
Blind uniform motion blur deconvolution for image bursts and

video sequences based on sensor characteristics

Yohann Tendero, Stanley Osher�

Department of Mathematics - University of California Los Angeles
520 Portola Plaza, Los Angeles, CA 90095, United States.

Abstract

Video sequences can be enhanced by a spatial deconvolution of any motion blur whose
support does not exceed two pixels per frame. However, this deconvolution requires an
accurate blur estimation and local deconvolution which is difficult for multiple local motions.
We provide a discrete temporal filter whose coefficients are designed 1) to deconvolve blindly
any uniform motion blur whose support does not exceed one pixel per frame, 2) to take into
account for the sensor dead time between two consecutive frame (duty ratio/inter frame
delay). The proposed filter enjoys optimality properties in terms of mean square error. In
addition, it is demonstrated on real movies obtained from a smartphone and the Middlebury
dataset.
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1 Introduction

Most images and video sequences are affected by motion blurs due to camera or scene motions.
The difficulty of motion blur is unfolded by its simplest example: the one dimensional uniform
motion blur. The result is a convolution of the image with a one dimensional box kernel.
The support of the kernel increases linearly with the aperture time and the relative camera
scene motion. As soon as the support of this box kernel exceeds two pixels the blur is no
more invertible, and the restoration becomes an ill posed problem. Even below two pixels
this deconvolution depends on an accurate blur kernel estimate as pointed out in [1] that even
state that “the shift-invariant blur assumption made by most algorithms is often violated” [1,
“Introduction”, p. 1964]. In addition, a multi-frame approach needs an accurate local motion
estimation “which is a very challenging task even with user interactions” [2, “abstract”]. In a
nutshell, blind motion blur deconvolution remains challenging and not completely solved yet.

A new photography method was proposed in [3]. The authors propose to attach a “flutter
shutter” (coded exposure) to a camera. The photon flux is interrupted on sub-intervals of the
exposure time and permits to get an invertible motion blur kernel. Numerically a flutter shutter
is described by a binary shutter sequence -or flutter shutter code- that gives the intervals where
the photon flux is interrupted. If the flutter shutter code is well chosen, a flutter shutter can
guarantee the invertibility of any uniform motion blur. These considerations seemed a priori

�Yohann Tendero is supported on the Grants No: 12-DARPA-1042, UC Lab 12-LR-236660, ONR
N000141210838 and NSF DMS-1118971. Stanley Osher is supported by the Keck foundation, NSF DMS 118971
and DMS 0914561.

1



limited to the design of flutter shutter cameras. However, an unforeseen consequence of the
flutter shutter theory consists in the existence of temporal filters that perform movie blind
uniform motion deconvolution [4]. The filter enjoys optimality properties in terms of mean-
square-error (MSE) [5]. The utilization of these filters seemed restricted to specific cameras
that can acquire photons without interruption between image frame.

In this paper, we extend [4] to cope with on-the-shelf camera that cannot integrate light
continuously. Note that this is the case of most camera. Indeed, it is not possible to tune
1) the frame rate so that the video can be displayed using some given video format, 2) the
exposure time so that the image frames are correctly exposed (no under/over exposure) and 3)
have a 100% duty ratio (the camera integrates photons continuously). Therefore, we propose a
convenient formalism that permits to deduce the adequate filter that 1) deblurs blindly video
frames, 2) takes the sensor duty ratio into account and 3) is optimal in terms of MSE. The
novelty compared to the literature is that we incorporate the sensor duty ratio1 in the filter
model.

Section 2 gives the filter formalism taking the noise model and the sensor duty ratio into
account. Section 3 gives numerical details as well as the explicit discrete filter coefficients.
Experiments on the Middlebury data base, camera phone movies and simulations are given in
section 4.

2 The deblurring filter formalism

This section provides the formalism of the deblurring filter.
Video temporal filters consist in multiplying the k-th image frame, for k P t0, ..., L � 1u,

by a weight αk P R. All images are then added together to get the filtered frame. The filter
can be formalized without loss of generality (w.l.o.g.) for an arbitrary motion blur direction.
Indeed, the use of a temporal filter does not require its knowledge. If the motion direction is
known, any temporal video filter α boils down to the 1D convolution of the 1D restrictions of
the observed scene in that direction, with the 1D filter 1

|v|αp
t
v q where v is the velocity measured

in (signed) pixels/frame. Since the observation has noise, the expected value at position x of
the scene will be denoted by upxq. Thanks to the optical frequency cutoff, the ideal scene u is
assumed to be r�π, πs band limited, and to have finite energy: u P L1pRq X L2pRq. Consider
the discrete temporal filter

αptq �
L�1̧

k�0

αk1rk∆t,pk�Rq∆trptq, (1)

where αk P R, R,∆t ¡ 0, and a scene upx�vtq moving at velocity v in (signed) pixel/∆t. Here,
1

∆t represents the camera frame rate and R represents the duty ratio, i.e., the percentage of time
where the camera integrates photons. As an example, when R � 1 the camera can integrate
photons without break between two frames and the model boils down to the one covered in [4].
A more common case, that applies to many more sensors and practical situations, is the case
where R P p0, 1q which implies that the camera has a “dead time” between consecutive frames
namely on the time intervals of the form rpk �Rq∆t, pk � 1q∆ts. Note that the case R P p0, 1q
arises naturally in many applications. Indeed, it is not possible to tune 1) the frame rate 1

∆t so
that the video can be displayed on some given video format, 2) the exposure time so that the
image frames are correctly exposed (no under/over exposure) while having a 100% duty cycle,
i.e., R � 1 in equation (1).

1The ratio of time where the camera integrates photons over the total time needed to produce one image
frame.
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We wish to design α so that it inverts the motion blur. The filter design is easier in
a continuous setting. Therefore, we shall assume first that αptq P L2pRq is arbitrary (not
necessarily of the form given by equation (1)). In general such temporal filter is not usable in
practice because the frame rate of a video camera can be high but is finite. Fortunately, the
following theorem 2.1 permits to get back a filter of the form of (1) from any continuous filter
α P L2pRq.

The temporally filtered frame at pixel n is a linear combination of weighted acquired frames
with weights αk. Therefore, under the classic Poisson image acquisition model the filtered
samples are

obspnq �
L�1̧

k�0

αkP

�» pk�Rq∆t

k∆t
upn� vtqdt

�
.

(The notation X � Y means that the random variables X and Y have the same law, Ppλq de-
notes a Poisson random variable with intensity λ.) Indeed, each observed frame is the realization

of a Poisson noise with expectation equal to the motion blurred scene
³pk�Rq∆t
k∆t upn� vtqdt.

Consequently, the expected value of the filtered frame is Epobspnqq � p 1
vαp

.
v qq �uqpnq. (Here

and elsewhere, � denotes the classic continuous convolution on R.) If the filtered samples
are interpolated by the Shannon-Whittaker method as a r�π, πs band limited function, the
expectation of the Fourier transform of the filtered image is

Ep ˆobspξqq � α̂pξvqûpξq. (2)

(Here and elsewhere û denotes the classic continuous Fourier transform on R.)
From (2) we deduce that the desired temporal filter is α̂pξvq � 1r�π,πspξq or equivalently

α̂pξq � 1r�π|v|,π|v|spξq. Indeed, since u is r�π, πs band limited this filter α restores perfectly the
ideal scene u (in expectation). This means that the temporally filtered frame will be sharp.
Indeed, from (2) we have Epfpξqq � ûpξq for ξ P r�π, πs. In addition this filter provides the
lowest variance (lowest MSE). Indeed, with this choice for α, the bias is null. Furthermore,

it is shown in [5] that the MSE of the filtered frame is equal to
³π
�π

}α}2
L2}u}L1

|α̂pξvq|2
dξ. From this

formula and using Jensen’s inequality we obtain that for a known velocity v the temporal filter
αptq � sincptvq is not only able to deblur the motion blur but it is also optimal in terms of
MSE.

Assuming the existence of a maximal velocity vmax we deduce that the use of the filter
αptq � sincptvmaxq will grant a sharp image for all velocities v P r�|vmax|, |vmax|s. Indeed,
for any v P r�|vmax|, |vmax|s from (2) we have Epfpξqq � 1r�|vmax|π,|vmax|πspξvqûpξq � ûpξq for
any ξ P r�π, πs. Having seen that the (time continuous) filter we wish to implement comes
from a zoomed sinc funtion we can now provide its discretization following the form given by
equation (1).

Discrete filter design Consider β P L2pRq a temporal filter invertible for all velocities below
|v|, i.e., β̂pξvq � 0 for all ξ P r�π, πs. Since u is r�π, πs band limited the values of β̂ outside
r�π, πs do not matter and we can w.l.o.g. assume that β̂ is zero on Rzr�π, πs. Therefore, we
wish to deduce from β a discrete filter α of the form αptq �

°
k αk1rk∆t,pk�Rq∆trptq such that

α̂pξvq � β̂pξvq for ξ P r�π, πs, which is equivalent to R∆tsincp ξvR∆t
2π qe

�iR∆tξv
2

°
k αke

�ik∆tξv �

β̂pξvq and therefore to

β̂pξvqei
R∆tξv

2

R∆tsincp ξvR∆t
2π q

1r�π,πspξq �
¸
k

αke
�ik∆tξv

1r�π,πspξq. (3)
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As soon as |v|R∆t   2 the left-hand side of (3) belongs to L2pr�π, πsq. Therefore, formula (3)
can be seen as the Fourier series decomposition of the left hand side on the Fourier basis on
the interval r�T2 , T2 s where T � 2π

|v|∆t . Thus, the temporal sampling of the left hand side of (3)

requires that |v|∆t   1 in order to get T
2 ¡ π so that r�π, πs � r�T

2 ,
T
2 s. Hence, provided

|v|∆t   1 equation (3) is valid and pαkqk are explicitly given by the Fourier series coefficients

of the function ξ ÞÑ β̂pξvqei
R∆tξv

2

R∆tsincp ξvR∆t
2π

q
1r�π,πspξq, i.e., αk �

1
2π

³π|v|∆t
�π|v|∆t

β̂p ξ
∆t

qei
ξR
2

R∆tsincp ξR
2π

q
eikξdξ. Thus we

have

Theorem 2.1. Let β P L2pRq be a band-limited temporal filter that satisfies β̂pξvq � 0 for
ξ P r�π, πs,i.e., invertible for all r�π, πs band limited functions. If |v|∆t   1 there exists a
discrete filter of the form αptq �

°
k αk1rk∆t,pk�Rq∆trptq, where R P p0, 1s represents the sensor

duty ratio, and pαqkPZ P `2pZq such that α̂pξvq � β̂pξvq on r�π, πs. Moreover, the coefficients

are explicitly given by αk �
1

2π

³π|v|∆t
�π|v|∆t

β̂p ξ
∆t

qei
ξR
2

R∆tsincp ξR
2π

q
eikξdξ.

We now give examples of discrete temporal filters designed to deblur movies.

3 Examples of discrete filter

As we have seen in section 2 the temporal filter αptq � sincpvmaxtq permits to guarantee a
sharp image for all velocities v P r�|vmax|, |vmax|s. Indeed, this ideal filter convolves spatially
(in motion direction) the observed scene by a zoomed sinc function whose cutoff is beyond the
cutoff of observed scene u. Consequently, the frequency content of the observed scene remains
unchanged, despite the motion. In practice, this means that no velocity estimation and/or local
deconvolution is needed: the observed image does not change if v�0 or if |v|�|vmax|. Thanks
to the sampling theorem 2.1 the discrete filters inherit this property. If the frequency cutoff of
the sinc function is larger than the frequency cutoff of the scene, the above theory entails that
the resulting image is sharp. This remains valid for all velocities not exceeding |vmax|, where
|vmax| � 1 if we measure the velocity in pixel(s)/frame by normalizing the time unit between
two frames so that ∆t � 1. In addition, the filter works for any motion direction. Therefore,
the motion direction needs not to be estimated. To sum up, the deconvolution is blind but
mathematically well posed. We now give the numerical method that implements this blind
deconvolution and give explicitly the filter coefficients pαkq varying the sensor duty ratio R.

Given L movie frames pIkqk k P t0, ..., L � 1u the filtered image is
°L�1
k�0 αkIk. The fil-

ter coefficients obtained from theorem 2.1 and normalized so that
³
αptqdt � 1 are (0.00149798,

�0.00264995, 0.00588158, �0.0220471, 1.03463, �0.0220471, 0.00588158, �0.00264995, 0.00149798)
for a discrete filter of length L � 8, vmax � 1, R � 1

2 , (0.00404822, �0.00710249, 0.0154352,
�0.0534351, 1.08211, �0.0534351, 0.0154352, �0.00710249, 0.00404822) when L � 8, vmax � 1,
R � 3

4 and ( 0.00946047, �0.0163343, 0.0342235, �0.106215, 1.15773, �0.106215, 0.0342235,
�0.0163343, 0.00946047 ) when L � 8, vmax � 1, R � 1 respectively. The corresponding
functions αptq and their Fourier transforms are depicted in figure 1.

4 Experiments

This section compares the effect of the temporal filter both quantitatively and qualitatively.
The simulations are based on [6]. The table 1 contains PSNR values. Real experiments using
the Middlebury database are shown in figures 2-3. Note that many more experiments and a
gallery that allows to alternate between filtered and unfiltered frames is available at http:

//www.math.ucla.edu/~tendero/blind_deconvolution/blind_deconvolution.html.
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Figure 1: Let panels: the temporal filter value αptq. Right panels: the corresponding Fourier
transforms (modulus) of αptq that approximate the constant Fourier transform of the ideal filter
(∆t � 1) and vmax � 1. The filter length is L � 8, ∆t � 1, vmax � 1. From top to bottom:
R � 1

2 , 3
4 and R � 1.

Table 1: This table provides the PSNR evolution in dBs when the filter length is L � 8 and
R � 1. The method permits to gain up to 3.2dB.

Velocity v � 0 v � 0.5 v � 1 v � 1.5 v � 2

House �0.7 �0.5 �1.1 �2 �1.4
Boat �0.7 �0.4 �1.5 �3.2 �1.1
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Figure 2: This figure shows the result of the proposed sinc filter on two Middlebury sequences,
army (top-left) and basketball (bottom-left) and two self made camera phone sequences (top
right, bottom right). Each pair shows one frame of the sequence followed by the filtered version.
Details are shown in figure 3. The duty ratio factor R was tuned empirically and is set to
R � 0.8 in these experiments. Note that a gallery that allows the user alternated between
filtered and unfiltered image frames is available at http://www.math.ucla.edu/~tendero/

blind_deconvolution/blind_deconvolution.html.
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Figure 3: This figure shows the result of the proposed sinc filter on two self made camera phone
sequences. On the left side: one frame of the sequence, on the right side: crops of the filtered
image.

5 Conclusion

We have proposed a new filter to post-process video sequences acquired by classic cameras.
The filter design takes into account for the inter frame delay or duty ratio (dead times between
consecutive frames). We show that video sequences can be deblurred by a fast fixed temporal
filter that requires only the knowledge of the maximal observed velocity and the camera frame
rate/exposure time set up. In other words, 1) it is possible to turn any camera into a camera
that ensures a sharp image for a broader range of velocities than a standard camera 2) it is
possible to perform an automatic blind movie deconvolution.

Note Other examples and C++ implementation are available at http://www.math.ucla.

edu/~tendero/blind_deconvolution/blind_deconvolution.html
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