solve the `1-regularized logistic regression using

FISTA [16]. We observe that bilinear logistic regression gives much better predictions than

logistic regression. In addition, sparse bilinear logistic regression performs better than the

unregularized bilinear logistic regression.

8.1.2 Multi-class Case

We further extended our sparse bilinear logistic regression to the multi-class case using one-

vs-all method. The EEG dataset in this experiment was based on a cognitive experiment

where the subject view images of three categories and tried to make a decision about

the category [24]. The data was recorded at 2048 Hz using a 64-channel EEG cap. We

downsampled this data to 100 Hz.

Table 3 shows classification performance for the multi-class classification. Consistently

for all the three stimuli, bilinear logistic regression outperforms logistic regression, and

sparse bilinear logistic regression further improves the generalization performance by intro-

ducing sparsity.

Table 3: Classification performance for multi-class EEG dataset.

Models Prediction Accuracy

Logistic Regression 0.54

Sparse Logistic Regression 0.54

Bilinear Logistic Regression 0.55

Sparse Bilinear Logistic Regression 0.65

8.2 Separating Style and Content

As mentioned earlier, one benefit of the bilinear model is to separate style and content. In

order to exploit this property, we classified images with various camera viewpoints. We used

the Amsterdam Library of Object Images 4, where the frontal camera was used to record

72 viewpoints of the objects by rotating the object in the plane at 5◦ resolution from 0◦ to

355◦. Figure 4 shows some sample images with various camera viewpoints.

Table 4 shows the comparison between (sparse) logistic regression and (sparse) bilinear

logistic regression. We observe a significant improvement using the bilinear model, and

sparse bilinear logistic regression achieves the best generalization performance.

4http://staff.science.uva.nl/~aloi/

21



0 20 40 60 80 100o o o o o o

Figure 4: Some sample images with various camera viewpoints.

Table 4: Classification performance for images with various camera viewpoints.

Models Prediction Accuracy

Logistic Regression 0.86

Sparse Logistic Regression 0.86

Bilinear Logistic Regression 0.94

Sparse Bilinear Logistic Regression 1.00

8.3 Visual Recognition of Videos

We used sparse bilinear logistic regression to videos [13], in the context of visual recognition

for UCF sports action dataset 5. Since the size of the original video is big, we reduced the

dimensionality of feature space by extracting histograms based on SIFT descriptors for each

frame.

Figure 5 illustrates such a procedure. We first built a vocabulary for the codebook

assuming 100 words, using k-mean clustering based on all the SIFT descriptors across

frames for all the videos. We then constructed histograms for each frame according to the

codebook. Some tiling technique was used to improve the performance. This procedure

reduced the feature space to s = 400 and t = 55.

We focused on five classes of sports action and we used the following abbreviations:

Diving (Diving-Side), Riding (Riding-Horse), Run (Run-Side), Swing (Swing-Sideangle),

Walk (Walk-Front). We picked 6 videos out of each class, and used 6-fold cross validation

to test discrimination accuracy in the context of transfer learning.

Table 5 shows the classification performance for (sparse) logistic regression and (sparse)

5http://crcv.ucf.edu/data/UCF\_Sports\_Action.php

22



Video Frame

SIFT

Words

Vocabulary

Histogram

Figure 5: Illustration for building SIFT histogram features.

Table 5: Classification performance for UCF sports action video dataset.

Models Prediction Accuracy

Logistic Regression 0.70

Sparse Logistic Regression 0.70

Bilinear Logistic Regression 0.73

Sparse Bilinear Logistic Regression 0.77

bilinear logistic regression. In overall, sparse bilinear logistic regression achieves the best

classification performance.

9 Conclusions

We proposed sparse bilinear logistic regression, and developed an efficient numerical algo-

rithm using the block coordinate proximal descent method. Theoretical analysis revealed

its global convergence as well as convergence rate. We demonstrated its generalization

performance on several real-world applications.

23



References

[1] D. W. Hosmer and S. Lemeshow, Applied logistic regression, Probability and Statistics.

Wiley, 2nd edition, 2000.

[2] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2007.

[3] Y. Tsuruoka, J. McNaught, J. Tsujii, and S. Ananiadou, “Learning string similarity

measures for gene/protein name dictionary look-up using logistic regression,” Bioin-

formatics, vol. 23, no. 20, pp. 2768–74, 2007.

[4] J.G. Liao and K.V. Chin, “Logistic regression for disease classification using microarray

data: model selection in a large p and small n cas,” Bioinformatics, vol. 23, no. 15,

pp. 1945–51, 2007.

[5] L.C. Parra, C.D. Spence, A.D. Gerson, and P. Sajda, “Recipes for the linear analysis

of eeg,” Neuroimage, vol. 28(2), pp. 326–341, 2005.

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy. Stat. Soc.

B, vol. 58(1), pp. 267–288, 1996.

[7] A. Ng, “Feature selection, l1 vs l2 regularization, and rotational invariance,” in

International Conference on Machine Learning (ICML). 2004, pp. 78–85, ACM Press,

New York.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86(11), pp. 2278–2324, 1998.

[9] D. G. Lowe, “Object recognition from local scale-invariant features,” in International

Conference on Computer Vision, 1999.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[11] J. Vidal, “Real-time detection of brain events in EEG,” IEEE Proceedings, vol. 65(5),

pp. 633–641, 1977.

[12] M. Dyrholm, C. Chistoforou, L. C. Parra, and P. Kaelbling, “Bilinear discriminant

component analysis,” Journal of Machine Learning Research, vol. 8, pp. 1007–1021,

2007.

[13] H. Pirsiavash, D. Ramanan, and C. Fowlkes, “Bilinear classifiers for visual recognition,”

in Neural Information Processing Systems, 2009.

24



[14] J. B. Tenenbaum and W. T. Freeman, “Separating style and content with bilinear

models,” Neural Comput., vol. 12(6), pp. 1247–1283, 2000.

[15] R. A. Harshman, “Foundations of the PARAFAC procedure: models and conditions for

an” explanatory” multi-modal factor analysis,” UCLA Working Papers in Phonetics,

vol. 16(1), pp. 1–84, 1970.

[16] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear

inverse problems,” SIAM Journal on Imaing Sciences, vol. 2(1), pp. 183–202, 2009.

[17] S.  Lojasiewicz, “Sur la géométrie semi-et sous-analytique,” Ann. Inst. Fourier (Greno-

ble), vol. 43, no. 5, pp. 1575–1595, 1993.

[18] K. Kurdyka, “On gradients of functions definable in o-minimal structures,” in Annales

de l’institut Fourier. Chartres: L’Institut, 1950-, 1998, vol. 48, pp. 769–784.

[19] J. Bolte, A. Daniilidis, and A. Lewis, “The Lojasiewicz inequality for nonsmooth

subanalytic functions with applications to subgradient dynamical systems,” SIAM

Journal on Optimization, vol. 17, no. 4, pp. 1205–1223, 2007.

[20] R.T. Rockafellar and R.J.B. Wets, Variational analysis, vol. 317, Springer Verlag,

1998.

[21] J. Bochnak, M. Coste, and M.F. Roy, Real algebraic geometry, vol. 36, Springer Verlag,

1998.

[22] Y. Xu and W. Yin, “A block coordinate descent method for regularized multi-convex

optimization with applications to nonnegative tensor factorization and completion,”

To appear in SIAM Journal on Imaging Science, 2013.

[23] H. Attouch and J. Bolte, “On the convergence of the proximal algorithm for nonsmooth

functions involving analytic features,” Math. Programming, vol. 116, pp. 5–16, 2009.

[24] B. Lou, J. M. Walz, J. V. Shi, and P. Sajda, “Learning EEG components for dis-

criminating multi-class perceptual decisions,” in Proc. IEEE Conference on Neural

Engineering, 2011, pp. 675–678.

25


