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Abstract. We propose a new method to obtain registration between n-dimensional manifolds
with very large deformations. Given a set of landmark correspondences, our algorithm produces an
optimal diffeomorphism that matches prescribed landmark constraints. The obtained registration is a
n-dimensional quasi-conformal map. The basic idea of the model is to minimize an energy functional
with a conformality term and a smoothness term. The conformality term allows the algorithm to
produce diffeomorphisms even with very large deformations. We minimize the energy functional
using alternating direction method of multipliers (ADMM). The algorithm only involves solving
an elliptic problem and a point-wise minimization problem. The time complexity and robustness
of the algorithm is independent of the number of landmark constraints. Either Dirichlet or free
boundary condition can be enforced, depending on applications. To further speed up the algorithm,
the multi-grid method is applied. Experiments are carried out to test our proposed algorithm to
compute landmark-matching registration with different landmark constraints. Results show that our
proposed model is efficient to obtain a diffeomorphic registration between n-dimensional data with
large deformations.

Key words. Large deformation registration, n-D quasi-conformal, conformality, alternating
direction method of multipliers, landmarks

1. Introduction. Registration refers to the process of finding a meaningful one-
to-one pointwise correspondences between different data. The data of interest can be
2D/3D images or geometric shapes. Applications can be found in various fields, such
as computer graphics, computer visions and medical imaging. For example, in medical
imaging, finding an accurate registration between corresponding anatomical data is
necessary for morphometric analysis. While in computer visions, finding accurate
1-1 pointwise correspondences between human faces is crucial for face recognition.
Developing effective models for registration is therefore of utmost importance.

Registration can mainly be divided into three categories, namely, the intensity-
based registration, landmark-based registration and the hybrid registration. Intensity-
based registration aims to obtain good correspondences between data based on the
intensity information. For example, the pixel values for image registration and curva-
tures for surface registration. Landmark-based registration aims to obtain registration
based on matching corresponding landmarks. Landmark features can either be man-
ually or automatically labeled. In medical imaging, landmark-based registration is
especifically important, since expertise knowledge can be incorporated to label im-
portant corresponding features for more accurate and meaningful registration results.
One typical example is the brain cortical surface registration for which sulcal land-
marks are usually extracted to guide the registration. Hybrid registration combines
the intensity-based and landmark-based registration. The registration is guided by
both intensity and landmark constraints.

Most existing algorithms work well under small deformations. In some situations,
data of interest may undergo large deformations. For instance, cardiac motions of the
heart is a large deformation. In these cases, finding a bijective large deformation reg-
istration is required. Nevertheless, the computation of large deformation registration
is generally challenging. Bijectivity can be easily lost. For the registration between
2D images or surfaces, quasi-conformal theories have been utilized to handle large de-
formations. The Beltrami coefficient, which measures the conformality distortion, can
be effectively used to control the bijectivity of the mapping. By optimizing an energy
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functional involving the Lp-norm of the Beltrami coefficient, large deformation diffeo-
morphic registration can be accurately computed. However, existing quasi-conformal
theories apply to 2-dimensional manifolds only. For general n-dimensional spaces,
the Beltrami coefficient is not defined. It is our goal in this paper to extend the 2D
quasi-conformal theories to general n-dimensional space. In particular, a notion of
conformality distortion of a diffeomorphism of the n-dimensional Euclidean space will
be formulated. With the definition of conformality distortion, we can extend the 2D
quasi-conformal registration algorithm to general n-dimensional manifolds.

In this work, we propose to obtain constrained registration between general n-
dimensional spaces by minimizing an energy functional with a conformality term and
a smoothness term. The conformality term allows the algorithm to produce diffeo-
morphisms even with very large deformations. We minimize the energy functional
using alternating direction method of multipliers (ADMM). The algorithm only in-
volves solving an elliptic problem and a point-wise minimization problem. The time
complexity and robustness of the algorithm is independent of the number of landmark
constraints. Either Dirichlet or free boundary condition can be enforced, depending
on applications. To further speed up the algorithm, the multi-grid method is applied.
We test the proposed algorithm to compute landmark-matching registration with dif-
ferent landmark constraints. Experimental results show that our proposed algorithm
is effective for computing large deformation diffeomorphic registrations, even with
large number of landmarks or large deformations.

The paper is organized as follows. In Section 2, some previous works closely
related to our paper will be reviewed. Basic mathematical background will be ex-
plained in Section 3. In Section 4, we describe our proposed model to obtain the
constrained large deformation registration between n-dimensional manifolds in de-
tails. The numerical algorithm will be discussed in Section 5. Experimental results
will be demonstrated in Section 6. Conclusion and future works will be discussed in
Section 7.

2. Previous works. In this section, we will review some related works closely
related to this paper.

Intensity-based image registration has been widely studied [1]. One commonly
used approach is done by minimizing an energy functional involving the intensity
mismatching error. Vercauteren et al. [24] proposed the diffeomorphic demons reg-
istration algorithm, which is based on Thirion’s demons algorithm[3]. The obtained
registration is guaranteed to be diffeomorphic by adapting the optimization procedure
underlying the demons algorithm to a space of diffeomorphic transformations. Glocker
et al. [40][41][42] proposed the intensity-matching image registration algorithm us-
ing the Markov random field. Surface registration that matches geometric quantities,
such as curvatures, have also been extensively studied [4][2][23][25]. Lyttelton et al.
[2] proposed an algorithm for surface parameterizations based on matching surface
curvatures. Yeo et al. [25] proposed the spherical demons method, which adopted
the diffeomorphic demons algorithm [24], to drive surfaces into correspondence based
on the mean curvature and average convexity. Conformal surface registration, which
minimizes angular distortions, has also been widely used to obtain a smooth 1-1 cor-
respondence between surfaces [13, 5, 7, 6, 14, 15, 16, 17]. Besides, quasi-conformal
surface registrations, which allows bounded amount of conformality distortion, have
also been studied [18, 19, 20, 21]. For example, Lui et al. [19] proposed to compute
quasi-conformal registration between hippocampal surfaces based on the holomorphic
Beltrami flow method, which matches geometric quantities (such as curvatures) and
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minimizes the conformality distortion [18].

Landmark-based registration has also been widely studied. Bookstein et al. [26]
proposed to apply a thin-plate spline regularization (or biharmonic regularization)
to obtain a registration with soft landmark constraints. Tosun et al. [31] pro-
posed to combine iterative closest point registration, parametric relaxation and in-
verse stereographic projection to align cortical sulci across brain surfaces. These
diffeomorphisms obtained can better match landmark features, although not per-
fectly. Wang et al. [27, 30, 28, 29] proposed to compute the optimized harmonic
registrations of brain cortical surfaces by minimizing a compounded energy involving
the landmark-mismatching term [27, 30]. The obtained registration obtains an opti-
mized harmonic map that better aligns the landmarks. However, landmarks cannot
be perfectly matched, and bijectivity cannot be guaranteed under large number of
landmark constraints. Again, landmarks cannot be exactly matched. In the situation
when exact landmark matching is required, smooth vector field has been used. Lui et
al. [28, 29] proposed the use of vector fields to represent surface maps and reconstruct
them through integral flow equations. They obtained shape-based landmark match-
ing harmonic maps by looking for the best vector fields minimizing a shape energy.
The use of vector fields to compute the registration makes the optimization easier, al-
though it cannot describe all surface maps. An advantage of this method is that exact
landmark matching can be guaranteed. Time dependent vector fields can also be used
[8, 9, 10, 11, 12]. For example, Glaunés et al. [9] proposed to generate large deforma-
tion diffeomorphisms of a sphere, with given displacements of a finite set of template
landmarks. The time dependent vector fields facilitate the optimization procedure,
although it may not be a good representation of surface maps since it requires more
memory. The computational cost of the algorithm is also expensive. Quasi-conformal
mapping that matches landmarks consistently has also been proposed. Wei et al. [34]
also proposed to compute quasi-conformal mappings for feature matching face regis-
tration. However, either exact landmark matching or the bijectivity of the mapping
cannot be guaranteed, especially when very large deformations occur.

Algorithms for hybrid registration, which combines both the landmark and inten-
sity information to guide the registration, has also been proposed[36][37][35][38][43].
For example, Christensen et al. [38] propsoed an algorithm for hybrid registration that
uses both landmark and intensity information to guide the registration. The method
utilizes the unidirectional landmark thin-plate spline (UL-TPS) registration technique
together with a minimization scheme for the intensity difference to obtain good cor-
respondence between images. Paquin et al. [36] proposed a registration method using
a hybrid combination of coarse-scale landmark and B-splines deformable registration
techniques.

3. Mathematical background. In this section, we describe some basic math-
ematical concepts related to our algorithms. For details, we refer the readers to
[32][33].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N , a map f : M → N is conformal if it preserves the
surface metric up to a multiplicative factor called the conformal factor. An immediate
consequence is that every conformal map preserves angles. With the angle-preserving
property, a conformal map effectively preserves the local geometry of the surface
structure.

A generalization of conformal maps is the quasi-conformal maps, which are orien-
tation preserving homeomorphisms between Riemann surfaces with bounded confor-
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Fig. 3.1. Illustration of the conformality distortion. (A) shows the how a small circle is
deformed to an ellipse under a 2D quasi-conformal map. The conformality distortion is measured
by the Beltrami coefficient. (B) shows how a small ball is deformed to a small ellipsoid under a 3D
diffeomorphism. The conformality distortion can be measured by K(f) defined in this paper.

mality distortion, in the sense that their first order approximations takes small circles
to small ellipses of bounded eccentricity [32]. Thus, a conformal homeomorphism that
maps a small circle to a small circle can also be regarded as quasi-conformal. Sur-
face registrations and parameterizations can be considered as quasi-conformal maps.
Mathematically, f : C → C is quasi-conformal provided that it satisfies the Beltrami
equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3.1)

for some complex valued Lebesgue measurable µ satisfying ||µ||∞ < 1. µ is called the
Beltrami coefficient, which is a measure of non-conformality. In particular, the map f
is conformal around a small neighborhood of p when µ(p) = 0. Infinitesimally, around
a point p, f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication of
fz(p), which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),
we can determine the angles of the directions of maximal magnification and shrinking
and the amount of them as well. Specifically, the angle of maximal magnification is
arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; The angle of maximal shrinking is the
orthogonal angle (arg(µ(p))−π)/2 with shrinking factor 1− |µ(p)|. The distortion or
dilation is given by:

K = 1 + |µ(p)|/1− |µ(p)|. (3.3)

Thus, the Beltrami coefficient µ gives us all the information about the properties
of the map (See Figure 3.1(A)).
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Given a Beltrami coefficient µ : C → C with ‖µ‖∞ < 1. There is always a
quasiconformal mapping from C onto itself which satisfies the Beltrami equation in
the distribution sense [32].

However, the above quasi-conformal theories only apply to two dimensional spaces
or surfaces. In this work, our goal is to extend the idea of 2-dimensional quasi-
conformal theories to general n-dimensional spaces. We will introduce a notion of
conformality distortion of a diffeomorphism of the n-dimensional space. The confor-
mality distortion measures the distortion of an infinitesimal ball to an infinitesimal
ellipsoid under the diffeomorphism (See Figure 3.1(B)).

4. Proposed model. In this section, we will explain in details our proposed
model to obtain the constrained large deformation registration between n-dimensional
manifolds. The basic idea is to formulate the notion of conformality distortion of a
diffeomorphism of the n-dimensional Euclidean space. The conformality distortion
measures the distortion of an infinitesimal ball to an infinitesimal ellipsoid under
the diffeomorphism. The constrained registration problem can then be modeled as
minimizing an energy functional involving the conformality term and the smoothness
term. We first present the continuous model of the proposed energy functional. Then,
we explain the discretization of the model.

4.1. The continuous model. Let Ω ⊂ Rn be the domain of image. Let f :
Ω → Ω be the transformation. For x ∈ Ω, define TxΩ to be the set of tangent
vectors at x. The mapping f define a mapping df from TxΩ to Tf(x)Ω by the formula
dfx(v) = Df(x)v where Df(x) is the Jacobian matrix of f at point x. Let Ex the
set of v such that ||dfx(v)|| = 1. These v must satisfy vtDf(x)tDf(x)v = 1. Since
Df(x)tDf(x) is a non-negative symmetric matrix, Ex is an ellipse. Geometrically,
Ex is an infinitesimally small ellipse around x, which maps to an infinitesimally small
circle at f(x). Therefore, it reveals the distortion of the mapping f at point x (See
3.1(B)). In landmark registration problem, it is favorable to have a smooth mapping
with small distortions.

Let us first define the distance between an ellipsoid E = {x : xtAx = 1} and
a ball where A is some positive symmetric matrix. Since the distance should be
invariant under rotation, we assume A is diagonal matrix diag(λ1, · · ·λn). Notice that

(λ1 · · ·λn)
1/n ≤ λ1+···+λn

n where the equality sign holds if and only if λ1 = · · · = λn.
The ratio between two sides measures the distance between E and a circle. Therefore,
we define the distortion of the mapping f at point x by

Kf(x) =

{
tr(Df(x)tDf(x))
det(Df(x))2/n

if detDf(x) > 0

+∞ otherwises

=

{
||Df(x)||2

det(Df(x))2/n
if detDf(x) > 0

+∞ otherwises
.

Also, we have Kf(x) ≥ n and Kf(x) = n if and only if Ex is a ball. Therefore,
Kf(x) attains the minimum when f is conformal at point x. Kf(x) is called the
conformality distortion of the map f .

In 2-dimensional case,

Kf(x) = 2
1 + |µ(x)|2

1− |µ(x)|2
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where µ(x) is the Beltrami coefficient. Therefore, if ||Kf(x)||∞ < K, the mapping
is K ′-quasiconformal mapping (with certain constant K ′ > 1 depending on K). In
our model, our goal is to make ||Kf(x)||∞ < K for certain K <∞. As a result, the
model produce diffeomorphisms even for large deformation problems. We minimize
||Kf(x)||1 for performance consideration. In the discrete case, it can still guarantee
the diffeomorphism.

With the notion of conformality distortion, we propose to obtain an optimal diffeo-
morphism that satisfies the landmark constraints by minimizing an energy functional.
Experimental results shows that the minimizer of the

∫
Kf(x) only can be piecewise

linear. In order to enhance the smoothness of the mapping, we consider the following
minimization problem:

inf
f∈F

∫
Kf(x) +

σ

2
||∇2f(x)||2dx (4.1)

where σ > 0 is fixed parameter and F is the set of function f : Ω → Rn which is
surjective and satisfies the landmark constraint f(pi) = qi for pi and qi are given
landmark points (i = 1, 2, ...,m).

4.2. The discrete model. For general manifold, our model (4.1) can be dis-
cretized by using discrete differential forms. Since our experiments are performed on
a cubic domain, we only explain the discretization of (4.1) on a cubic domain here.
First, we pick a tetrahedral mesh for the cubic domain such that each tetrahedron
in the mesh contains 3 edges, each one of them is parallel to the one of the three
coordinate axis respectively. In our implementation, we partition the cubic domain
into small equal-size cubes and create similar tetrahedral meshes for each cubes. For
the unit cube with vertices

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), · · · , (1, 1, 1)},

we use the tetrahedral mesh with 6 tetrahedrons. The vertices for that 6 tetrahedrons
are

{(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 1, 0)},
{(0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)},
{(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0)},
{(1, 0, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1)},
{(0, 0, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)},
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)}.

Since each tetrahedron contains 3 edges parallel to the 3-axises respectively, for
each piecewise linear f defined on the tetrahedrons, Dxf , Dyf and Dzf can be
computed by finite difference directly. Denote Df(T ) is a 3 × 3 Jacobian matrix
for each tetrahedron T .

The discrete version of (4.1) is given by

inf
f∈F

∑
tetrahedron T

Kf(T ) +
σ

2

∑
node x

||∆f(x)||2

where F is the set of function defined on nodes of the mesh, seven-point Laplacian
stencil with suitable boundary condition is used for ∆f and Kf(T ) is defined by:
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Kf(T ) =

{
||Df(T )||2

det(Df(T ))2/n
if detDf(T ) > 0

+∞ otherwises
.

5. Algorithm. In this section, we explain the numerical algorithm to optimize
the energy functional described in the last section. We apply the alternating direction
method of multipliers (ADMM) to minimize the energy. Since the term Kf(T ) is
+∞ when detDf(T ) ≤ 0, the algorithm should avoid this case. However, finding a
mapping such that detDf(T ) > 0 and f(pi) = qi is a non-trivial task itself. To avoid
this difficulty, we use the alternating minimization scheme to split the problem as
follows:

inf
f∈F

∑
tetrahedron T

K(f,R, T ) +
σ

2

∑
node x

||∆f(x)||2 given R(T ) = Df(T )

where:

K(f,R, T ) =

{
||Df(T )||2

det(R(T ))2/3
if detR(T ) > 0

+∞ otherwises
.

More explicitly, we have the following algorithm:

Algorithm 1: Constrained quasi-conformal registration
1. f1 = identity map, λ1 = 0, R1 = Df1.
2. While ||fk+1 − fk|| > ε
3. Find fk+1 = argmin

f

∑
T K(f,R, T ) + µ

2

∑
T ||R(T )−Df(T ) + λk(T )||2 + σ

2

∑
x ||∆f(x)||2 .

4. Find rk+1(T ) = argmin
detR>0

K(f,R, T ) + µ
2
||R−Df(T ) + λk(T )||2 for each tetrahedron T .

5. λk+1 = λk +R(T )−Df(T ).
6. End While

There are two subproblem, which are step 3 and step 4, in the algorithm. We do
the f -subproblem first because it gives good approximation of the mapping even if
the approximations of R1 and λ1 are bad. Hence, it avoid the algorithm from getting
stuck at a local minimum. In the following two subsections, we will explain step 3
and step 4 in details.

5.1. f-subproblem. The f-subproblem is to minimize the energy

∑
T

||Df(T )||2

det(R(T ))2/3
+
µ

2

∑
T

||R(T )−Df(T ) + λk(T )||2 +
σ

2

∑
x

||∆f(x)||2.

We remark that f = (f1, f2, f3) is a vector. Since the equation for fi is decoupled,
we can solve it component-wise. Therefore, we can regard f as a scalar function only
in this section. The corresponding Euler-Lagrange equation for this problem is of the
form
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{
∆2f(x)−∇ · (A(x)∇f(x)) = g(x);

f(pi) = qi,
(5.1)

where A(x) is a diagonal matrix depends on det(R(T ))2/3 and g(x) depends on R(T )+
λk(T ). By subtracting f by f(pi) = qi, we can assume f(pi) = 0.

The diagonal entries of A(x) is of the form

∑
six T touch the corresonding edge

1

σ

(
1

det(R(T ))2/3
+ µ

)
.

In our actual implementation, we choose µ ∼ max 30
det(R(T ))2/3

and the equation

can be approximate by

{
∆2f(x)− 6µ

σ ∆f(x) = g(x);

f(pi) = 0,
(5.2)

Therefore, we could solve the equation (5.1) using preconditioned conjugate gra-
dients squared method where the preconditioner is a multigrid vcycle for the equation
(5.2). The equation (5.2) can be splitted into two coupled Poisson equations


−h−∆f = 0;

−∆h−∆Af = g;

f(pi) = 0,

(5.3)

where ∆A = ∇ · (A(x)∇f(x)). The boundary condition on a face of both equation
is Dirichlet when the face of that component is fixed and is Neumann otherwise.
For the restriction and interpolation operator, full weighting restriction and bilinear
interpolation operator are used. On the coarse grid, the landmark point pcoarsei are
chosen to be the set of all points on coarse code that is nearest to pi. Therefore, for
each pi, there is either 1, 2, 4 or 8 corresponding pcoarsei . This choice of pcoarsei makes
the interpolated function from coarse grid satisfies the landmark condition f(pi) = 0
automatically. For the pre and post smoothing operator, four steps Red-Black Gauss
Seidel is used where on each point the corresponding 2 × 2 matrix is solved directly.
Although the vcycle itself may not converges because of the landmark condition, the
experimental results show that it is a very good preconditioner.

5.2. R-subproblem. The minimization problem is a tetrahedron-wise problem.
The Euler Lagrange equation for this problem is

R− a

(detR)
2/3

(R−1)t = B (5.4)

where a = 2||Df(T )||2
3µ and B = Df(T )− λk(T ). The equation above can be simplified

by SVD. Let the SVD of B is UΣV ∗. Then the equation reduced to system of
equations with three variables:

Σ̃− a(
detΣ̃

)2/3 Σ̃−1 = Σ
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where the SVD of R is U Σ̃V ∗. Since the system is coupled by the term det Σ̃, we can
solve the equation iteratively by

Σ̃n −
a(

detΣ̃n−1

)2/3 Σ̃−1n = Σ

where Σ̃n is the Σ̃ in step n. Now, it can be solved by quadratic formula. Note that
there are two possible solutions for quadratic formula and hence the solution for the
equation (5.4) is not unqiue. Since R ∼ Df . we want R to be close to be postive

symmetric definite. When detB > 0, we choose both three eigenvalues of
∑̃

to be
positive, otherwises, we choose the smallest eigenvalue to be negative. To sum up, we
solve this problem by the following iterative scheme:

Algorithm 2: Solving (5.4)
1. Compute the SVD of B = UΣV ∗ where the diagonal of Σ is xi.
2. d1 = (detR(last))2/3

3. While ||dk+1 − dk|| > ε

4. Compute yki = 1
2
(xi +

√
x2i + 4a

dk
) for i = 1, 2, 3.

5. If detB < 0, Compute yki = 1
2
(xi −

√
x2i + 4a

dk
) for i = argminixi.

6. Compute dk+1 = 1
2
sgn(detB)

(
dk +

(
yk1y

k
2y
k
3

)2/3)
.

7. End While

8. R = U Σ̃V ∗ where diagonal of Σ̃ is yi.

Theorem 5.1. Given any 3 × 3 matrix B, a > 0. The algorithm 2 converges
linearly with the rate 1

2 to the global minimizer of

min
detR>0

a
2
3 det(R)2/3

+
1

2
||R−B||2.

Proof. Let the SVD of B is UΣV ∗. Then SVD of H is U Σ̃V ∗ where Σ̃ is a
diagonal matrix satisfies the equation

Σ̃− a(
detΣ̃

)2/3 Σ̃−1 = Σ.

Let the diagonal of Σ is xi and the diagonal of Σ̃ is yi, we have yi− a
Dy
−1
i = xi where

D = sgn(detB)(y1y2y3)2/3. Solving the quadratic equation, we have

yi(D) =
xi ±

√
x2i + 4a

D

2
(5.5)

where the sign is chosen according to the algorithm. Since we want to minimize the
following energy

a
2
3 det(R)2/3

+
1

2
||R−B||2 =

3a

2(y1y2y3)2/3
+

1

2

∑
(xi − yi)2 ,

we want to make D larger and yi closer to xi. Therefore, it is direct but tedious to
verify that: If detB > 0, then the minimizer satisfies the + sign in the (5.5) for all i.
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If detB < 0, the minimizer satisfies the + sign in the (5.5) for all i 6= argminixi. This
explains the purpose of step 5. Without loss of generality, assume argminixi = 1.

Let F (D) = (y1(D)y2(D)y3(D))2/3 and G(D) = D+F (D)
2 . We have

F ′(D) =
−2a

3D2
F (D)

3∑
i=1

±1

yi

1√
x2i + 4a

D

where the ± sign is the sign chosen in yi. Note that each term ±1
yi

1√
x2
i+

4a
D

in that

sum is positive. Hence F ′(D) ≤ 0.
For the case detD > 0, we have

−F ′(D) =
2a

3D2
F (D)

3∑
i=1

1

yi

1√
x2i + 4a

D

<
2a

3D2
F (D)

3∑
i=1

D

2a

=
F (D)

D
.

For the case detD < 0, we have

−1

y1

√
x21 + 4a

D

=
2√

x21 + 4a
D − x

2
1

1√
x21 + 4a

D

=
D

2a

x1 +
√
x21 + 4a

D√
x21 + 4a

D

.

On the other hand, for i = 2, 3, we have

1

yi

√
x2i + 4a

D

=
2

x2i + 4a
D

√
x2i + 4a

D

xi +
√
x2i + 4a

D

≤ D

2a

√
x21 + 4a

D

x1 +
√
x21 + 4a

D

because the last term is decreasing function. Hence we have

−F ′(D) ≤ 2a

3D2
F (D)

D

2a

x1 +
√
x21 + 4a

D√
x21 + 4a

D

+ 2

√
x21 + 4a

D

x1 +
√
x21 + 4a

D

 .

Since 1
2 <

√
x2
1+

4a
D

x1+
√
x2
1+

4a
D

< 1, the last term is less then 3.

Hence, we have −F ′(D) ≤ F (D)
D .

Let D̃ be the solution of G(D) = D. For the case D ≥ D̃, we have
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Fig. 6.1. A regular grid of a cube discretizing the source domain.

1

2
> G′(D) >

1

2
− F (D)

D
> 0.

Hence D+D̃
2 > G(D) > D̃. For the case D ≤ D̃, we have G(D) = D+F (D)

2 > D+D̃
2 . If

G◦n(D) > D̃ for some n, then it keeps larger than D̃ and converges to D̃ with rate
1
2 . Otherwise, it also converges to D̃ with rate 1

2 .

6. Experimental Result. In this section, we show some experimental results.
We test our proposed algorithm to compute constrained 3-dimensional quasi-conformal
registrations with different landmark constraints.

We first test our algorithm to compute constrained registration with one land-
mark. Figure 6.2(A) shows how the landmark point is deformed. The deformation of
the landmark point is large. Using the proposed algorithm, we obtain a diffeomorphic
registration that satisfies the landmark constraint exactly. Figure 6.2(B) shows the
registration result. It is visualized as the deformation of the original reference mesh
as shown in Figure 6.1 under the obtained registration. The reference mesh is a reg-
ular grid of a cube discretizing the source domain. Our obtained landmark-matching
registration is diffeomorphic. Figure 6.2(C) shows the visualization of the obtained
registration with a sparser view (to better demonstrate the registration result).

Secondly, we test the algorithm to compute the constrained registration with an
inner sphere being chosen as landmarks. In other words, points of an inner sphere are
chosen as landmarks and they are rotated anti-clockwisely, as shown in Figure 6.3(A).
The obtained registration, which is visualized as the deformation of the standard grid
by the registration, is shown in Figure 6.3(B). Figure 6.3(C) visualizes the obtained
registration with a sparser view. Note that the obtained registration is diffeomorphic,
even with a large number of landmarks and large deformations.

Next, we test the algorithm on an example of which all the points on a plane are
chosen as landmarks (grey plane in Figure 6.4(A)). The landmarks are deformed to a
wave-shape surface (red surface in Figure 6.4(A)). Using our proposed algorithm, we
obtain a 3-dimensional quasi-conformal map that satisfies the landmark constraints.
Figure 6.4(B) shows the obtained registration, which is diffeomorphic. Figure 6.4(C)
shows the registration with a sparser view.
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Fig. 6.2. One point landmark matching registration. (A) shows the landmark correspondence of
one point. (B) shows the obtained constrained QC registration, which is visualized as the deformed
grid from the standard grid in Figure 6.1 by the obtained registration. (C) shows the sparser view
of the registration.

Fig. 6.3. Constrained registration with an inner sphere being chosen as landmarks. Landmarks
are rotated anti-clockwisely by 90 degrees. (A) shows the landmark correspondence of one point.
(B) shows the obtained constrained QC registration, which is visualized as the deformed grid from
the standard grid in Figure 6.1 by the obtained registration. (C) shows the sparser view of the
registration.

Finally, we test the algorithm to compute a constrained registration with random
points being chosen as landmarks. These random landmark points are twisted, as
shown in Figure 6.5(A). The twist deformation is quite large. Using our algorithm,
we are able to obtain a diffeomorphic landmark-matching registration. Figure 6.5(B)
shows the obtained registration. Figure 6.5(C) shows the registration with a sparserC
view.

The above examples demonstrate that our proposed algorithm is effective for
computing large deformation diffeomorphic registrations. The proposed algorithm
works even with large number of landmarks or large deformations.

Figure 6.6 shows the L2-norm of the conformality distortion (or the conformal-
ity distortion energy) versus iterations. (A), (B), (C) and (D) show the conformal-
ity distortion energy vesus iterations for the ”one point landmark”, ”rotate sphere”,
”wave-shape deformation” and ”twist deformation” examples respectively. Note that
the conformality distortion decreases as iteration increases.
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Fig. 6.4. Constrained landmark registration with all the points on a plane are chosen as land-
marks. Landmarks are deformed to a wave-shape surface. (A) shows the landmark correspondence
of one point. (B) shows the obtained constrained QC registration, which is visualized as the deformed
grid from the standard grid in Figure 6.1 by the obtained registration. (C) shows the sparser view
of the registration.

Fig. 6.5. Constrained registration with random points being chosen as landmarks. These ran-
dom landmark points are twisted. (A) shows the landmark correspondence of one point. (B) shows
the obtained constrained QC registration, which is visualized as the deformed grid from the standard
grid in Figure 6.1 by the obtained registration. (C) shows the sparser view of the registration.

7. Conclusion. This paper present a new method to obtain diffeomorphic reg-
istration between general n-dimensional manifolds under very large deformations.
The basic idea is to extend the 2-dimensional quasi-conformal theories to general
n-dimensional spaces. Given a set of landmark constraints, our goal is to look for
an optimal diffeomorphism that matches landmarks. In this paper, we introduce a
notion of conformality distortion of a diffeomorphism of the n-dimensional Euclidean
space. The conformality distortion measures the distortion of an infinitestimal ball
to an infinitestimal ellipsoid under the diffeomorphism. Our registration problem can
then be modeled as a minimization problem of an energy functional involving the con-
formality term and a smoothness term. The conformality term allows the algorithm
to produce diffeomorphic registration even with very large deformations. Alternating
direction method of multipliers (ADMM) is applied in this paper to solve the op-
timization problem. The algorithm only involves solving an elliptic problem and a
point-wise minimization problem. The time complexity and robustness of the algo-
rithm is independent of the number of landmark constraints. Either Dirichlet or free



14 Y.T. Lee, K.C. Lam and L.M. Lui

Fig. 6.6. The L2-norm of the conformality distortion versus iterations. (A), (B), (C) and
(D) show the conformality distortion energy vesus iterations for the ”one point landmark”, ”rotate
sphere”, ”wave-shape deformation” and ”twise deformation” examples respectively.

boundary condition can be enforced, depending on applications. To further speed up
the algorithm, the multi-grid method is applied. Experimental results show that our
proposed algorithm is effective for computing large deformation diffeomorphic regis-
trations, even with large number of landmarks or large deformations. In the future,
we will test the algorithm on real medical data, such as 3D MRI scan with DTI fibre
tracks as the interior landmark constraints.
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