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Abstract

The analysis of the vestibular system (VS) is an important research topic
in medical image analysis. VS is a sensory structure in the inner ear for
the perception of spatial orientation. It is believed several diseases, such
as the Adolescent Idiopathic Scholiosis (AIS), are due to the impairment
of the VS function. The morphology of the VS is thus of great research
significance. A major challenge is that the VS is a genus-3 surface. The
high-genus topology of the VS poses great challenges to find accurate point-
wise correspondences between the surfaces and whereby perform accurate
shape analysis. In this paper, we present a method to obtain the landmark
constrained diffeomorphic registration between the VS surfaces based on the
quasi-conformal theory. Given a set of corresponding landmarks on the VS
surfaces, a diffeomorphism between the VS surfaces that matches the features
consistently can be obtained. The basic idea is to iteratively search for an
admissible Beltrami coefficient, which is associated to our desired landmark
matching registration. With the obtained surface registrations, vertex-wise
morphometric analysis can be carried out. Two types of geometric features
are used for shape comparison. One is the collection of homotopic loops on
each canals of the VS, which can be used to measure the local thickness of the
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canals. From the homotopic loops, centerlines can be extracted. By examin-
ing the deviations of the centerlines from the best fit planes, bendings of the
canals can be detected. The second geometric feature is the minimal surface
enclosed by the homotopic loop. From the minimal surfaces of each homo-
topic loops, cross-sectional area of the canals can be evaluated. To study the
local shape difference more comprehensively, a complete shape index, which
is defined using the Beltrami coefficients and surface curvatures, is used. We
test proposed registration method on 15 VS of normal control subjects and
12 VS of patients suffering from AIS. Experimental results show the efficacy
and accuracy of the proposed algorithm to compute the VS surface registra-
tion. Shape analysis has also been carried out using the proposed geometric
features and shape index, which reveals shape differences in the posterior
canal between normal and diseased AIS groups.

Keywords: Surface registration, landmark, high-genus surface, vestibular
system, universal covering space, Beltrami coefficients, homotopic loops,
minimal surfaces

1. Introduction

Surface-based morphometry has become one of the most ubiquitous shape
analysis techniques in medical image analysis. For example, in human brain
mapping, the morphometry of brain cortical surfaces has been extensively
studied to detect shape changes during disease progression or healthy aging.
The hippocampal surface morphometry has also been an active research field
to study the Alzheimer’s disease.

In order to compare two anatomical surfaces, finding accurate point-wise
correspondences between them is of utmost importance. Such a process is
called surface registration. Surface registrations between simply-connected
open or closed surfaces have been extensively studied and various algorithms
have been developed. However, registration between high-genus surfaces is
comparatively less studied. The high-genus topology of the surfaces makes
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Figure 1: (A) shows the VS surface of a normal subject. (B) shows the VS surface of an
AIS subject.

the registration procedure much more challenging. One typical example of
high-genus anatomical structures is called the vestibular system (VS) (see
Figure 1). The VS is a genus-3 structure situated in the inner ear, which is
a sensory structure responsible for detecting head movements and sending
postural signals to the brain. The morphometry of VS plays an important
role in the analysis of various diseases such as the Adolescent Idiopathic Sco-
liosis (AIS) disease. The AIS is a 3D spinal deformity which affects about 4%
schoolchildren worldwide. The etiology of AIS is still unclear but believed to
be a multi-factorial disease. One popular hypothesis was suggested to be the
structural changes in the VS that induce the disturbed balance perception,
and further cause the spinal deformity. The morphometry of the VS becomes
important to understand the disease.

Our goal in this paper is develop an effective algorithm to obtain ac-
curate registrations between VS surfaces so that systematic shape analysis
can be performed. In medical imaging, landmark-based surface registration
may sometimes be advantageous, since expert knowledge of feature corre-
spondences can be incorporated into the registration model. Although var-
ious landmark-based registration models have been recently proposed, most
of them focus on computing landmark matching registrations for simply-
connected surfaces. For higher genus surfaces, they are often cut into several
simply-connected patches. Landmark-based registration is then obtained by
registering every corresponding simply-connected patches. The drawback is
that consistent boundary cuts must be accurately delineated, which is usu-
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ally difficult. In this work, we propose an effective algorithm to obtain the
landmark constrained diffeomorphic (1-1 and onto) registration between the
VS surfaces, which is independent of the boundary cuts. Given a set of cor-
responding landmarks on the VS surfaces, a diffeomorphism between the VS
surfaces that matches features consistently can be obtained.

To simplify the registration problem, the VS surfaces are firstly param-
eterized conformally into the hyperbolic disk H in R2, which is endowed
with the hyperbolic metric. An iterative scheme is then used to search for
a landmark-matching diffeomorphism. It is done by iteratively search for an
admissible Beltrami coefficient, which is associated to our desired landmark-
aligned diffeomorphism. Using the proposed method, accurate point-wise
correspondences between the VS surfaces that match corresponding features
can be efficiently obtained within 30 seconds.

Once the surfaces have been registered, vertex-wise morphometric analy-
sis can be carried out. Various corresponding geometric features can also be
extracted on the VS, which can be used for the shape comparison. In this
paper, we extract two kinds of geometric features on the VS surfaces. One is
the homotopic loops on each canals of the VS. A set of geodesic homotopic
loops is firstly extracted on the mean VS surface. With the registration, cor-
responding homotopic loops on every VS surfaces can be extracted. These
homotopic loops can be used to study the local geometry and thickness at
each position of the VS surface. From the homotopic loops, the centerlines
can be extracted, which are curves passing through the centroids of homo-
topic loops. By examining the deviations of the centerlines from the best fit
plane, bendings of the canals can be detected. The second geometric feature
is the minimal surfaces enclosed by the homotopic loops. With these minimal
surfaces, cross-sectional area at each position of the canals can be evaluated.
To study the local geometric difference in details, a complete shape energy,
which is defined using the Beltrami coefficients and surface curvatures, is also
applied.

We have evaluated the proposed registration algorithm on 15 VS of nor-
mal control subjects and 12 VS of AIS patients. Results demonstrate the
efficiency and accuracy of the proposed method to compute the VS surface
registration. Shape analysis has also been carried out using the proposed
shape features and shape energy, which reveals shape differences in the pos-
terior semi-circular canal between the normal control and diseased subjects.

In short, the contributions of this work are two-folded. Firstly, we propose
a method to compute the landmark constrained diffeomorphic registration
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between the high-genus surfaces, which is independent of the boundary cuts.
Given any two corresponding sets of landmarks, we can obtain a smooth
and bijective map between the high-genus surfaces aligning the landmarks
consistently. Secondly, we propose several shape analysis models to study
the geometric differences between corresponding VS surfaces.

2. Related works

About 4% of teenagers suffered from Adolescent Idiopathic Scoliosis (AIS).
Developed AIS leads to physical pains and lower the pulmonary function. Vi-
tal capacity of the lung could be reduced due to deficit respiratory muscle
strength under abnormal bone and muscle structure [1]. AIS also affects the
living quality of the patients, disability on work hours and activity level.
Perception of limitation due to the disease might increase the chance for de-
pression [2]. Recent researches suggest that AIS may be a cause of other
mental illnesses such as eating disorders [3].

The etiopathology of AIS is still unknown and there are clinical and sci-
entific studies to investigate the cause from different aspects. Poor postural
balance is one of the earliest characteristics recognized and being studied
in patients with AIS [3, 4, 5]. Experiments demonstrated that the develop-
ment of AIS is related to the impaired vestibular system [6, 7]. Lambert et
al. [8] demonstrated a possible relationship between the vestibular system
and scoliosis in frog models by removing the labyrinthine end organs at their
larval stages. Characteristics similar to scoliosis such as spinal deformation
appeared after their metamorphosis. Therefore, the morphometric analysis
of the VS is of utmost importance to understand AIS.

There has been a lot of work on shape analysis for anatomical surfaces.
In order to perform shape analysis effectively, surface registration is neces-
sary. Surface registration has been extensively studied. For genus 0 closed
surface registration, conformal surface registration, which minimizes angu-
lar distortion and preserves the local geometry well, has been widely used
[9, 10, 11, 12, 13]. Hurdal and Stephenson [12] proposed to compute the con-
formal parameterizations using circle packing and applied it to registration
of human brains. Gu et al. [10] and Wang et al. [13] proposed to compute the
conformal parameterizations of human brain surfaces for registration using
harmonic energy minimization and holomorphic 1-forms. Quasi-conformal
mapping, as a generalization of conformal map, has been applied to obtain
surface registration [14, 15, 16]. For example, Lui et al. [15] proposed to com-
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pute quasi-conformal registrations between hippocampal surfaces based on
the holomorphic Beltrami flow method, which matches geometric quantities
(such as curvatures) and minimizes the conformality distortion [14].

In many situations, shape informations such as curvature or intensity are
important. Several registration algorithms have been proposed to incorpo-
rate these informations into the registration models. Lyttelton et al. [17]
computed surface registrations with surface curvature matching. Fischl et
al. [9] proposed an algorithm for brain registration that better aligns corti-
cal folding patterns, by minimizing the mean squared difference between the
convexity of the surface and the average convexity across a set of subjects.
Lord et al. [18] proposed to match surfaces by minimizing the deviation of
the registration from isometry. Yeo et al. [19] proposed the spherical demons
method, which adopted the diffeomorphic demons algorithm [20], to drive
surfaces into correspondence based on the mean curvature and average con-
vexity.

Feature landmarks, such as sulcal landmarks on the human brains, pro-
vide important human knowledge. Landmark-matching registration algo-
rithms are proposed to take these informations into account. Bookstein [21]
proposed to obtain a landmark-matching registration using a thin-plate spline
regularization (or biharmonic regularization). Tosun et al. [22] proposed to
combine iterative closest point registration, parametric relaxation and inverse
stereographic projection to align cortical sulci across brain surfaces. These
diffeomorphisms obtained can better match landmark features, although not
perfectly. Wang et al. [23] and Lui et al. [24] proposed to compute the op-
timized conformal parameterizations of brain surfaces by minimizing a com-
pounded energy. Lui et al. [25] proposed the use of vector fields to represent
surface maps and reconstruct them through integral flow equations. Addi-
tionally, time dependent vector fields can be used to represent the set of all
surface maps. Joshi and Miller [26] proposed the generation of large defor-
mation diffeomorphisms for landmark matching, where the registrations are
generated as solutions to the transport equation of time dependent vector
fields.

Most of the existing algorithms for surface registration and shape anal-
ysis can only deal with simply-connected open or closed surfaces. Analyz-
ing high-genus surfaces is generally challenging because of their complicated
topologies. Recently, some works have been carried out to register and ana-
lyze high-genus surfaces. Zeng et al. [27] proposed to measure the geodesic
spectra on VS surfaces using the Ricci flow. Length and thickness of each
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canal were measured and the difference between two groups of subjects was
shown statistically significant. Partition approaches have also been proposed
to analyze and register VS surfaces by partitioning them into simple open
surface patches [28]. However, partition approaches greatly rely on the con-
sistency of surface cuts, which are usually difficult to obtain. Geometric
registration of high-genus surfaces that matches the surface curvatures has
been proposed in [29]. Surface registration is obtained by minimizing the
curvature mismatching energy, Since the energy is non-convex, the obtained
registration can possibly be the local minimizer. Thus, this algorithm can
give good registration results only if two surfaces have similar curvature dis-
tributions.

3. Background

In this section, we describe some basic mathematical theories closely re-
lated to our work.

3.1. Uniformization of high-genus surfaces

Every Riemann surface of genus g > 1 is conformally equivalent to a
Riemannian metric, called the uniformization metric or the hyperbolic metric,
whose induced Gaussian curvature is equal to −1.

The high-genus surface S can be conformally embedded into the Poincaré
disk H ⊂ R2. The Poincaré disk is a unit disk equipped with the hyperbolic
metric:

ds2 =
dx2 + dy2

(1− x2 − y2)2
(1)

In fact, S can be sliced open along the canonical homotopic basis {a1, b1,
..., ag, bg} of the fundamental domain π(S, p) at a point p ∈ S, for which
any two loops of the basis intersect only at p (see Figure 2(A)). Slicing
along the basis, we get a simply-connected open surface Scut. The boundary
of Scut is given by a1b1a

−1
1 b−11 · · · agbga−1g b−1g . Scut can then be conformally

parameterized 1-1 and onto a domain D̃i ⊂ H, which is called a fundamental
polygon (see Figure 2(B)). Denote the parameterization by π̃ : Scut → D̃i.

The edges of D̃i satisfy the periodic boundary conditions. More specifically,
there exist Möbius transformations {ϕ1, φ1, · · · , ϕg, φg} (called the Fuchsian
group generators) such that:

ϕi(π̃(ai)) = π̃(a−1i ); φi(π̃(bi)) = π̃(b−1i ) (2)
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Figure 2: (A) shows a vestibular system (VS) surface. (B) shows its fundamental polygon
in the hyperbolic disk. (C) shows the universal covering space of the VS surface.

By gluing infinitely many copies of D̃i together along its boundaries, we
get the Poincaré disk H. π̃ is extended to a surjective map π̃ : H→ S, which
is called the covering map, satisfying

π̃−1(S) =
⋃
i∈I

D̃i, (3)

where D̃i and D̃j intersects only at the edges of the fundamental polygon
(see Figure 2(C)).

3.2. Basic quasi-conformal theories

Let Ω1 and Ω2 be 2D domains. Every diffeomorphism f : Ω1 → Ω2 is
associated to a unique Beltrami coefficient (BC), which measures the confor-
mality distortion of the f := u+ iv. Here, we consider f as a complex-valued
function on Ω1. The BC, µ : Ω1 → C can be computed by the following
equation:

µ(x, y) = (
∂f

∂x
+ i

∂f

∂y
)/(

∂f

∂x
− i∂f

∂y
). (4)

Given a smooth BC µ : C → C with ‖µ‖∞ < 1. There is always a
diffeomorphism of C that satisfies the equation (4) [30]. However, suppose
Ω1 and Ω2 are arbitrary domains and extra constraints (such as landmark
constraints) are enforced. Then, an arbitrary BC µ : Ω1 → C may not be
associated to a diffeomorphism f : Ω1 → Ω2 subject to the extra constraints.
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In this case, a BC is called admissible if it is associated to a quasi-conformal
map subject to the given constraints.

In this work, we use BCs to control the bijectivity of the mappings [31].

4. Constrained diffeomorphic registration for high-genus surfaces

In this section, we describe the proposed landmark constrained surface
registration algorithm for high-genus surfaces in details.

4.1. Motivation

Suppose S1 and S2 are two genus-3 VS surfaces. Let {pi ∈ S1}ni=1 and
{qi ∈ S2}ni=1 be the corresponding feature landmarks on S1 and S2 respec-
tively. Note that the feature landmarks can either be landmark points or
curves. Our objective is to look for a smooth diffeomorphism f : S1 → S2

that matches the corresponding feature landmarks consistently. That is,
f(pi) = qi for i = 1, 2, ..., n. Although various surface registration algorithms
have been recently proposed, the topology of the high-genus surfaces poses
a great challenge towards this goal.

In [29], a variational model has been proposed to obtain geometric reg-
istration between high-genus surfaces that matches surface curvatures. The
basic idea is to conformally embed each high-genus surface into the Poincaré
disk H in the 2D plane using the Ricci flow method. Registration is then
carried out on H through minimizing an energy functional involving a cur-
vature mismatching term. This algorithm gives good surface registration
results if the two surfaces are geometrically similar. The registration result
may be inaccurate if the two surfaces have very different curvature distri-
butions. For example, the VS surfaces of a normal subject and a diseased
patient have quite different surface curvatures. Curvature may not be a valid
information to guide the surface matching. Applying the algorithm in [29]
on these surfaces may be susceptible to mis-registration. In this situation,
landmark-based registration may be more advantageous, since expert knowl-
edge of feature correspondences can be incorporated into the model. Various
landmark-based surface registrations have been recently proposed. However,
most of them focus on computing landmark constrained registrations for
simply-connected surfaces. This motivates us to look for an effective algo-
rithm to obtain a diffeomorphism between high-genus surfaces that aligns
features consistently.
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4.2. Contributions
Similar to [29], we first simplify the registration problem by conformally

embedding S1 and S2 into H in R2. An iterative scheme is then used to look
for a landmark-matching diffeomorphism between the conformal parameter
domains. The strategy is to iteratively search for an admissible Beltrami
coefficient associated to our desired landmark-aligned diffeomorphism. Here,
a BC is called admissible if it is associated to a bijective quasi-conformal
map subject to the landmark constraints. In [32], the surface Teichüller
map (T-Map) was computed through adjusting BCs. The BC is normalized
in each iteration to an adjusted BC with a constant norm. However, this
algorithm does not suit our purpose for two reasons. Firstly, it works only on
simply-connected open or closed surfaces. In our case, genus-3 VS surfaces
are considered. Secondly, the algorithm computes surface T-Map, whose
conformality distortions are uniform and spread over the whole surface. It is
unnatural in medical applications.

Motivated by the above observations, we propose a landmark constrained
registration algorithm for high-genus surfaces with a smooth and natural dis-
tribution of conformality distortions. The proposed algorithm can compute
a diffeomorphism between two high-genus surfaces that matches prescribed
corresponding landmarks consistently. The contributions are two-folded:

1. First, we propose a landmark-constrained registration algorithm
for general high-genus surfaces. This is a novel extension of the
curvature-matching registration algorithm proposed in [29]. We stress
that VS surfaces of different subjects have quite different curvature dis-
tributions, curvature-matching registration may be susceptible to mis-
registration. Therefore, a landmark-based registration for high-genus
surfaces is necessary.

2. Second, we propose a modified iterative scheme, which extends the
scheme in [32], to search for an admissible BC under landmark con-
straints with a natural distribution for general high-genus surfaces.
The key idea is to find an admissible BC under landmark constraints
between the Poincaré disks. This admissible BC gives rise to a bijec-
tive and landmark-matching registration between the Poincaré disks.
The desired constrained registration between the high-genus surfaces
S1 and S2 can then be obtained by the composition map with their
conformal parameterizations. The resultant registration has a smooth
and natural distribution of conformality distortions.
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4.3. Detailed discussion of the registration algorithm

Suppose Scut1 and Scut2 are the fundamental domains, obtained by slicing
along the homotopic bases {a1, b1, a2, b2, a3, b3} and {c1, d1, c2, d2, c3, d3} of S1

and S2 respectively. Let Φ1 : Scut1 → D̃1 ⊂ H and Φ2 : Scut2 → D̃2 ⊂ H be
the conformal parameterization of Scut1 and Scut2 respectively. We apply the
Ricci flow method [33] to obtain Φ1 and Φ2 in this work. The idea of Ricci
flow is to conformally deform the surface metric g = (gij(t)) according to its
induced Gaussian curvature K(t) to its uniformization metric through the

heat flow equation on the metric:
dgij(t)

dt
= −2(K(t) + 1)gij(t). g(∞) is the

desired uniformization metric. From the uniformization metric, the surface
can be conformally embedded onto a fundamental polygon in H.

With the conformal parameterization of S1 and S2, the registration pro-
cess can be carried out on H. Our goal is to look for a diffeomorphism
g : H→ H such that:

(1) Landmark constraints:
g(φ1(pi)) = φ2(qi) for i = 1, 2, ..., n.

(2) Periodic conditions on boundary cuts:
ϕi(g(a′i)) = g(a′−1i ) and φi(g(b′i)) = g(b′−1i ),

where: {a′1, b′1, a′2, b′2, a′3, b′3} are images of the homotopic basis on S1 in
H. {ϕ1, φ1, ϕ2, φ2, ϕ3, φ3} are the Fuchsian group generators.

(1) is the landmark constraints which require corresponding feature land-
marks to be aligned consistently. For (2), note that our proposed regis-

tration process is carried on H, but not on the fundamental polygons D̃1

and D̃1, without enforcing the correspondences of the homotopic basis of
Scut1 and Scut2 . In other words, ai may not correspond to ci and bi may
not correspond to di for 1 ≤ i ≤ 3. Therefore, some periodic conditions
must be satisfied on H. More specifically, suppose Φ−11 (S1) =

⋃
i∈I D̃

1
i and

Φ−11 (S2) =
⋃
i∈I D̃

2
i , we require that g is associated to a mapping f : S1 → S2

such that f = Φ2 ◦ g ◦Φ1|−1D̃1
i

for any i ∈ I. In other words, we require that g

can be lifted to a surface map f : S1 → S2. (2) ensures the above condition
to be satisfied.

We proceed to solve the above constrained problem with an iterative
scheme, using the quasi-conformal theory. Since g is a diffeomorphism, its
associated BC µg : H1 → C must have supreme norm strictly less than 1
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(||µg||∞ < 1). In fact, the Jacobian Jg is closely related to µg:

Jg = |∂g
∂z
|2(1− |µg|2) (5)

Hence, Jg > 0 if and only if ||µg||∞ < 1. By inverse function theorem, g
is a diffeomorphism if and only if ||µg||∞ < 1.

Therefore, to obtain g, our strategy is to iteratively search for a sequence
of BCs {µj}∞j=1 associated with a sequence of mappings {gj}∞j=1 such that:
µj → µg with ||µg||∞ < 1 and gj → g as j → ∞. More precisely, iterative
scheme can be explained geometrically as follows.

µ0 −→ . . . −→ µj −→ . . . −→ µ∞ = µg
l l l l
g0 −→ . . . −→ gj −→ . . . −→ g∞ = g

(6)

For the initial map g0 : H → H, we choose the harmonic map satisfy-
ing the landmark constraints and the correspondences of the boundary cuts
given by the arc-length parameterization. Note that with the landmark con-
straints, g0 is unlikely bijective. According to the quasi-conformal theory,
a non-bijective g0 is associated with a BC µ0 with supreme norm greater
than 1. Our goal is to look for an admissible BC, µ, with ||µ||∞ < 1, which
is associated to a quasi-conformal map between H1 and H2 satisfying the
constraints (1) and (2). We proceed to adjust µ0 iteratively to obtain our
desired optimal BC. More generally, suppose gn is obtained at the nth itera-
tion, whose BC is given by µn. Our proposed algorithm can be described as
a chop-smooth-reconstruct iterative procedure. We now describe each step
in details.

Chop

Suppose gn is non-bijective. Then, ||µn|| > 1. We proceed to project
µn to a BC with supreme norm strictly less than 1. This can be done by
chopping down the norm of µn. The chopping is to eliminate the overlaps
of gn, since |µn| > 1 indicates the occurrence of flips. More specifically, the
chopping operation is defined as follows:

µ̃n =

{
(1− ε) µn

|µn| , if |µn| ≥ 1− ε
µn, if |µn| < 1− ε

(7)
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where ε > 0 is small.
Here, we remark that the chopping of BC was also applied in [29] to

control the bijectivity of the mapping. However, note that there is no land-
mark constraint enforced in [29]. Hence, an admissible BC associated to a
bijective map can be easily obtained by solving the Beltrami equation. In
our case, landmark constraints are enforced and the challenge is to search
for an admissible BC associated to a bijective map satisfying the landmark
constraints consistently. Hence, in this work, we need to iteratively search
for an admissible BC associated to a landmark-matching diffeomorphism.

Smooth

A smooth mapping is associated with a smooth BC. In order to obtain a
smooth registration, we proceed to smooth out µ̃n. This can be done by a
Laplace smoothing on µ̃n:

µ′n(vi) =
1

Ni

∑
vj∈Ni

µ̃n(vj) (8)

where Ni is the one-ring neighborhood of vertex vi. This simple smoothing
operation allows us to further reduce the norm of BC (and thus reduce the
conformality distortions). It also helps to obtain a smooth and naturally
distributed BC, and hence the resultant registration has a smooth and natural
distribution of conformality distortions.

Reconstruct

After the adjusted BC µ′n is obtained, we need to find an associated map
gn+1 : H→ H satisfying the landmark constraints (1) and periodic conditions
(2) on the boundary cuts. Note that µ′n may not be admissible. In other
words, subject to the landmark constraints, there may not exist a quasi-
conformal map whose BC is exactly equal to µ′n. We proceed to look for a
map gn+1 whose BC is as close to µ′n as possible.

As in [31], the reconstruction of the quasi-conformal map from an ad-
missible BC (without landmark constraints) can be reduced to solving an
elliptic PDE. Also, in our case, the reconstructed map gn+1 from H to itself
can be lifted to a surface map fn+1 : S1 → S2. Hence, the periodic condi-
tion (2) on the boundary cuts of the fundamental polygon must be satisfied.
Following [29], the elliptic PDE subject to the periodic condition (2) can be
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reduced to the following non-linear equation in the discrete case:

Az̃ +Q(z̃) = b, (9)

where z̃i = gn+1(vi) (vi ∈ H), A = (wij) is the matrix representation dis-
cretizing the differential operator ∇· (D ∇), and Q(i, j) is the Mobiüs trans-
formation that transforms outside vertex ṽj of fundamental polygon to its
inside copy vj in the fundamental polygon, and is zero elsewhere, multiplied
by wij.

In our work, landmark constraints (1) are also enforced. In other words,
the following constraints should be added to the nonlinear equation (9):

z̃j := gn+1(pj) = qj (10)

for 1 ≤ j ≤ n, where {pj}nj=1 and {qj}nj=1 are the corresponding landmark
constraints.

We apply the Newton’s method to solve the simultaneous equations (9)
and (10). We call such process the landmark constrained hyperbolic Beltrami
solver, and denote it by HBSLM .

The reconstruction of map using HBSLM ensures the constraints (1) and
(2) are both satisfied in each iteration. The BC is iteratively chopped down
to an optimal BC with supreme norm strictly less than 1, which is associated
to a bijective and landmark-matching quasi-conformal map.

In short, motivated by [29], we develop an efficient algorithm to compute
constrained diffeomorphic registration for high-genus surfaces with a smooth
and natural distribution of conformality distortion. The algorithm can be
summarized as follows.

Algorithm 1 :
Input : universal covering space U1 and U2, landmark constraints {pi}ni=1 ↔
{qi}ni=1

Output : hyperbolic quasi-conformal map f : U1 → U2, s.t. f(pi) = qi,
i = 1, .., n

1. Compute initial map f0 and Beltrami coefficients µ0 = µ(f0), n = 0;

2. Chop and smooth µn by equation (7,8) to obtain µ̃n;

3. Reconstruct fn+1 from µ̃n via HBS: fn+1 = HBSLM(µ̃n);
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4. Compute Beltrami coefficients µn+1 = µ(fn+1);

5. If ‖µn+1 − µn‖∞ < ε, stop the process, obtain the map f = fn+1.
Otherwise n = n+ 1, go to step 2;

5. Shape Analysis models

With the registrations of the VS surfaces, corresponding geometric fea-
tures can be extracted to analyze the shape differences. A complete shape
index can also be defined, which can be used to perform the local shape
analysis of the VS surfaces. In this section, we will describe our proposed
shape analysis models in details.

5.1. Geometric features on the VS surface

In this work, we propose to extract two geometric features for shape
analysis. They are: (1) homotopic loops [34] and (2) minimal surfaces. These
features can be used to understand the geometric patterns of the VS surfaces.

With the registration, we can compute the mean shape of the VS surfaces.
Denote the genus-3 VS mean surface by Smean. A homotopic basis based at
a point p on the surface can be extracted. By cutting along the homotopic
basis, Smean becomes a simply-connected open surface. Smean can be embed-
ded into its universal covering using Ricci flow. On the universal covering
space, we can easily find a canonical homotopic basis {a1, b1, a2, b2, a3, b3},
which intersects only at the base point p and are all hyperbolic geodesic. For
each point q on the curve ai (i = 1, 2 or 3), we can find a geodesic closed loop
cq : [0, 1] → S1 such that cq(0) = cq(1) = q. The geodesic loop cq(t) solves
the following minimization problem:

c1(t) = argminγ(t)

∫ 1

0

√
gγ(t)(γ′(t), γ′(t))dt (11)

all closed loop γ(t) satisfying γ(0) = γ(1) = q. The collection of all loops
cq(t) situated at q on ai (i = 1, 2 or 3) are called the homotopic loops. These
homotopic loops belongs to the equivalence class [ai] of the homotopic group.

Using the obtained registration between the mean surface and any VS
surface, corresponding homotopic loops can be delineated on each VS surface.
Let S be any VS surface. Suppose f : Smean → S is the registration between
Smean and S. The corresponding homotopic loops on S can be easily obtained
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(A) (B)

Figure 3: (A) shows a space curve (left) and minimal surface enclosed by the space curve
(right). (B) left shows the homotopic loops and centerlines of a 3-torus, right shows the
minimal surfaces enclosed by the homotopic loops.

by cSq := f ◦ cq : [0, 1]→ S. These homotopic loops can be used to study the
local geometry and thickness at each positions of the VS surface.

From the homotopic loops, the centerlines can be extracted. Let {cSq }q∈ai
be the collection of all homotopic loops on one canal of the VS surface S.
For each homotopic loop, we can compute its centroid. By joining all the
centroids, we can obtain a curve lying in the interior of one canal of S. This
curve is called the centerline. Using the centerline, bendings of the canals
can be examined. Each canals of the VS surface can roughly be fitted to a
plane. And the three planes are roughly orthogonal to each others. To study
AIS, it is commonly of interest to examine how each canals are deviated from
a plane. Let ~c = ~c(t) be parametric equation of the centerline. We can find
a best fit plane P : ~n · (x, y, z) = λ to the centerline by minimizing:

E(~n, λ,~c) =

∫ 1

0

D(~n, λ,~c(t))2dt, (12)

where D(~n, λ,~c(t)) is the distance of the point ~c(t) from the plane P : ~n ·
(x, y, z) = λ. The distance D(~n∗, λ∗,~c(t)) of the point ~c(t) from the best fit
plane can be used to measure the deviation of the canal from a plane at each
point of the centerline.

Once the homotopic loops on each canals of the VS is extracted, we
can compute the minimal surfaces enclosed by each homotopic loops. With
the minimal surfaces, cross-sectional area at each position of the canals can
be evaluated. Minimal surfaces are defined as surfaces which are critical
points for the area functional. Suppose the homotopic loop l is projected
orthogonally to a convex curve enclosing a domain D in a plane. The minimal
surface is a graph of a function: z = u(x, y), where x and y are the coordinates
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on the plane (see Figure 3(A)). Suppose the homotopic loop is given by
l = l(x, y) for (x, y) ∈ ∂D. The function u(x, y) of the minimal surface
satisfies the following Euler-Lagrange equation:

∇ ·

(
∇u√

1 + |∇u|2

)
= 0, (13)

subject to the constraint that: u|∂D(x, y) = l(x, y). In this work, the minimal
surface is computed by solving equation (13) using the finite element method.
Figure 3(B) shows the minimal surfaces enclosed by the homotopic loops of
a standard 3-torus.

5.2. Complete shape index for local shape analysis

It is often necessary to study the local shape differences between VS
surfaces. For this purpose, a shape index defined on each vertex of the
surface mesh, which quantifies the local shape difference at each position of
the surface, is needed. In this work, we use a complete shape index based on
the Beltrami coefficients and the surface curvatures. Given two VS surfaces
S1 and S2. Suppose f : S1 → S2 be the registration between S1 and S2, as
obtained in the last section. The complete shape index is defined as follows.

Eshape(f) = α|µ|2 + β(H1 −H2(f))2 + γ(K1 −K2(f))2 (14)

where µ is the Beltrami coefficients of f ; H1, H2 are the mean curvatures on
S1 and S2 respectively; and K1, K2 are the Gaussian curvatures on S1 and
S2 respectively. Thus, Eshape : S1 → R is a non-negative real-valued function
defined on S1.

The first term measures the conformality distortion of the surface regis-
tration. The second and third terms measure the curvature differences. It
turns out Eshape is a complete shape index measuring subtle shape differences
between two VS surfaces. More precisely, Eshape(f) = 0 if and only if two
shapes are identical up to a rigid motion. By adjusting the parameters (i.e.,
α, β and γ), Eshape can be made equivalent to other existing shape indices.
For example, when β = 0, Eshape is equivalent to the isometric shape index;
when α = 0, Eshape is equivalent to the curvature index; when β = γ = 0,
Eshape measures the conformality distortion. In our work, we set α, β and γ
to be nonzero to measure complete shape changes.
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Figure 4: Visualization of landmarks on a VS surface from two view angles.

5.3. Vertex-wise statistical morphometric analysis

After the registration is obtained, a vertex-wise statistical morphometric
analysis can be carried out. The vertex-wise morphometric deviation can
be investigated using a two-sample Hotelling’s T-squared test. Before the
analysis, the registered surfaces are rigidly aligned using the iterative closest
point algorithm. The test then measures the position (coordinates) difference
of two corresponding points of the VS surfaces of the AIS group and the
normal control (NC) group. A significant level of 0.001 will be used in this
work.

6. Experimental results

To test the efficacy of the proposed algorithms, experiments have been
carried out on 27 VS surfaces from the normal and AIS groups.

Subject and Imaging Protocol:

In this research, 27 left-side vestibular system samples were studied. The
samples were from two groups of volunteers, the AIS group and the NC group.
The AIS group consists of 12 girls suffering from right-thoracic AIS while
there are 15 age-matched healthy girls in the NC group. MRI scanning is
performed for obtaining T2 weighted images of the inner ears of the volunteers
using a 1.5T MR Scanner (Sonata, Siemens, Erlangen, Germany) with a
quadrature head coil. The imaging protocol is a 3D constructive interference
steady state (CISS) sequence and with parameters including, TR = 11.94ms,
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(A) (B)

Figure 5: (A) shows the VS surface and its canonical fundamental polygons of a normal
subject, left and right, respectively. (B) shows the VS surface and its canonical fundamen-
tal polygons of a AIS subject, left and right, respectively. The canonical cuts are shown
on each surfaces.

TE = 5.97ms, flip angle = 70o, FOV = 130mm, slice thickness s= 1mm, no
gap, matrix = 320× 288 and number of excitation = 1. High quality images
are obtained with the voxel size of 0.5× 0.4× 1.0mm3. The resultant voxel
size is adjusted to 0.2× 0.2× 1.0mm3 after an on-site image interpolation.

6.1. Surface registration of the VS

On each VS surfaces, 8 feature landmarks are located. The landmarks
are selected as follows: (i) 4 landmarks are chosen to be the saddle points
located at the intersections of the three canals; (ii) 3 points on each canals
which are geodesic mid-points of the landmarks in (i); and (iii) 1 landmark
is selected to be center near the utricle. These 8 landmarks are consistent
amongst different subjects. Figure 4 shows the eight feature landmarks on
one VS surface visualized at two different angles.

Figure 5(A) and (B) shows the canonical fundamental polygons of two
VS surfaces of a normal and AIS subjects respectively. The canonical cuts
are shown on each surfaces. By slicing along the cuts, we can embed the
surface onto a fundamental polygon. The fundamental polygons of different
periods can be glued together to form the universal covering space. Note
that the canonical cuts are introduced to obtain the conformal embedding
of the surface into its universal covering space only. During the registration
process, the canonical cuts on the source surface are allowed to move freely
on the target surface, since the whole process is carried out on the universal
covering spaces. In other words, the correspondences between canonical cuts
are not required.
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Figure 6: Registration on the universal covering spaces. The left and middle show the
universal covering spaces of two VS surfaces and their corresponding landmark locations.
The right shows the registration result, which matches the landmarks consistently. Note
that the canonical cuts on the source surface are allowed to move freely on the target
surface.

Figure 6 shows the universal covering spaces of two VS surfaces of a nor-
mal (left) and an AIS subject (middle). The positions of the corresponding
landmarks on the parameter domains are shown. Using the proposed regis-
tration algorithm, we compute the constrained diffeomorphism between the
parameter domains that matches corresponding landmarks. In figure 6, the
right shows the registration result, which matches the landmarks consistently.
Note that the boundary cuts on the source parameter domain are allowed
to move freely on the target parameter domain, while satisfying the periodic
conditions.

Through the composition map of the diffeomorphism with the conformal
parameterizations, the registration between the VS surfaces can be obtained.
Figure 7 shows the surface registration result of the first pair of VS surfaces
(corresponding to Figure 6) visualized by the colormap. The colormap on
the left (normal) VS surface is mapped to the right (AIS) surfaces using the
obtained registration. Note that corresponding regions of the two surfaces
are consistently matched. To better visualize the accuracy of the registration,
feature loops are plotted on the source surface and are mapped to the target
surfaces using the registration. Note that the feature loops are matched to
corresponding locations on the target surfaces.

Figure 8 shows a pair of VS surfaces of normal subjects. The surface
registration results are shown. Again, the registration is visualized using the
colormap. The colormap on the source surfaces are mapped to the target

20



surfaces. The feature loops on the source surfaces are also mapped to the
target surfaces. From the correspondences of the colormap and feature loops,
we observe that corresponding regions of the VS surfaces are consistently
matched. It again demonstrates the accuracy of our registration results.

Using the proposed registration algorithm, we compute the surface regis-
trations between all pairs of VS surfaces. With the computed registrations,
we compute the mean surface of all VS surfaces of the normal group. The
mean surface is computed by taking the mean of their corresponding coor-
dinates. The mean surface is shown in Figure 9(A). Similarly, we compute
the mean surface of all VS surfaces of the AIS group, which is shown in
Figure 9(B). Note that the mean surfaces preserve the structures of the VS
surface well. It means that our obtained registrations are accurate. The
registration between the two mean surfaces is visualized by colormap. The
colormap on the mean VS surface of the normal subjects is mapped to the
VS mean surface of the AIS subject. Note that the corresponding regions are
matched consistently. This demonstrates our proposed algorithm is able to
obtain surface registration between the VS surfaces with accurate one-to-one
point-wise correspondences.

The computational details for the surface registration between some pairs
of the VS surfaces are recorded in Table 1. We compute the surface regis-
trations between a source surface (VS surface of the normal subject N01)
to different target VS surfaces. The computational times are shown in the
second column, which are all less than 30 seconds. It illustrates that our
proposed algorithm is quite efficient. The second column shows the number
of overlapping faces of the obtained registrations. Note that the number of
overlapping faces are 0 in all cases. It demonstrates our obtained surface
registrations are all bijective. The third and forth column show the number
of vertices for each target VS surfaces and the iterations needed for the reg-
istration process. Depending on the geometry of the surfaces, our algorithm
generally converges in about 50 iterations on average.

6.2. Extraction of geometric features

With the obtained registration, various geometric features can be ex-
tracted on VS surfaces. These geometric features can be used for the shape
analysis and shape comparison of the VS surfaces.

We first compute the homotopic loops of the normal mean VS surface,
which are shown in Figure 10(A). From the surface registration, we can map
the homotopic loops to the corresponding locations on other VS surfaces.
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Table 1: Computational details of the surface registration algorithm

subject time (s) overlaps vertices iterations

A01 13.16 0 7239 28
A02 18.35 0 7367 42
A03 27.34 0 6003 63
A04 28.30 0 7909 54
A05 17.25 0 7036 34
A06 10.89 0 6915 25
A07 27.30 0 7140 53
A08 13.96 0 7638 32
A09 29.02 0 7827 54
A10 27.16 0 6259 62
A11 17.48 0 6564 40
A12 13.79 0 6840 27
N02 19.27 0 7353 43
N03 23.36 0 7408 43
N04 13.51 0 6446 29
N05 8.38 0 7228 19
N06 15.16 0 6925 30
N07 13.18 0 6724 30
N08 7.95 0 7612 18
N09 21.95 0 7226 41
N10 9.17 0 8114 21
N11 16.76 0 5493 37
N12 13.45 0 6836 31
N13 8.90 0 7160 20
N14 22.46 0 8327 40
N15 21.70 0 6320 41

Corresponding homotopic loops on every VS surfaces can then be obtained.
Figure 10(B) shows the corresponding homotopic loops on the AIS mean VS
surface. By joining the centroids of the homotopic loops, the three centerlines
of the AIS mean VS surface can be extracted.

From the homotopic loops, minimal surfaces can be extracted. Figure
11(A) shows the minimal surfaces of the normal mean VS surface. Figure
11(B) shows the minimal surfaces of the AIS mean surface.
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Figure 7: Surface registration results between a normal VS surface (left) and an AIS VS
surface (right).

Figure 8: Surface registration results between two normal VS surfaces.

6.3. Geometric properties analysis

From the geometric features, shape analysis of the VS surfaces can be
carried out for the purpose of disease analysis. In this work, we compare the
shape difference between the VS surfaces of the normal and AIS groups.

We test the idea to compare the mean surfaces of the normal VS and
the AIS VS. Figure 12(A) shows the perimeters of each homotopic loops of
the normal mean VS and the AIS mean VS. Loops 1-25 are the homotopic
loops on the anterior semi-circular canal (SSC). Loops 26-43 are the homo-
topic loops on the horizontal semi-circular canal (LSC). Loops 44-74 are the
homotopic loops on the posterior semi-circular canal (PSC). The blue curve
shows the perimeters of the homotopic loops of the normal mean VS. The
red curve shows the perimeters of the homotopic loops of the AIS mean VS.
Note that the differences in perimeter between the normal mean VS and the
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(A) (B)

Figure 9: (A) mean surface of normal subjects. (B) mean surface of AIS subjects. Regis-
tration is visualized by the colormap.

AIS mean VS at the SSC and LSC are insignificant. However, the difference
in perimeter between the normal mean VS and the AIS mean VS is quite
obvious at the PSC.

We have also computed the surface area of each minimal surfaces. Figure
12(B) shows the area of each minimal surfaces enclosed by the homotopic
loops of the normal mean VS and the AIS mean VS. Again, the blue curve
shows the area of the minimal surfaces of the normal mean VS. The red curve
shows the area of the minimal surfaces of the AIS mean VS. Notice that the
difference in area between the normal mean VS and the AIS mean VS is quite
obvious at the PSC. It again demonstrate the shape difference between the
normal and AIS VS surfaces at the PSC.

Using the centerlines, we can also measure the deviation of each canals of
the VS from the best fit plane. Figure 13 shows the distances of each points
on the centerlines from the best fit planes of the normal mean VS surface
(left) and AIS mean VS surface (right). The distances are visualized by the
colormaps. Red color indicates a large deviation from the best fit plane. As
shown in the figure, it was found that the PSC of AIS mean VS surface is
more distorted and deviated from the best fit plane.

For a more comprehensive local shape analysis, we use a complete shape
index based on the Beltrami coefficients and curvatures to capture the local
geometric difference between the VS surfaces. After the surface registration
between two VS surfaces is obtained, the complete shape index that gives a
value for each vertex can be computed. The value measures the degree of
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Figure 10: (A) Homotopic loops and centerlines on the normal mean surface. (B) Homo-
topic loops and centerlines on the AIS mean surface.

geometric difference. Figure 14 shows the VS surfaces of two normal subjects.
The shape index is shown as colormap, plotted on each VS surfaces. The
blue color means the geometric difference is small. The red regions are those
with higher degree of geometric difference. Figure 15 shows the shape index
of another pair of VS surfaces of two normal subjects. Figure 16 shows the
shape index of a pair of VS of the normal and AIS subjects. Note that
the geometric difference between the two surfaces are more obvious than the
geometric difference between the VS of two normal subjects. Figure 17 shows
the shape index of another pair of VS of the normal and AIS subjects. Again,
the geometric difference between the two surfaces are more obvious than the
geometric difference between the VS of two normal subjects. These results
demonstrate that the complete shape index is an effective measure to detect
local surface geometric differences.

We also compute the complete shape index to detect the geometric differ-
ence between the normal mean VS and the AIS mean VS. The shape index
is shown in Figure 18. Note that the local geometric difference is more ob-
vious in the PSC. This again suggests that the shape difference at the PSC
between the normal and AIS VS is more significant.

6.4. Morphometric analysis with vertex-wise coordinates

With the obtained surface registration, statistical morphometric analysis
based on the coordinates’ deviation can be performed. Using the two-sample
Hotelling’s T-squared test, the p-value at each vertex on the surface is found.
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(A) (B)

Figure 11: (A) Minimal surfaces enclosed by the homotopic loops on normal mean surface.
(B) Minimal surfaces enclosed by the homotopic loops on AIS mean surface

(A) (B)

Figure 12: (A) Perimeters of each homotopic loops of the normal mean VS and the
AIS mean VS. (B) Area of each minimal surfaces enclosed by the homotopic loops of the
normal mean VS and the AIS mean VS.

It indicates the probability of the existence of structural differences between
the VS of the AIS group and the NC group. If the p-value is less than our
predefined significant level of 0.001, a potential morphometric variation can
be concluded at that vertex. Our results shown in Figure 19 illustrate the
location of possible morphometric deviations. It can be observed that the
significant regions lie mainly at the PSC.

6.5. Discussion

VS is a key organ for maintaining postural balance in humans and poor
postural balance is a recognized characteristic in AIS patients [35, 36]. The
shape of the VS is confirmed being related to the growth of vertebrates.
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Figure 13: (A) mean surface of normal subjects. (B) mean surface for AIS subjects.
Distances of each points on the centerlines from the best fit planes of the normal mean
VS surface and AIS mean VS surface. The distance is visualized by the colormaps. Red
color indicates a large deviation from the best fit plane.

Lambert et al. [8] made use of frog models for experiment to conclude that
asymmetric vestibular inputs could lead to imbalanced growth of the spine.
Thus, the studies on the relationship between AIS and VS abnormality be-
come important to the etiopathology of the disease. Our proposed methods
focus on the accurate registration and the quantitative shape analysis of the
canals in the VS between the AIS group and the normal control group. The
goal of this study is to provide an objective assessment of the VS abnormality
in AIS patients.

Handling the VS surfaces is challenging because of their complex topol-
ogy. Our proposed landmark-based registration method effectively obtains
accurate point-wise correspondences between the VS surfaces. Experimental
results show that the computed registration matches corresponding regions
of the VS surfaces consistently. Landmark-based registration is shown to be
effective for matching VS surfaces, and it is beneficial since expert knowledge
of feature correspondences can be incorporated into the model. The obtained
registrations are also folding-free. In addition, the registration process can
be done efficiently.

With the registration, information about the correspondences between
VS surfaces of the normal and AIS groups vertex-wisely can be obtained. It
can be used to perform comprehensive shape analysis on the whole VS sur-
faces. Preliminary testing on 27 VS surfaces reveals that there are geometric
differences along the length of the posterior canal in the left-side VS of the
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Figure 14: VS surfaces registration of two normal subjects. The shape index is shown as
colormap, plotted on each VS surfaces.

Figure 15: VS surfaces registration of two normal subjects. The shape index is shown as
colormap.

AIS patients. It could contribute to the uneven vestibular signals to the pa-
tients and thus their vertebral growths. Furthermore, it is also observed that
there are distortions of the plane of PSC in the AIS patients. Such planar
defection was found affecting the locomotion in primates by [37].

The proposed surface registration method is shown to be helpful in the
shape analysis of the complex geometry of VS. It is hoped that a standardized
assessment could set out for clinical diagnosis. To examine the accuracy
and stability of the measurement, a larger sample size would be included in
the continuation of this study. Moreover, our registration method could be
extended for the analysis of other organs, such as spinal cord and pelvis.
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Figure 16: VS surfaces registration of a normal and an AIS subjects. The shape index is
shown as colormap.

Figure 17: VS surfaces registration of a normal and an AIS subjects. The shape index is
shown as colormap.

7. Conclusion

This paper proposes an effective method to obtain landmark constrained
surface registration between high-genus surfaces (genus g > 1). The algo-
rithm can be applied to register VS surfaces, which are of genus-3. Given a
set of corresponding landmarks on the VS surfaces, a diffeomorphism between
the VS surfaces that matches the features consistently can be obtained. The
basic idea is to iteratively search for admissible Beltrami coefficients, which is
associated to our desired landmark matching registration. With the surface
registrations, two geometric features, homotopic loops and minimal surfaces,
can be obtained. These geometric features can be used for the shape analysis
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Figure 18: The figure shows the normal mean VS (left) and the AIS mean VS (right). The
shape index is shown as colormap, plotted on each VS surfaces. The blue color means the
geometric difference is small. The red regions are those with higher degree of geometric
difference.

(A) (B)

Figure 19: (A) p-map from the frontal viewpoint. (B) p-map from the backward viewpoint.
Statistical p-map showing the regions with p-value < 0.001 on the AIS mean surface (Red-
colored vertex indicating p-values < 0.001).

of the VS surfaces. To perform a more comprehensive local shape analysis,
a complete shape index defined by the Beltrami coefficients and curvatures
can be used. The shape index effectively measures the geometric difference
between two VS surfaces at each vertex of surfaces. To test our proposed
algorithms, experiments have been carried out to register VS surfaces of 15
normal control subjects and 12 AIS subjects. Results show that our method
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can effectively and accurately compute the surface registrations between the
VS surfaces. Shape analysis has also been carried out using the proposed
shape features and shape energy, which reveals shape differences in the pos-
terior canal between normal and diseased AIS groups.
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