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Abstract. This paper presents two algorithms, based on the conformal geometry, for the multi-
scale representations of geometric shapes and surface morphing. A multi-scale surface representation
aims to describe a 3D shape at different levels of geometric details, which allows analyzing or editing
surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating
between two geometric shapes, which has been widely applied to estimate or analyze deformations in
computer graphics, computer visions and medical imaging. In this work, we propose two geometric
models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to
represent a 3D surface by its mean curvature function H and conformal factor function λ, which
uniquely determine the geometry of the surface according to Riemann surface theory. Once we have
the (λ,H) parameterization of the surface, post-processing of the surface can be done directly on the
conformal parameter domain. In particular, the problem of multi-scale representations of shapes can
be reduced to the signal filtering on the λ andH parameters. On the other hand, the surface morphing
problem can be transformed to an interpolation process of two sets of (λ,H) parameters. We test the
proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results
show that our proposed methods can effectively obtain multi-scale surface representations and give
natural surface morphing results.

Key words. Surface morphing; Multi-scale representation; Conformal parameterization; Con-
formal factor; Mean curvature

1. Introduction. Mathematical geometry processing is an active research fields
and has found important applications in different areas such as in computer visions,
computer graphics and medical imaging. Surface morphing and multi-scale represen-
tations of 3D shapes are two important geometry processing problems. A multi-scale
surface representation aims to describe a 3D shape at different levels of geometric
details. Through a multi-scale representation of the surface, micro and macro geo-
metric information can be extracted or represented in different scales, which allows
analyzing or editing the surface at the global or local scales effectively. For example,
in medical imaging, extracting feature landmarks from anatomical structures using
different geometric quantities such as curvatures are important. Using the multi-scale
representation of the surface, salient features can be extracted in both global and local
levels of details. The extract features can provide a more comprehensive description
of the anatomical structure [26, 27, 28]. Besides, most existing algorithms for surface
registration require huge amount of computation cost [29, 30], which is impractical in
medical imaging or computer visions. With the multi-scale representations of surfaces,
one can easily obtain an approximated registration at the global scale and refine the
registration at the local scale. This significantly speeds up of the computation and
improves the accuracy of registering localized geometric details on surfaces [31, 32].
Surface morphing is another important topic in computer visions. Surface morphing
refers to the process of interpolating between two geometric shapes, which has been
widely applied to estimate or analyze deformations in computer graphics, computer
visions and medical imaging. For example, surface morphing has been extensively
applied to 3D computer animation production and video games [33]. By modeling
gradual evolutionary changes of surfaces, we can smoothly transform one 3D sur-
face into another and thus producing a continuous deformation of shape blending.
Furthermore, applications of surface morphing for biological studies have also been
widely studied. For example, morphing of anatomical structure like skeletons, organs
or body movements are also essential for improving surgical visualization, medical
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diagnosis and analysis. Therefore, developing effective algorithms to compute multi-
scale representations of 3D surfaces and model shape evolution between surfaces are
of utmost important.

Throughout this paper, we propose two geometric models for surface morphing
and multi-scale representations for 3D surfaces using conformal geometry. According
to Riemann surface theory, a Riemann surface can be uniquely determined by its
conformal factor and mean curvature up to a rigid motion. Motivated by this, in this
work, we represent the Riemann surface using its conformal factor function λ and
mean curvature function H . The problem of finding the multi-scale representations
and morphing of surfaces can be transformed to the (λ,H) parameter domains. Given
a Riemann surface S, its conformal factor λ and mean curvature H can be obtained
easily through the conformal parameterization of the surface. Conversely, given λ and
H, we can reconstruct the corresponding Riemann surface by solving the natrual frame
equations on the parameter domain. For the problem of multi-scale representations of
shapes, once we obtain the (λ,H) representation of the surface, a Fourier transform
can be applied to λ and H separately and some filtering processes can be carried out
on the Fourier coefficients. Once the filtered (λ̃, H̃) representation is obtained, we
can restore a corresponding Riemann surface S̃ that best satisfies the Gauss-Codazzi
and natural frame equations. A multi-scale representation of the surface can then
be obtained. On the other hand, with the (λ,H) representations of the surfaces,
the surface morphing problem can be transformed to an interpolation process of two
sets of (λ,H) parameters. In particular, given two Riemann surfaces S1 and S2,
instead of interpolating the coordinate functions of S1 to S2 directly, we propose to
interpolate between (λ1, H1) and (λ2, H2) (which are the conformal factor and mean
curvature representations of S1 and S2 respectively). The intermediate surfaces can
then be reconstructed, which give a surface morphing between S1 and S2. To test
the effectiveness of the proposed algorithms, we test the methods on 3D human face
data and MRI-derived brain surfaces. Experimental results show that our proposed
methods can effectively obtain multi-scale surface representations and give natural
surface morphing results.

In short, the contributions of this paper are two-folded. First, we propose algo-
rithms for obtaining the multi-scale representations of 3D surfaces by considering the
representation of a Riemann surface using its conformal factor λ and mean curvature
H. By performing Fourier filtering on both λ and H, our algorithm can effectively
represent a surface in different scales of geometric details. Second, we propose an
algorithm for morphing between two 3D surfaces using their corresponding (λ,H)
representation. As λ and H can fully describe the geometric information of the
surfaces, a natural interpolation between two surfaces can be obtained through inter-
polating between the two sets of (λ,H) representations. Experimental results show
that the proposed morphing algorithm can produce natural surface morphing results
effectively.

This paper is organized as follows. In Section 2, some related works will be
reported. In Section 3, some basic mathematical background will be described. The
proposed algorithms for surface morphing and multi-scale representations of shapes
will be explained in details in Section 4. The numerical implementation details will
be described in Section 5. We report the the experimental results in Section 6. The
paper is summarized in Section 7.

2. Previous work. Conformal parameterization has been extensively studied
[9, 10, 3, 4, 5]. For example, Hurdal et al. proposed to use circle packing for comput-
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ing conformal parameterization and apply it to register human brain surfaces [8]. Gu
et al. [3, 4, 5] proposed to compute conformal parameterization using harmonic en-
ergy minimization with holomorphic 1-forms and use it for brain surface registration.
Authors in [1, 2] use a least square approach to find the conformal parameterization
of surfaces, in which a free boundary parameterization will be result. By using con-
formal factor and curvatures, authors in [6, 7] proposed to use the shape index to
measure geometric difference between hippocampal surfaces.

In computer visions, the multi-scale representations of shapes have also been
widely used and studied. For example, the multi-scale representation has been ap-
plied in surface compression and progressive transmission [12, 13]. Multi-scale rep-
resentations of shapes have also been effectively applied in shape analysis [14, 15],
since the idea of multi-scale representation is to represent a surface with different
scales of gemoetric details. For example, in [14], the authors proposed to construct a
parameterization of a surface onto a simple domain, which is then used for remeshing
and multi-resolution shape analysis. Cipriano et al. [16] proposed a localized shape
descriptors that compactly characterize regions of a surface. The basic idea of these
descriptors is to use a quadratic surface to fit the original surface. Multiscale repre-
sentation has also been applied to 3D surface feature extraction [17]. The basic idea
is to compute the shape index of a surface at multiple scales by fitting a surface to
local neighborhood of different sizes. Maxima of surface variation, which is calcu-
lated by the variation of shape index, is chosen as the features of the 3D surfaces.
Further applications of these features are used in surface registration. In computer
graphics, multi-scale representation for point clouds has also been studied [18]. The
authors suggested to first compute the point-based surface approximate at a coarser
levels, followed by an application of geometric low pass filtering. This step is repeated
successively to obtain a multi-scale representation.

Various algorithms for surface morphing, which tells us how a surface evolves,
have been proposed. Liu et al. [19] proposed a modified as-rigid-as possible surface
morphing algorithm for surface mesh evolution, which is originally proposed by Alexa
[20]. Kanai et al. [21] first partition the original and target surfaces into pieces for
constructing local parameterizations such that consistent meshes can be formed. In
[22], a consistent surface controlling approach is proposed for shape optimization. By
solving the optimization problem, the morphing problem is solved in the control space
with some regularity and smoothness constraints. Morphing has also been applied in
various fields. For example, in anatomical analysis, Rajamani et al. [23] proposed
to construct a statistical model using Principal Component Analysis (PCA) through
the training objects and by using weighted least square to fit the deformable model.
A different approach to surface morphing is to create implicit functions for surfaces
and apply a smooth interpolation between these implicit functions to construct the
surface morphing. Hughes [24] proposed to transform the iso-surfaces of the models
and interpolate between their corresponding Fourier transforms of the models. Turk
et al. [25] combined both implicit function creation and interpolation steps to obtain
the surface/volumes transformation.

3. Mathematical background. In this section, we describe some basic math-
ematical concepts relevant to our algorithms.

3.1. Conformal factor and Curvature of a Riemann surface. Recall that
a Riemann surface S is an oriented manifold of dimension two with a conformal struc-
ture. Locally every Riemann surfaces are Euclidean. Therefore, given two Riemann
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surfaces Sk, k = 1, 2, they can be represented locally by

φSk
(x1, x2) : Uk ∈ R2 → Sk ∈ R3, k = 1, 2 (3.1)

The Riemannian metric on Sk can then be written as

ds2
Sk

=
∑
i,j

gki,jdx
1dx2 (3.2)

where

gki,j =
∂φSk

∂x
· ∂φSk

∂y
, k = 1, 2 (3.3)

With this local parameterization, for any given map f : S1 → S2, f can be represented
locally by the coordinates (x1, x2) as

f̃ = φ−1
S2
◦ f ◦ φS1 : U1 → U2. (3.4)

Denote f̃ = (f̃1, f̃2) and let v1 and v2 be tangent vectors on S1. By the mapping
f , the tangent vectors can be mapped to f∗(v1) and f∗(v2) respectively. Using this
new pair of tangent vectors, a new Riemannian metric f∗(ds2

S2
) defined on S1 can be

induced by f and ds2
S2

:

f∗(ds2
S2

)(v1, v2) :=< f∗(v1), f∗(v2) >

=
∑
i,j

g2
i,jf∗(vi) · f∗(vj)

=
∑
i,j

(∑
m,n

g2
mn

∂f̃i
∂xm

∂f̃j
∂xn

)
vivj

(3.5)

With this new Riemannian metric, we say the map f is conformal if

f∗(ds2
S2

) = λ(x1, x2)2ds2
S1

(3.6)

where λ(x1, x2) is called the conformal factor. Then for any parameterization ϕ : S1 =
U ∈ R2 → S2 satisfying the equation (3.6) is called a conformal parameterization.
Intuitively, equation (3.6) tells us that a conformal map preserves the inner product
of tangent vectors up to a scaling factor, which is the conformal factor λ. By using
the properties of inner product, it can be shown that any conformal map preserves
angles.

Another important geometric quantities is the curvature of a Riemann surface.
Recall the mean curvature curvature H is defined as the average of the principal
curvatures:

H =
k1 + k2

2
(3.7)

where k1 and k2 are the eigenvalues of the shape operator; the Gaussian curvature K
is defined as the product of the principal curvatures:

K = k1k2 (3.8)
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If the conformal parameterization φ : U ∈ R2 → S is given, the mean curvature H
and the Gaussian curvature K can be computed using the conformal factor λ:

H =
1

2λ2
sign(φ)|∆φ| (3.9)

K = − 1

2λ2
∆ log λ (3.10)

where sign(φ) = <∆φ,~n>
|∆φ| and ~n is the unit surface normal.

Figure 3.1 shows the results of the conformal parameterization and the computa-
tion of λ and H of a typical MRI-derived brain surface. (a) shows the original brain
surface mesh. (b) shows the conformal parameterization of the brain U ∈ R2. By
defining texture coordinates with the conformal parameterization in (b), we synthe-
size a texture mapping onto the brain mesh as shown in (c). Note that small circles
are preserved after the texture mapping, which is consistent with our intuitive under-
standing of a conformal parameterization: a conformal mapping maps infinitesimal
circles to infinitesimal circles up to a scaling factor. Figure 3.1 (d) and (e) show the
corresponding conformal factor λ and mean curvature H of the brain surface.

3.2. (λ,H) representation for surface. Let S be a Riemann surface embedded
in R3. Since every Riemann surface is locally Euclidean, we can find φ(u, v) which
parameterize S:

φ(u, v) = (X(u, v), Y (u, v), Z(u, v)) ∈ R3 (3.11)

Recall that the first and the second fundamental form are:

ds2 =< φu, φu > du2 + 2 < φu, φv > dudv+ < φv, φv > dv2

II =< φuu, ~n > du2 + 2 < φu, ~n > dudv+ < φvv, ~n > v2
(3.12)

where ~n is the unit surface normal.
Let z = u + iv (i =

√
−1), dz = du + idv, dz = du − idv ∂z = 1

2

(
∂
∂u − i

∂
∂v

)
and ∂z = 1

2

(
∂
∂u + i ∂∂v

)
. By assuming φ to be a conformal parameterization, we can

rewrite the equations of natural frame (φz, φz, ~n) as:

∂

∂z

 φz
φz
~n

 =

 2
λλzφz + µ~n

λ2

2 H~n

−Hφz − 2µφz

λ2

 (3.13)

where µ =< φzz, ~n >. From equation (3.13), we know that φ can be determined by
the conformal factor λ, mean curvature H, and µ. Recall the Gauss-Codazzi equation:

µz̄ =
λ2

2
Hz (3.14)

which can be further differentiated with respect to z to obtain

∆µ =
1

2
λ (2λzHz + λHzz) (3.15)
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(a) (b) (c)

(d) (e)

Fig. 3.1: Conformal Parameterization of a brain cortical surface. (a) shows the original
brain mesh. (b) shows the conformal parameterization onto a rectangular conformal
parameter domain in R2. We then texture the brain using the parameterization ob-
tained from (b), as shown in (c). Note that conformal parameterization maps infinites-
imal circles to circles. (d) and (e) show the conformal factor of the parameterization
and the mean curvature of the brain surface respectively.

In other words, we can represent µ by the conformal factor λ and H as:

µ =
1

2
∆−1 [λ (2λzHz + λHzz)] .

Therefore, given the Dirichlet boundary condition of φ on the neighbourhood V ,
we can obtain φ by solving the system of partial differential equation (3.13). As a con-
sequence, given the boundary correspondence φ|∂S , S can be uniquely representation
by the pair (λ,H).

We summarize the above discussion as the following theorem.
Theorem 1 ((λ,H) representation). Let S be an open Riemann surface with

ean curvature H. Let φ : U ∈ mathbbR2 be the conformal parameterization of S with
conformal factor λ. Suppose V is a boundary neighborhood of S. Given the boundary
value φ∂V of φ, S is uniquely determined by λ and H.

The (λ,H) representation was proposed in [34] and applied for surface inpainting
in [35].

4. Methodology. In this section, we propose two algorithms, which are the
multi-scale representation algorithm and the surface morphing algorithm.

4.1. Multi-scale representation of surfaces. Given a surface S, our goal is
to find a multi-scale representation of the surface that provides different scales of ge-
ometric details of the original surface. Instead of directly working on the coordinate
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(a) (b) (c) (d)

Fig. 3.2: (λ,H) representation of a human face. (a) shows the original mesh of a
face. By finding the conformal parameterization of the human face to a rectangular
conformal parameter domain in R2, we calculate the conformal factor, as shown in
(b). (c) shows the mean curvature of the human face. By using λ and H, we can
reconstruct the human face as shown in (d).

(a) (b) (c) (d)

Fig. 3.3: (λ − H) representation of a human brain. (a) shows the original mesh of
a brain. By finding the conformal parameterization of the brain to a rectangular
conformal parameter domain, we calculate the conformal factor, as shown in (b). (c)
shows the mean curvature of the brain. By using λ and H, we can reconstruct the
brain as shown in (d).

(a) (b) (c) (d)

Fig. 3.4: (λ,H) representation of a human tooth. (a) shows the original mesh of
a tooth. By finding the conformal parameterization of the tooth to a rectangular
conformal parameter domain, we calculate the conformal factor, as shown in (b). (c)
shows the mean curvature of the tooth. By using λ and H, we can reconstruct the
tooth as shown in (d).

functions of the surface embedded in R3, our proposed algorithm considers the (λ,H)
representation of the surface. We first obtain a rectangular conformal parameteriza-
tion U = [−T1, T1]× [−T2, T2] ∈ R2 of the surface S. By using equations 3.6 and 3.9,
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we can calculate the corresponding λ and H of the surface S. By viewing different
scales of geometric details as different scales of noises, the main idea of our algorithm
is to apply the traditional denoising method on the geometric quantities λ and H to
find the multi-scale representation of the surface. In other words, for a specific scale
K, we first apply Fourier transform on λ and H respectively in U to obtain two sets
of Fourier coefficients Cλ and CH :

Cλm,n =
1

4π

∫ T2

−T2

∫ T1

−T1

λ(x, y)e−iπjx/T1e−iπky/T2dxdy (4.1)

CHm,n =
1

4π

∫ T2

−T2

∫ T1

−T1

H(x, y)e−iπjx/T1e−iπky/T2dxdy (4.2)

where the original λ and H can be expressed by the Fourier expansion as follows:

λ(x, y) =

∞∑
m,n−∞

Cλm,ne
iπmx/T1ejπny/T2 (4.3)

H(x, y) =

∞∑
m,n−∞

CHm,ne
iπmx/T1ejπny/T2 (4.4)

Treating like denoising white noise in signal processing, we consider coefficients
with magnitude smaller than K as pure noise and set them to zero. The correspond-
ing truncated Fourier expansions of λ and H form a new pair of denoised (λ̃, H̃)
parameterization, which represents a ”denoised” surface with some of the geometric
details removed. Using the (λ,H) reconstruction scheme, we can get the correspond-
ing surface S̃ of scale K as required.

In summary, the proposed multi-scale representation algorithm can be described
as follows:

Algorithm 1: Multi-scale representation of a surface

Input: Surface S, Scale K
Output: Surface S̃ of scale K

1 Conformally parameterize S into U = [−T1, T1]× [−T2, T2] ∈ R2;
2 Compute conformal factor λ and mean curvature H;

3 Apply Fourier transform on λ and H to get Cλm,n and CHm,n respectively;

4 Truncate the Fourier coefficients less than the bound K to obtain C̃λm,n, C̃Hm,n;

5 Apply inverse Fourier transform to get λ̃ and H̃;

6 Carry out (λ,H) reconstruction scheme to get S̃ of scale K.

4.2. Surface Morphing. Given two surfaces S1 and S2, the process of finding
the evolution from surface S1 to S2 is called surface morphing. In other words, our
goal is to compute every S(t), where t ∈ [0, 1], S(0) = S1 and S(1) = S2. To
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achieve this, we again consider the (λ,H) representation rather than the R3 space
directly. Let ∂Si be the boundary of surface Si, i = 1, 2. By assuming that we already
have the boundary matching obtained from arc-length parameterization or some other
curve matching algroithms [36], we interpolate every points on ∂S1 linearly in R3 to
corresponding points in ∂S2:

 x(t)
y(t)
z(t)

 = (1− t)

 x1

y1

z1

+ t

 x2

y2

z2

 (4.5)

where (x1, y1, z1)
T ∈ ∂S1 and (x2, y2, z2)

T ∈ ∂S2. From this, we obtain a simple
boundary morphing approximation from surface S1 to S2. Next, we compute rect-
angular conformal parameterization for both surface S1 and S2 respectively as in
Algorithm 1. Two pairs (λ1, H1) and (λ2, H2) corresponding to surface S1 and S2

can then be obtained. To approximate the evolution naturally, we propose to morph
the geometric quantities λ and H from the pair (λ1, H1) to (λ2, H2) by simply linear
interpolation:

λ(t) = (1− t)λ1 + tλ2 (4.6)

H(t) = (1− t)H1 + tH2 (4.7)

Substituting t ∈ [0, 1] with different values, we get a sequence of pairs (λ(t), H(t))
with boundary constraint ∂S(t). By using (λ,H) reconstruction algorithm, the corre-
sponding surface S(t), which best fits the Gauss Codazzi and natural frame equations,
can be constructed. This gives a morphing surface at time t ∈ [0, 1].

Our proposed morphing algorithm can be summarized as follows:

Algorithm 2: Morphing of surfaces

Input: Surface S1 and S2, Time t
Output: Intermediate surface S(t) between S1 and S2

1 Obtain the boundary matching between S1 and S2;
2 Compute the boundary morphing ∂S(t) by linear interpolation pointwisely;
3 Compute conformal parameterization for both S1 and S2;
4 Compute (λ1, H1) and (λ2, H2) corresponding to S1 and S2 respectively;
5 Use the (λ,H) reconstruction algorithm with (λ(t), H(t)) and ∂S(t) to

compute S(t).

5. Numerical algorithms. In this section, we discuss the numerical implemen-
tation of the algorithms we proposed in this paper. Firstly, we will briefly describe
how we obtain the (λ,H) representation and the implementation of the reconstruction
scheme of the surface S with given conformal factor λ and mean curvature H. Sec-
ondly, we will explain how the algorithms for multi-scale representation and surface
morphing proposed in previous section can be implemented.
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5.1. Numerical implementation of (λ,H) representation and surface re-
construction. We basically follows the numerical implementation in [35]. Given
a surface S, the conformal parameterization can be obtained by using some well-
established conformal parameterization algorithms [3, 4, 5, 8, 10]. By applying the
algorithm proposed in [11], we obtain the rectangular conformal parameterization
U = [0, 1] × [0, T ] ∈ R2 of the surface S. Denote the discretized parameterization
domain U to be

Uij = (ih, T jh), h =
1

N
, 0 ≤ i ≤ N, 0 ≤ j ≤ N (5.1)

Correspondingly, we have

φij = φ(Uij) Hij = H(Uij) and λij = λ(Uij) (5.2)

To obtain the conformal factor λij , recall that a conformal parameterization φ
preserves the first fundamental form up to conformal factor. Therefore we can ap-
proximate the discrete conformal factor λij by

λij =<
∂φ(Uij)

∂z
,
∂φ(Uij)

∂z̄
>

≈ 1

2

[∣∣∣∣φi+1,j − φi−1,j

2h

∣∣∣∣2 +

∣∣∣∣φi,j+1 − φi,j−1

2h

∣∣∣∣2
] (5.3)

For the mean curvature Hij , we consider equation (3.9):

Hij = H(Uij) =
1

2λij
sign(φij)|∆φij | (5.4)

where we approximate

∆φij =
φi+1,j + φi−1,j − 4φi,j + φi,j+1 + φi,j−1

h2
(5.5)

sign(φij) = sign (< ∆φij , ~nij >) (5.6)

~nij =

(
φi+1,j − φi−1,j

2h

)
×
(
φi,j+1 − φi,j−1

2h

)
/

∥∥∥∥(φi+1,j − φi−1,j

2h

)
×
(
φi,j+1 − φi,j−1

2h

)∥∥∥∥
(5.7)

If we are given the (λ,H) representation, we can reconstruct the surface S by
solving equation (3.13). Let ((φz)ij , (φz̄)ij , ~nij) = (Pij , Qij , Nij) be the natural frame
at Uij . Similar to above, we can discretize the system into the following:

1

2h

 (Pi+1,j − Pi−1,j)−
√
−1(Pi,j+1 − Pi,j−1)

(Qi+1,j −Qi−1,j −
√
−1(Qi,j+1 −Qi,j−1)

2hNij

 =


2
λij

(λz)ijPij + µijNij
λ2
ij

2 HijNij
−HijPij − 2µijQij

λ2
ij


(5.8)

We solve Equation (5.8) by the least-square method.
Once we obtain (Pij , Qij , Nij) by solving equation (5.8), we can reconstruct the surface
by solving

1

2h

(
φi+1,j − φi−1,j

φi,j+1 − φi,j−1

)
=

(
(Pij +Qij)/2√
−1(Pij −Qij)/2

)
(5.9)



Conformal-based Surface Morphing and Multi-scale Representation 11

5.2. Numerical implementation of multi-scale representation of sur-
face. Given a surface S, Algorithm 1 produces a surface S̃ with a coarser scale of
geometric details. Since we have chosen the conformal parameterization domain U to
be a rectangle, conformal factor λ and mean curvature H are well defined on U as
well. Then by using Discrete Fast Fourier transform (DFT), we are able to get Cλij
and CHij immediately. The trucation process is simply by

Cλij = 0 if
∣∣Cλij∣∣ ≤ K;

CHij = 0 if
∣∣CHij ∣∣ ≤ K. (5.10)

By using Inverse Discrete Fast Fourier transform (IDFT) on the updated Cλij and

CHij , (λ̃, H̃) can be obtained.

5.3. Numerical implementation of surface morphing. In Algorithm 2,
there are many ways to obtain meaningful boundary registration result. Here we
discuss the method of arc-length parameterization for boundary matching that works
very well as shown in our experimental results in the next section.

Given two surfaces S1 and S2 with boundaries ∂S1 and ∂S2, denotes the vertices
on boundaaries to be {v1(k)}k and {v2(h)}h respectively. We assume we have labelled
few point-correspondences:

v1(pi) = v2(qi), 1 ≤ pi ≤ I, I ≤ qi ≤ J, i = 1 : N (5.11)

Consider the line segments [v1(pi), v1(pi + 1), ..., v1(pi+1)] ⊂ {v1(k)}k ⊂ R3 and
[v2(qi), v2(qi + 1), ..., v2(qi+1)] ⊂ {v2(h)}h ⊂ R3, two arc-length parameterization
(α, f1(α)) and (β, f2(β)) can be obtained, where pi ≤ α ≤ pi+1, qi ≤ β ≤ qi+1,
f1(α) = v1(α) and f2(β) = v2(β) respectively. To obtain the boundary registration,
we define P (α) as:

P (α) = f2

(
qi + (qi+1 − qi)

α− pi
pi+1 − pi

)
(5.12)

where P (α) ∈ R3. By substituting α such that pi ≤ α ≤ pi+1, we can obtain the
corresponding position of each v1(α) ∈ {v1(k)}k on ∂S2.

6. Experimental results. We have tested our multi-scale algorithm and mor-
phing algorithm on both synthetic data and real medical data. In the following
subsections, experimental results of the proposed algorithms are reported.

6.1. Surface reconstruction. Our proposed algorithms depend on the (λ,H)
representations of the Riemann surfaces. To examine how effective and accurate this
geometric representation can represent the surface, we consider the (λ,H) representa-
tion of a human face, a brain cortical surface and a teeth surface. Figure 3.2(a) shows
the original human face. We parameterize the surface onto the 2D rectangular con-
formal parameter domain and compute the conformal factor. The conformal factor is
visualized as the colormap on the surface, which is shown in (b). The mean curvature
of the surface is shown in (c). The conformal factor and mean curvature determine
the surface. In (d), we reconstruct the surface from the conformal factor and mean
curvature. Note that the surface closely resembles to the original surface in (a). We
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also examine the (λ,H) representations for the brain cortical surface and the teeth
surface as shown in Figure 3.3 and Figure 3.4. Again, the (λ,H) representations can
accurately represent the surfaces. From the (λ,H) representations, the surfaces can
be reconstructed, which closely resemble to the original surfaces.

6.2. Multi-scale representation of surfaces. We first test our proposed sur-
face multi-scale representation algorithm on a synthetic human surface. Figure 6.1
(a) shows the original surface mesh of a human face model. Using Algorithm 1, we
compute different levels of geometric details as shown in (b) – (f). The approximation
levels decrease from (b) to (f) by increasing the bound K in the algorithm. In other
words, we truncated more and more terms in the Fourier expansion of both λ and H.
Therefore, facial characteristics like eyes, nose and mouth are fading gradually.

(a) (b) (c) (d) (e) (f)

Fig. 6.1: Result of the multi-scale representation of a human face surface. (a) shows
the original human face. (b)-(f) show the multi-scale representation of the face ob-
tained from the proposed algorithm. The approximation levels of the multi-scale rep-
resentation decreases from the fine-scale (See (b)) to the coarse-scale (See (f)). Note
that through (b) to (f), facial characteristics such as eyes, nose and mouth are fading
out. This is consistent with our algorithm, which coarsens the (λ,H) representation
throughout the process.

We have also tested our multi-scale algorithm on a human brain surface, which
has a more complicated surface geometric structure. Figure 6.2 (a) shows the original
brain surface. There are lots of different sizes and lengths of sulcal located on the
brain surface. By applying Algorithm 1 to the brain surface, we obtain the multi-
scale representation as shown in (b) – (i). Similarly, the approximation levels decreases
from (b) to (i) by increasing the bound K in Algorithm 1. Note that through (b)
to (i), geometric features like the sulci are fading out. This is consistent with our
reduction in the number of effective Fourier coefficients. This also shows that our
algorithm work well on complicated surfaces and provide a multi-scale representation
of different surfaces.

6.3. Surface Morphing. We have tested our algorithm for morphing from one
surface S1 to another surface S2 according to the (λ,H) representation. Figure 6.3
shows the synthetic human faces of a man (a) and a woman (f). We first obtain
their corresponding (λ,H) representation (λ1, H1) and (λ2, H2) and their boundary
correspondence. Then we approximate the surface evolution by linearly interpolating
the (λ,H) representation between them. From this, we can get a sequence of pairs
(λ(t), H(t)) which approximate the morphing from surface S1 to S2. With these se-
quences of (λ,H) representation, we reconstruct the corresponding surfaces as shown
in Figure 6.3 (b)–(e). Experimental result shows that the proposed algorithm can
produce a natural morphing between different surfaces by simply interpolate the ge-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.2: Result of the multi-scale representation of a brain surface. (a) shows the orig-
inal brain surface. (b)-(i) show the multi-scale representation of the brain obtained
from the proposed algorithm. The approximation levels of the multi-scale represen-
tation decreases from the fine-scale (See (b)) to the coarse-scale (See (i)). Note that
through (b) to (i), geometric characteristics like sulci on the brain are fading out. This
is consistent with our algorithm which coarsens the (λ,H) representation throughout
the process.

ometric quantities λ and H that can fully describe the surfaces.

We also test our morphing algorithm to interpolate between two teeth surfaces.
Figure 6.4 (a) and (f) show the two human teeth surfaces. By using Algorithm 2,
we interpolate λ and H and reconstruct the corresponding surfaces from the (λ,H)
representation as shown in (b) – (e). Notice that by using the proposed morphing
algorithm, surface features like local valley and ridges can natural deformed as both
are described by the mean curvature and conformal factor. Therefore, our proposed
algorithm produces good morphing approximation, which follows the geometry of the
two surfaces.

7. Conclusions. This paper presents two novel algorithms for computing the
multiscale representation of a surface and morphing between two surfaces. Instead of
directly tackling the problems with the coordinate functions of the surfaces, we adopt
the (λ,H) representation proposed earlier in [34][35]. By the Riemann surface theory,
given any surface S, we can find the conformal factor λ and mean curvature H, which
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(a) (b) (c) (d) (e) (f)

Fig. 6.3: Surface morphing between two human faces (from a man face to a woman
face) using the (λ,H) representations. (a) and (f) show a man and a woman face
respectively. By using the morphing algorithm, we interpolate λ and H and recon-
struct the corresponding surface from the (λ,H) representation. (b) – (e) shows the
morphing results.

(a) (b) (c) (d) (e) (f)

Fig. 6.4: Surface morphing between two teeth using (λ,H) representative. (a) and
(f) show Tooth 1 and Tooth 2 respectively. By using the morphing algorithm, we
interpolate λ and H and reconstruct the corresponding surface from the (λ,H) rep-
resentation. (b) – (e) shows the morphing results. Note that a natural evolution of
ridges and valleys from Tooth 1 to Tooth 2 are obtained.

uniquely determine the surface S. By using the (λ,H) representation, the problem
of multi-scale representation is transformed to a signal processing problem of both
geometric quantities λ and H. In other words, by treating the geometric quantlties λ
and H as signals, we can extract different scales of geometric details from the surface
through the surface reconstruction from the truncated (λ,H) representation.

Moreover, a surface morphing algorithm has also been proposed in this work.
We consider to approximate the deformation of surfaces through their corresponding
(λ,H) representations. To morph between two surfaces, we propose to linearly inter-
polate between the (λ,H) representations of the two surfaces. Since conformal factor
and mean curvature can fully describe the geometric characteristics of the surface,
our algorithm can effectively compute a natural morphing between two surfaces, as
shown in the experimental results.

Note that our algorithms work on simply-connected open surfaces. In the future,
we will consider extending our proposed algorithms on genus zero closed surfaces by
making use of the spherical harmonic expansion and spherical harmonic conformal
mapping. We will also consider to extend our algorithms to point clouds.
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