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ABSTRACT
In this paper we propose a method to adaptively decom-
pose an image into few different modes of separate spectral
bands, which are unknown before. A popular method for
recursive one dimensional signal decomposition is the Em-
pirical Mode Decomposition algorithm, introduced by Huang
in the nineties. This algorithm as well as its 2D extension,
though extensively used, suffers from a lack of exact math-
ematical model, interpolation choice, and sensitivity to both
noise and sampling. Other state-of-the-art models include
synchrosqueezing, the empirical wavelet transform, and re-
cursive variational decomposition into smooth signals and
residuals. Here, we have created an entirely non-recursive 2D
variational mode decomposition (2D-VMD) model, where
the modes are extracted concurrently. The model looks for a
number of 2D modes and their respective center frequencies,
such that the bandlimited modes reproduce the input image
(exactly or in least-squares sense). Preliminary results show
excellent performance on both synthetic images and real data.

Index Terms— variational image decomposition, spec-
tral segmentation, sparse image approximation, directional
filter bank, wiener filter.

1. INTRODUCTION

In this paper we are interested in decomposing images into
ensembles of constituent modes (components) that have
specific directional and oscillatory characteristics. Simply
put, the goal is to retrieve a small number of modes, that
each have a very limited bandwidth around their charac-
teristic center frequency. These modes are called intrinsic
mode functions (IMF) and can be seen as amplitude- and
frequency-modulated (AM-FM) 2D signals (“plane”-waves).
Such a mode can have limited spatial support, its local (in-
stantaneous) frequency and amplitude vary smoothly, several
modes can overlap in space, and together the ensemble of
modes should reconstruct the given input image up to noise
and singular features. Possible applications include the de-
composition of images into (possibly overlapping) regions of
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essentially wave-like nature, in order to make these compo-
nents accessible for further analysis, such as space-frequency
analysis and demodulation.

The problem is inspired by the one dimensional Empir-
ical Mode Decomposition (EMD) algorithm [1] and its two
dimensional extension [2] for recursive sifting of 2D spatial
signals by means of interpolating upper and lower envelopes,
median envelopes, and thus extracting image components in
different “frequency” bands. This 2D-EMD, however, suf-
fers from the same drawbacks in robustness as the original
EMD in extremal point finding, interpolation of envelopes,
and stopping criteria imposed.

Other methods of directional image decomposition work
by mostly rigid frames, decomposing the Fourier spectrum
into fixed, mostly or strictly disjoint, (quasi-)orthogonal ba-
sis elements. Examples include Gabor filters [3], wavelets
[4, 5, 6], curvelets [7], shearlets [8, 9], etc. These methods
are not adaptive relative to the signal, and can attribute prin-
ciple components of the image to different bands, as well as
contain several different image components in the same band.
Adaptivity and tuned sparsity concerns have been addressed
through synchrosqueezed wavelet transforms [10, 11], where
unimportant wavelet coefficients are removed by thresholding
based on energy content. In pursuit of the same goal, the 2D
Empirical Wavelet Transform (EWT) [12, 13] decomposes an
image by creating an adaptive wavelet basis.

In this paper we propose a natural two dimensional ex-
tension of the (1D) Variational Mode Decomposition (VMD)
algorithm [14] in the context of image segmentation and di-
rectional decomposition. 2D-VMD is a non-recursive, fully
adaptive, variational method which sparsely decomposes im-
ages in a mathematically well-founded manner with minimal
parameters and no explicit interpolation.

Indeed, the variational mode decomposition in 1D is es-
sentially based on well-established concepts such as Wiener
filtering, the 1D Hilbert transform and the analytic signal, and
heterodyne demodulation. The goal of 1D-VMD is to de-
compose an input signal into a discrete number of sub-signals
(modes), where each mode has limited bandwidth in spec-
tral domain. In other words, we require each mode k to be
mostly compact around a center pulsation ωk, which is to be
determined along with the decomposition. In order to assess



the bandwidth of a mode, we have proposed the following
scheme: 1) for each mode uk, compute the associated analytic
signal by means of the Hilbert transform in order to obtain a
unilateral frequency spectrum. 2) for each mode, shift the
mode’s frequency spectrum to “baseband”, by mixing with
an exponential tuned to the respective estimated center fre-
quency. 3) The bandwidth is now estimated through the H1

smoothness of the demodulated signal, i.e. the squared L2-
norm of the gradient. The resulting constrained variational
problem is the following:

min
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}
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∑
k

uk = f, (1)

where the reconstruction constraint can be addressed in
different ways, such as through simple quadratic penalty or
by including an augmented Lagrangian in order to render
the problem unconstrained [15, 16]. The solution to the
1D-VMD problem is then found as a sequence of simple
sub-optimizations [14].

Here, we propose a generalization of the 1D-VMD model
to two (and possibly more) dimensions, in order to make the
method applicable to images.

2. 2D VARIATIONAL MODE DECOMPOSITION

We adapt the original 1D-VMD model to dimension two, with
the intent of application to images. The 2D model is relatively
analogous to its 1D counterpart, minimizing the constituent
sub-signals bandwidth while maintaining data fidelity.

The analogy runs into a natural impasse due to a lack of
a natural unique extension of the 1D analytic signal for two
dimensions. With the intent of being able to shift image fre-
quencies to baseband through heterodyne demodulation, we
need the Fourier spectra to be single sided.

2.1. 2D Analytic Signal

While in 1D the analytic signal is achieved by suppressing the
negative frequencies, in 2D one half-plane of the frequency
domain must be set to zero; it is chosen relative to a vector,
in our case to ~ωk. Thus the 2D analytic signal of interest can
first be defined in the frequency domain.

ûAS,k(~ω) =


2ûk(ω), if ~ω · ~ωk > 0

ûk(ω), if ~ω · ~ωk = 0

0, if ~ω · ~ωk < 0

= (1 + sgn(~ω · ~ωk))ûk(~ω)

(2)

We can now define the 2D analytic signal with the previ-
ous Fourier property, as per a definition in [17]:

uAS,k(~x) = uk(~x) ∗
(
δ(〈~x, ~ωk〉) +

j

π〈~x, ~ωk〉

)
δ(〈~x, ~ωk,⊥〉)

(3)
Where ∗ denotes convolution and the transform is separable.
Here, the analytic signal is calculated line-wise along the di-
rection of reference, ~ωk. These lines are processed indepen-
dently, hence this definition is intrinsically 1D, but has the
desired 2D Fourier property.

2.2. 2D VMD Functional

The functional to be minimized, stemming from this defini-
tion of 2D analytic signal, is:

min
uk,~ωk

{∑
k

∥∥∥∇[uAS,k(~x)e−j〈~ωk,~x〉]
∥∥∥2

2

}
s.t.

∑
k

uk = f

(4)
The reconstruction constraint is addressed through quadratic
penalty or augmented Lagrangian, and we proceed by ADMM
for optimization, as in the 1D case [14, 15, 16].

2.2.1. Minimization w.r.t. the modes uk

With this definition of the 2D analytic signal in mind, we can
optimize for uk and ωk analogously to the 1D counterpart.
Since we are dealing with L2-norms, the functional including
the augmented Lagrangian can be written in Fourier domain:

ûn+1
k = arg min

ûk

{
α ‖j(~ω − ~ωk) [(1 + sgn(~ω · ~ωk))ûk(~ω)]‖22

+
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}
, (5)

which yields the following Wiener-filter result:

ûn+1
k (~ω) =

(
f̂(~ω)−

∑
i 6=k

ûi(~ω) +
λ̂(~ω)

2

) 1

1 + 2α|~ω − ~ωk|2

∀~ω ∈ Ωk : Ωk = {~ω | ~ω · ~ωk ≥ 0}
(6)

2.2.2. Minimization w.r.t. the center frequencies ~ωk

Optimizing for ~ωk is similar to the 1D VMD case, except that
now we are considering the domains to be the half-planes, and
that there are two components. The update goal is

~ωn+1
k = arg min

~ωk

{∑
k

∥∥∥∇[uAS,k(~x)e−j〈~ωk,~x〉]
∥∥∥2

2

}
(7)

Or, again in the Fourier domain:

~ωn+1
k = arg min

~ωk

{
α ‖j(~ω − ~ωk) [(1 + sgn(~ω · ~ωk))ûk(~ω)]‖22

}
(8)



Fig. 1. Results of 2D-VMD on fSynth. Top left: The synthetic image. Bottom left: Spectrum. Right: 5 recovered modes.

The minimization is solved by letting the first variation w.r.t.
~ωk vanish. The resulting solutions are the first moments of
the mode’s power spectrum |ûk(~ω)|2 on the half-plane Ωk:

~ωn+1
k =

∫
Ωk
~ω|ûk(~ω)|2d~ω∫

Ωk
|ûk(~ω)|2d~ω

(9)

3. EXPERIMENTS AND RESULTS

We have implemented the 2D-VMD method in MATLAB R©1,
and test the algorithm on both a synthetic and a real image.

3.1. Synthetic Image

The first synthetic image is a composition of spatially overlap-
ping basic shapes, more precisely five ellipses and a rectangle,
with frequency patterns varying in both periodicity and direc-
tion. The spectrum is ideal for segmentation due to modes
being deliberately both well isolated and narrowbanded. The
synthetic image experiment was run with parameters α =
1000 and K = 5. The algorithm has no problems in accu-
racy nor timeliness in segmenting the image into its five con-
stituent sub-images. The first four decompositions in Fig. 1
show clear separation of the patterned ellipses, while the fifth
is the DC component of the image - a solid ellipse and rect-
angle. Due to these solid pieces having sharp edges, their
spectra are not bandlimited and only smoothed versions are
recovered. The number of iterations and speed will be ad-
dressed below in the subsection on ωk initialization.

3.2. Peptide β-sheet Microscopy Image

The second test image is a microscopy scan of peptide β-
sheets bonding on a graphite base, courtesy of the Weiss-

1Code will be made available at http://www.math.ucla.edu/
˜zosso/code.html

group at the California NanoScience Institute (CNSI), [18].
The peptide sheets grow in regions of directional homogene-
ity and form natural spatial boundaries where the regions
meet. It is important to scientists to have accurate segmen-
tation for their dual interests in the homogenous regions and
their boundaries. Identifying regions of homogeneity allows
for the subsequent study of isolated peptide sheets of one
particular bonding class. For these types of scans, manually
finding the boundaries is a tedious problem that demands the
attention of a skilled scientist on a rote task. In addition to
speed and automation, the proposed 2D VMD is superior in
accuracy to manual boundary identification due to regions
potentially having very similar patterns, varying by only a
few degrees, that are difficult to discern to even the trained
eye. The success of the 1D VMD algorithm in tone separation
is expected to carry over to its 2D counterpart in separating
patterns that are very close, yet distinct, in spectrum.

As a common pre-processing step in image analysis, here
we apply a band-pass filter to the image in order to remove
both noise and the DC component. Subsequently, the 2D-
VMD algorithm decomposes the piecewise homogeneous
peptide sheet image into its five principle components with
the purpose of segmentation. Fig. 2 illustrates these individ-
ual components, and then compares their superposition to the
original peptide sheet with manual boundaries added. This
experiment was run with parameters α = 5000 and K = 5.

3.3. ωk Initialization

An important degree of freedom in this algorithm is the ini-
tialization of the variables. While the uk have a natural ini-
tialization of uk ≡ 0, the ~ωk are somewhat more sensitive.
Qualitatively, a high α leads to finer separation of constituent
subsignals due to the Wiener filter being more narrowly con-
centrated around its center frequency. However, this same
narrow filter, if centered away from a non-principle frequency,



Fig. 2. Results of 2D-VMD on peptide β-sheet image. Top left: Peptide β-sheet (with manual boundaries), and Bottom left:
its power spectrum. Right: Five recovered constituent modes, and Bottom right: their mode superposition.

may fail to capture the relevant principle frequencies. Con-
versely, a low α creates a wider filter, allowing the algorithm
to “see and travel” to the correct frequencies, but yields worse
separation. Given that we know the correct frequencies about
which to initialize, a high α will produce accurate results. If
we do not know estimates of the principle frequencies of the
subcomponents a priori, it seems that we are forced to use a
lower α, where the ωk gains freedom of mobility to the appro-
priate modes at the expense of proper separation. Instead of
sacrificing accuracy for mobility, we keep both at the expense
of computation time in the following way:

Initialize the ω0
k for k = 1, ...,K randomly on any half-

plane, such as {~ω | ω1 ≥ 0}. Using a high α, run the VMD
algorithm and record the final values of ωN

k . Perform this
repeatedly for a number of times and create a histogram of
the convergent ωN

k , then observe the top K values. Individ-
ual iterations may converge to local minimizers, where qual-
itatively non-principle modes such as noise will be found, or
where multiple ωk converge to the same principle mode while
others are not picked up. The silver lining is that the non-
principle convergent modes will be mostly uniformly spread
across the spectrum, while the principle ones will show up
with much higher consistency. This histogram of convergent
modes captures the location of the consistent modes, from
which we may get an excellent initialization for a final “clean”
iteration. In the above peptide sheet image, we used 200 such
iterations to unambiguously determine a proper initialization,
though as few as 25 iterations were needed for the histogram
to begin to resemble the power spectrum.

4. CONCLUSIONS AND OUTLOOKS

In this paper, we have presented a 2D variational method for
decomposing an image into an ensemble of band-limited in-
trinsic mode functions.

Our decomposition model solves the inverse problem as
follows: decompose an image into a given number of modes
such that each individual mode has limited bandwidth. We as-
sess the mode’s bandwidth as the squared H1 norm of its di-
rectional 2D analytic signal with only half-space frequencies,
shifted to baseband by mixing with a complex exponential of
the current center frequency estimate. The modes are updated
by simple Wiener filtering, directly in Fourier domain with a
filter tuned to the current center frequency. Then the center
frequencies are updated as the center of gravity of the mode’s
power spectrum. We apply our model to both synthetic and
real image data and can show successful decomposition.

The most important limitation of the proposed 2D VMD
is with boundary effects, and sudden signal onset in general.
Despite the mostly successful decomposition, there is an issue
of components’ boundaries being overly smooth due to the the
narrow-band violation caused by discontinuous envelopes in
such AM-FM signals, and a quadratic functional disfavoring
and overly penalizing sharp amplitude changes, as with do-
main boundaries and piecewise regions. Conversely, this is
also reflected by implicit periodicity assumptions when op-
timizing in Fourier domain. Another point is the required
explicit selection of the number of active modes in the de-
composition. A way to handle this issue is through the his-
togram method mentioned above. With many random initial-
ization iterations, the dominant modes would show up with
highest frequency, and this appropriate number of bins would
become obvious by looking at an ordered distribution of the
convergent frequency bins, exhibiting a gap between true fre-
quencies and random noise. Rather than relying on iterations,
both of these issues are being addressed in current work on an
extended mathematical model.
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