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Separation of Radiances from a Cirrus Layer and
Broken Cumulus Clouds in Multispectral Images

Igor Yanovsky and Anthony B. Davis

Abstract—In this paper, we introduce methodology for separat-
ing layers of reflective surfaces in Earth remote sensing data. We
propose a single-channel layer separation framework and extend
it to multispectral layer separation. Efficient alternating mini-
mization and fast operator-splitting methods are used to solve
minimization problems. Specifically, we apply our methodology
to separate strongly stratified and optically thin upper (cirrus)
clouds from optically thick lower convective (cumulus) clouds in
atmospheric imagery approximated as additive contributions to
the observed signal. After setting up synthetic “truth” scenarios,
we evaluate the accuracy of the two-layer separation results while
varying the effective opaqueness of each of two types of cloud.
We show that multispectral cloud layer separation is consistently
more accurate than channel-by-channel cloud layer separation.

Index Terms—Cloud layer separation, scale separation, image
decomposition, total variation minimization, multispectral image
analysis, passive atmospheric tomography

I. INTRODUCTION

CLOUDS are natural part of the Earth’s climate system
and play a crucial role in its radiative balance. So much

so that even small changes in cloud properties that just may
be caused by anthropogenic aerosol emissions (i.e., pollution)
is a major concern for climate scientists; these are the so-
called aerosol indirect impacts on climate, as several varieties
have been identified [1]–[3]. Moreover, clouds may be reacting
already to other changes in the climate system such as global
warming; these are the so-called cloud feedbacks on climate
[4], [5]. Indirect aerosol effects and cloud feedbacks have been
identified as major sources of uncertainty in forecasting future
climate due to our poor understanding of them [6].

This situation creates a challenge for climate modelers, and
cloud remote sensing scientists as well. Can the latter not
better exploit the massive amounts of satellite data on clouds
and shed new light on these critical cloud-related issues in
climate science? Along with a small team of scientists at
JPL and collaborators elsewhere, the present authors have
picked up this challenge and, collectively, we are revisiting
the fundamentals of passive cloud and aerosol remote sensing
in the visible and near-IR (VNIR) spectrum, framing it as a
problem in atmospheric tomography. This initiative is dubbed
the “Three-Dimensional Tomographic Reconstruction of the
Aerosol-Cloud Environment” (3D-TRACE).
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The main source of information we have on airborne par-
ticles is from radiation in the solar spectrum scattered toward
sensors in space, on aircraft or ground-based. 3D-TRACE is
predicated largely on a new class of multi-pixel/multi-angle
retrieval methods applied to reflected solar light. This is a
radical departure from the state-of-the-art in passive remote
sensing of atmospheric particulates, either densely aggregated
in clouds or aerosol plumes or dispersed into the background
aerosol. Indeed, at present, the processing of the raw (radiance)
data into geophysical “products” is performed operationally on
a pixel-by-pixel basis, often with a single viewing angle.

Working at the pixel scale and ignoring the spatial context
justifies the use of so-called “1D” radiative transfer [7] as
a forward model in the inverse problem of inferring from
measured radiances the inherent optical, microphysical and
chemical properties of the particles. 1D RT ignores explicitly
all net horizontal transport of radiation driven by horizontal
gradients in atmospheric or surface properties. In contrast,
the use of 1D RT in the thermal through microwave spectral
region is more justified since scattering is truly secondary
to emission and absorption, and has frequently been used
to deliver vertical profiles. In most of the solar spectrum
however, there is little sensitivity to the height of the scattering
particles in the atmosphere,1 inasmuch as it is well defined.
Consequently, between the muddling of horizontal variability
in 1D RT and the insensitivity of scattered light to stratification
and the frequent utilization of a single view, aerosol and cloud
retrievals can only target column-integrated quantities such as
optical thickness. For vertical profiles, one traditionally needs
active instruments: lidars for aerosols, mm-wave radars for
clouds. But then, from space at least, the vertical information
is only available along the “curtain” defined by the sub-satellite
transect.

3D-TRACE takes a resolutely 3D RT, multi-angle and multi-
pixel approach to extend this profiling capability horizontally
using passive imagers with broad swaths. It is an ambitious
program that has to start with small steps to establish its overall
feasibility. From the outset, 3D-TRACE does not look at
satellite imagery as a collection of cloudy and clear pixels to be
processed respectively and independently into either cloud or
aerosol products. It does recognize however that atmospheric
tomography will proceed differently in optically thick and
thin regions, that is, opaque highly reflective clouds or dense
aerosol plumes near sources (biomass burning, volcanoes, etc.)
on the one hand, and tenuous aerosol plumes at significant

1The exception to this rule is deep blue and near-UV because of Rayleigh
scattering and oxygen bands because of the differential absorption.
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distances from sources or elevated optically thin cirrus clouds
on the other hand.

A necessary ingredient of an atmospheric tomography
framework is therefore the ability to separate, not horizontally
(as in clear vs. cloudy pixels), but vertically two cloud layers.
A frequently observed superposition of cloud layers is indeed
an elevated semi-transparent cirrus (Ci, made of ice crystals)
through which one can clearly see a low-level layer of broken
cumulus clouds (Cu, made of water droplets).

The purely spectral (pixel-by-pixel) solution to this partic-
ular cloud layer separation problem is to use a strong water
vapor absorption feature such as its ∼1.38 µm band [8], [9].
A 1.38 µm “cirrus” channel indeed reveals in back-scattered
light only what is above the well-mixed boundary layer that
contains most of the humidity. In short, any Ci layer that may
be present in the upper troposphere will appear in the 1.38 µm
channel. That channel however may not always be available
and, moreover, the conditions for it to work are not always
realized. For instance, the surface and any low-level clouds
that may be present are clearly visible at 1.38 µm if humidity
happens to be low, and there are dry regions where this is
almost always the case.

The question therefore remains: Can we separate the Ci
and the broken Cu clouds using only spatial properties?
Cirrus clouds have relatively smooth variability in space often
with relatively low amplitude. In sharp contrast, the cumulus
clouds are optically thick, hence bright, with relatively sharp
boundaries. Can we separate, on that basis alone, the radiances
contributed by the Ci and the Cu clouds?

First, we note that this cloud layer separation problem
is important in its own right. Apart from the rationale for
atmospheric tomography, which is largely based on climate
modeling needs, there are other applications: weather, agri-
culture, solar energy, surveillance, defense, and so on. Clouds
affect visibility and are entangled dynamically with turbulence.
Turbulence that develops in convective clouds affects aircraft.
The list goes on.

In mathematical lingo, the “slow” variation in space char-
acteristic of elevated cirrus layers is called “low oscillatory”
behavior. In contrast, the lower convective clouds are bright
(due to their large optical thickness) and have relatively sharp
boundaries. They are either “high oscillatory” or prominently
occupy large contiguous areas. Due to their inherent bright-
ness, the lower convective clouds optically overwhelm the
upper clouds (cf. panel (a) in Fig. 2).

Given multispectral images in VNIR spectrum, our goal is to
solve the cloud layer separation problem, or decomposition of
images into contributions from high-oscillatory lower convec-
tive clouds and low-oscillatory upper cirrus clouds. Multilayer
separation is conceptually similar to image decomposition and
segmentation problems. Decomposition of images into a piece-
wise smooth component (cartoon) and high-oscillatory com-
ponent (texture) has been a rapidly developing field in recent
years. A variety of proposed total variation-based methods for
image decomposition rely on different metrics for modeling
textures [10]–[18]. Models for image segmentation, many
of which are variational methods [19]–[21], have also been
effective for solving other types of classification problems in

many applications.
Unlike in image decomposition and segmentation appli-

cations, however, a given area (or a pixel) in a manifestly
two-layered cloud image may be a part of one, none, or
both layers. Another challenge that distinguishes the layer
separation problem is the fact that one of the layers may
obstruct another layer in large parts of an image, thus blocking
features in an obstructed layer. An application considering
multiple layers of clouds is an example where such challenges
occur.

In this paper, we solve layer separation problem within
the energy minimization framework. We introduce a method-
ology for single-channel layer separation and generalize it
to multichannel framework. Our formulations are related to
problems that arise frequently in compressed sensing [22],
[23]. The energy functionals are minimized using efficient
operator-splitting methods.

There is a rich source of multi-angle multispectral data,
containing a wide variety of scenes, which is available to
test our methodology. The data is acquired by the Multi-angle
Imaging Spectro-Radiometer (MISR), which has nine digital
cameras, pointing at different angles, and gathering data in
four different spectral bands of the visible spectrum [24]. Each
region on Earth’s surface is successively captured by all nine
cameras in blue, green, red, and near-IR wavelengths as the
Terra satellite (carrying MISR) overflies it.

The structure of the paper is follows. Section II introduces
notations used throughout the paper. The multilayer separation
model for single-channel images is introduced in Section III,
with more details provided in Appendix A. Section IV pro-
poses the multilayer separation model for multichannel images
and is supplemented by Appendix B. Results are discussed in
Section V. We conclude the paper in Section VI, and discuss
future work.

II. NOTATION

We first introduce notations that will be used throughout the
paper. Let Ω be an image domain, Ω ⊂ Rn. In this paper, we
assume we are working with two-dimensional images: n = 2.

For a single-valued function (single-channel image) u : Ω ⊂
R2 → R, we use the following notations to define the norms:

||u||1 =
∑

(i,j)∈Ω

|uij |, ||u||2 =

√ ∑
(i,j)∈Ω

|uij |2.

The gradient of u is denoted as ∇u, with ∇u ∈ R2. For a
vector-valued function d = (d1, d2) ∈ R2, for example d =
∇u, the norms are defined as

||d||1 =
∑

(i,j)∈Ω

||dij ||2, ||d||2 =

√ ∑
(i,j)∈Ω

||dij ||22, (1)

where ||dij ||2 =
√

(d1)2
ij + (d2)2

ij .

For a vector-valued function u : Ω ⊂ R2 → RC ,
representing a multichannel image u = (u(1), u(2), . . . , u(C)),
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Fig. 1. Diagram of Algorithm 1. Scale separation of image f is performed
to obtain a rough estimate of cirrus ũ and cumulus ṽ layers. Segmentation of
cumulus layer estimate finds regions for disocclusion.

where C is the number of channels in an image, we use the
following notations to define the norms:

||u||1 =
∑

(i,j)∈Ω

(
|u(1)

ij |+ . . .+ |u(C)
ij |
)
,

||u||2 =

√ ∑
(i,j)∈Ω

(u
(1)
ij )2 + . . .+ (u

(C)
ij )2.

We denote the generalization of the gradient for vector-valued
function u as ∇u ∈ R2C . For d = ∇u, the norms are defined
as in (1), with ||dij ||2 =

√
(d1)2

ij + . . .+ (d2C)2
ij .

Unless specified otherwise, || · || = || · ||2 in the remainder
of the paper.

III. MULTILAYER SEPARATION OF SINGLE-CHANNEL
IMAGES

Let f represent an observed single-channel image con-
taining multiple layers. We propose a general variational
framework for decomposition of image f into images u and
v containing the two layers. Image u will contain a low-
oscillatory layer, and image v = f − u will have a layer that
prominently occupies large contiguous areas and obstructs, or
optically overwhelms, the low oscillatory layer. We denote
by D, with boundary ∂D, the (usually disjoint) region where
possible obstruction occurs. We consider the following energy
minimization problem for scale separation:

min
ũ
{ R(ũ) + µ||f − ũ||∗ } , (2)

where R(u) is the regularization term, which puts a penalty on
high-oscillatory components. The term ||f−u||∗ models high-
oscillatory components. Examples of these terms are listed in
Appendix A. Parameter µ is nonnegative.

Scale separation minimization (2) generates only a rough
estimate of multilayer separation. As seen on Fig. 1, there are
traces of cumulus clouds in the image containing cirrus layer,
that is, ũ. We note that such irregularities occur in regions
where optically thick lower convective clouds occupy large
contiguous areas in the image. In order to recover a more
accurate representation of u (and, therefore, v), we perform
disocclusion in these regions. To find such regions D or,

equivalently, to determine region boundaries ∂D, we perform
segmentation of image ṽ = f − ũ, containing the high-
oscillatory layer. The following disocclusion minimization
problem is subsequently solved:{

min
u

R(u) in D,

u = ũ in Ω\D,
(3)

with u0 = ũ as initial conditions and Neumann boundary
conditions on D.

Algorithm 1 below is a high level description of the
proposed cloud layer separation process. Figure 1 shows a
graphical diagram displaying steps in Algorithm 1. Appendix
A describes each step of Algorithm 1 in greater detail.

Algorithm 1 Cloud Layer Separation
1: Given multilayer image f , solve scale separation subprob-

lem (2) to obtain preliminary ũ and ṽ, such that f = ũ+ṽ.
2: Perform segmentation of image ṽ from Step 1 in order to

determine (usually disjoint) region D.
3: Solve disocclusion problem (3) in region D in order to

find more accurate layers u and v, such that f = u+ v.

IV. MULTILAYER SEPARATION OF MULTICHANNEL
IMAGES

In this section, we extend the multilayer separation frame-
work, introduced in Section III, to multichannel images.
The observed multichannel image is denoted as f =
(f (1), f (2), . . . , f (C)), and it is decomposed into two layers,
u and v. Similar to a single-channel case (2, 3), the energy
minimization problems for multichannel scale separation and
disocclusion we consider are:

min
ũ
{ R(ũ) + µ||f − ũ||∗ } , (4)

and {
min
u

R(u) in D,

u = ũ in Ω\D,
(5)

respectively.
Appendix B gives more details on the proposed implemen-

tation of multichannel cloud layer separation. In the following
analyses, we use data acquired by MISR in four different
spectral bands: near-infrared (N), red (R), green (G), and
blue (B), by decreasing wavelength. An observed multichannel
MISR image containing two cloud layers can therefore be
represented as f = (f (N), f (R), f (G), f (B)).

V. RESULTS

In our experiments, we used MISR data acquired with nine
digital push-broom cameras, pointing at different angles and
gathering radiance measurements in four different spectral
bands in the solar spectrum. Each region on Earth’s surface is
successively captured by all nine cameras in blue, green, red,
and near-infrared wavelengths as the Terra platform overflies
it.

The data used in this paper were a real multichannel
image (Fig. 3(a)) and a grayscale version of the same image
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(a) Grayscale double-layer cloud image

(b) Cloud layer separation

Fig. 2. Grayscale (single-channel) layer separation. (a) Grayscale double-
layer cloud image from MISR [24] with an optically thin high-level cirrus
layer over a low-level field of broken cumulus. (b) Top and bottom panels
show the reconstructed cirrus and cumulus layers, respectively, after single-
channel layer separation was performed.

(Fig. 2(a)). We also generated synthetically a series of mul-
tichannel images by adding nearly-pure cirrus and cumulus
layers while varying opaqueness of each of two types of clouds
(Fig. 5). This provides us with “ground truth” scenarios where
the accuracy of multilayer separation results can be easily
evaluated.

Throughout this paper, we consistently used the same set of
parameters for all multichannel experiments. These parameters
are listed in the appendices.

In this section, we show cloud layer separation results
for single-channel and multichannel images, as well as com-
pare channel-by-channel and multichannel cloud layer sepa-
ration results for various thicknesses of cirrus and cumulus
clouds. Channel-by-channel layer separation is performed
using single-channel separation on each of the four channels as
described in Section III and Appendix A. Multichannel layer
separation is performed using the process described in Section
IV and Appendix B.

A. Demo with an actual MISR image

We first consider a 1460x512 single-channel multilayer
image shown on Fig. 2(a). This image was generated by
combining all four MISR channels of a real image to create
a grayscale image. As is noticeable on this image, the upper
cirrus clouds vary slowly in space and are optically thin. By
contrast, the lower convective clouds are optically thick, have
relatively sharp boundaries, and optically overwhelm the upper

clouds. Fig. 2 shows results obtained after decomposing this
image into low-oscillatory cirrus layer, u (Fig. 2(b), top), and
optically thick convective cloud layer, v (Fig. 2(b), bottom).

We next consider a multichannel image on Fig. 3(a). Fig-
ure 3(b) shows low-oscillatory cirrus layer, u, and lower
optically thick convective clouds, v, as obtained using channel-
by-channel layer separation. Figure 3(c) shows multichannel
layer separation results. Compared to channel-by-channel layer
separation (Fig. 3(b)), multichannel cloud layer separation
result is visibly more accurate, in particular, with less artifacts
present in cirrus layer. We note that color images in Fig. 3
depict red, green, and blue channels in “true color,” while
layer separation was performed on all four channels.

B. Error quantification with synthetic MISR images

We generated up a sequence of synthetic multichannel
images where truth is known. To accomplish this, we chose
two distinct scenes (678x420 images), shown on Fig. 4(a,b),
one containing only optically thin cirrus clouds and the other
containing only convective cumulus clouds. We denote by u(t)

and v(t) the images containing cirrus and cumulus clouds,
respectively. The weighted sum of these two single-layer
images is a two-layer image for which we know the truth.

Note that color images from Fig. 4 on are displayed as near-
infrared (R), red (G), and green (B), i.e., the standard “false
color” rendering. Layer separation was performed of course
on all four channels.

We expect the performance of cloud layer separation meth-
ods to vary as the relative opacity of cirrus layer changes
relative to that of the cumulus layer. In order to construct two-
layer images with layers of various relative opacities, we vary
the respective brightnesses of cirrus and cumulus clouds using
nonnegative opaqueness coefficients, ci and cu, respectively.
We generate images f that satisfy

f = ci · u(t) + cu · v(t), such that
max

(i,j)∈Ω
{ci · u(t) + cu · v(t)} = constant. (6)

As opaqueness coefficients vary, the maximum of weighted
sum in (6) equals to the same constant. Smaller ci/cu ratio
indicates the relative optical thinness of cirrus clouds, and
prominence of cumulus clouds. In contrast, larger ci/cu ratio
indicates increased optical thickness of the cirrus layer. In
this case, cirrus clouds become as optically thick as cumulus
clouds, making the layers indistinguishable and negatively
affecting the accuracy of cloud layer separation.

We performed thirteen experiments, with ci ranging from
0 to 2.6, and cu from 1.04 to 0. Accordingly, ci/cu ratio
ranges from 0 to ∞. Figure 5 shows three of these scenarios,
where ci/cu = 0.829, 2.345, 6.571. The three synthetic images
are displayed in the top row, with increasing ci/cu from
left to right. The next two rows show respectively the true
and the retrieved cirrus. The last two rows echo these ones
but for the cumulus layer. The multichannel cloud layer
separation algorithm was used in all cases. Layer separation
results for smaller ci/cu ratios are visibly more accurate (two
leftmost columns in Fig. 5), with the cirrus clouds virtually
not present in the retrieved cumulus layer image. However,
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(a) Multichannel double-layer cloud image

(b) Channel-by-channel layer separation

(c) Multichannel layer separation

Fig. 3. Channel-by-channel and multichannel layer separation. (a) Multichan-
nel double-layer cloud image from MISR with an optically thin high-level
cirrus layer over a low-level field of broken cumulus. Grayscale image of the
same scene is shown in Fig. 2(a). The reconstructed cirrus and cumulus layers
are shown after (b) channel-by-channel and (c) multichannel layer separations
were performed.

our algorithm is not as accurate for large values of ci/cu,
with some cirrus clouds easily seen in computed cumulus layer
(rightmost column in Fig. 5). As expected, when cirrus clouds
become optically thick (ci/cu → ∞), commensurate with
the cumulus clouds, and therefore overwhelming them in the
original image, accurate layer separation becomes unfeasible.

Figure 6 shows the truth, the separations and the associated
errors in computed cirrus and cumulus layers for the case
when ci/cu = 3.704, with cirrus on the left and cumulus
on the right. The original synthetic image is displayed on

Fig. 4(c). The truth is in the top row of Fig. 6. The next
row down (b) shows the channel-by-channel decomposition
followed by the signed error fields (c), which are defined as
the estimated low and high oscillatory components minus the
corresponding truth. For the RGB display, errors are offset so
that zero error across all three (R,G,B) channels is mapped to
the dominant grey tone, and the error is multiplied by 5 and
displayed on the same 0-to-255 scale as used in the first two
rows (and elsewhere). Negative errors, and there are few of
them, have darker tones and hues. Positive errors are brighter.
We immediately see that the error in the cirrus retrieval is
essentially a smoothed version of the cumulus field: most
identifiable clusters of clouds are present. Conversely, the error
in the cumulus retrieval is in essence a sharpened version of
the cirrus field: the two dominant streaks are clearly visible.
This “cross-talk” between the cirrus and cumulus “channels”
is not surprising. The two last rows (d,e) in Fig. 6 echo the
2nd and 3rd but for the multichannel cloud layer separation.
Overall, the patterns and trends in the error fields are as
previously described. Upon closer examination, we see that
cirrus-side errors are slightly reduced and that cumulus-side
errors are more spectrally neutral (less color is revealed). This
is also a natural consequence of pooling all channels in the
minimization procedures.

We computed root-mean-square (RMS) errors, errors in L1-
norm, and errors in H1-norm for all thirteen ci/cu ratios.
Given the ground truth u(t) and the error e = u − u(t), the
error norms are computed as

eRMS =

√√√√ 1

CN

∑
c

∑
(i,j)∈Ω

|e(c)
ij |2,

||e||L1
=

1

CN

∑
c

∑
(i,j)∈Ω

|e(c)
ij |,

||e||H1
=

1

CN

∑
c

∑
(i,j)∈Ω

|∇e(c)
ij |

2,

where the summation is done over all N pixels in an image
and all c = 1, 2, . . . , C channels. Figure 7 shows plots of
error norms for ci/cu < ∞. We see that the errors are
smaller for smaller ci/cu ratios and increase with increasing
opaqueness of cirrus clouds. The errors in multichannel cloud
layer separation result are consistently smaller than those in
channel-by-channel cloud layer separation. In order to interpret
numerical values of errors as displayed on the vertical axis of
plots of Fig. 7, it is important to consider that the synthetic
images were scaled to be between 0 and 255 (constant = 255
in Eq. (6)).

For the case of ci/cu = 3.704 (Figure 6), errors in L1

norm are 1.46 and 1.35 for channel-by-channel and multi-
channel methods, respectively. Table I shows minimum and
maximum values of radiances for true cirrus and cumulus
layers for this case. That means, for instance, that relative
errors (100×)||e||L1

/|max−min | are 2.54% and 2.35% for
cirrus reconstructions in channel-by-channel and multichannel
cases, respectively. The corresponding errors for cumulus
reconstructions are 1.47% and 1.36%. Since f = u + v by
construction, the error in u would be equal to error in v.
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(a) Cirrus clouds, u(t) (b) Cumulus clouds, v(t) (c) Synthetic image, f

Fig. 4. Real images containing only (a) cirrus and (b) cumulus clouds. (c) Resulting synthetic image, f = ci · u(t) + cu · v(t), where ci = 2.0, cu = 0.540,
and ci/cu = 3.704.

TABLE I
MINIMUM AND MAXIMUM RADIANCE VALUES FOR THE FOUR CHANNELS FOR CIRRUS AND CUMULUS LAYERS IN FIGURE 6(A)

Channels N R G B

Cirrus [min,max] [26, 84] [40, 100] [66, 122] [140, 196]
Cumulus [min,max] [1.6, 107] [3.2, 132] [6.5 94] [18, 93]

C]umulus reconstructions are therefore almost twice as good
by this metric, due to their significantly larger range.

We also assessed computational efficiency of the cloud
layer separation framework when using fast operator splitting
and alternating minimization methods for minimizing energy
functionals (see Appendix A). Alternatively, a standard way of
minimizing energy functionals such as (7) and (12) is to use
gradient descent methods. We found that solving the cloud
separation problem using alternate minimization methods is
about 8× faster than using gradient descent methods.

VI. CONCLUSION AND FUTURE WORK

We introduced single-channel layer separation framework
and extended it to multichannel layer separation. Specifically,
we applied our methodology to separate cirrus and cumulus
clouds in atmospheric imagery approximated as additive con-
tributions to the observed signal. We evaluated the accuracy of
multilayer separation results using synthetic images where we
know the truth. We showed that when cirrus clouds become
optically thick and indistinguishable from cumulus clouds,
accurate layer separation becomes unfeasible.

As different channels contain different information about
clouds, we showed that incorporating information from all
channels in a multichannel framework further improves mul-
tilayer separation results. Multichannel cloud layer separation
consistently generates more accurate results than channel-by-
channel cloud layer separation.

Our future research will be focused on extending our
methodology to multi-angle framework, which is essential
for a more accurate cloud layer separation. Since nearby
objects have a larger parallax than more distant objects when
observed from different angles, multi-angle information will
help to better separate optically-thick lower convective clouds,
residuals of which are noticeable in image u (Fig. 3(c), top),
and low-oscillatory upper cirrus clouds.

APPENDIX A
DETAILS ON MULTILAYER SEPARATION OF

SINGLE-CHANNEL IMAGES

As briefly described in Section III, we solve multilayer
separation problem by sequentially solving scale separation,
segmentation, and disocclusion subproblems. Details on solv-
ing each of these subproblems are presented in this appendix.

A. Scale Separation

We first solve the scale separation problem (2). There are a
variety of choices for the norm ||·||∗ modeling high oscillatory
components, including those known in the image processing
literature as H−1, BMO−1, L1, among others [10], [12], [13],
[18]. The regularizing functional R(u) can be in the form of
bounded variation (BV) norm, measuring the total variation
(TV), or can take the form of Besov norm. In particular, the
BV norm, originally proposed for image denoising by [25],
had since been used to solve a variety of problems in image
processing and computer vision. The effectiveness of the BV
norm stems from its ability to preserve edges in an image.

In our analysis, the choice of R(u) is the total variation
(TV), defined as

||u||TV = ||∇u||1 =
∑

(i,j)∈Ω

||∇uij ||,

where ∇uij ∈ R2 is the discrete gradient of u at pixel (i, j).
Here, the choice of ||·||∗ is ||·||1. Hence, minimization problem
in (2) can be written explicitely as

min
ũ
{ ||∇ũ||1 + µ||f − ũ||1 } . (7)

This formulation is related to problems that arise frequently in
compressed sensing, where function u is reconstructed from a
small subset of its Fourier coefficients [22], [23].

Alternating minimization algorithms, which are derived
using variable-splitting techniques in optimization, were pro-
posed in [26] for TV-L1 deconvolution problems. In order to
minimize (7), an additional variable d ∈ R2 is introduced to
transfer ∇ũ out of non-differentiable terms at each pixel, and



YANOVSKY AND DAVIS: SEPARATION OF RADIANCES FROM A CIRRUS LAYER AND BROKEN CUMULUS CLOUDS 7

ci = 0.8, cu = 0.965, ci/cu = 0.829 ci = 1.7, cu = 0.725, ci/cu = 2.345 ci = 2.3, cu = 0.350, ci/cu = 6.571

(a) Images f obtained by combining cirrus and cumulus clouds from Fig. 4(a,b) using different opaqueness coefficients.

(b) True cirrus cloud layers

(c) Cirrus layers recovered by multichannel cloud layer separation

(d) Cumulus layers recovered by multichannel cloud layer separation

(e) True cumulus layers

Fig. 5. Multichannel cloud layer separation results for synthetically constructed images. (a) Images f obtained by combining cirrus and cumulus clouds
from Fig. 4(a,b) using different opaqueness coefficients are shown. (b,e) Cirrus and cumulus layers that compose images in (a) are shown. (c,d) Cirrus and
cumulus layers obtained using multichannel layer separation. The coefficients for the first column: ci = 0.8, cu = 0.965, ci/cu = 0.829; second column:
ci = 1.7, cu = 0.725, ci/cu = 2.345; third column: ci = 2.3, cu = 0.350, ci/cu = 6.571.

||d−∇ũ||2 is penalized. Since L1 term ||f − ũ||1 in equation
(7) is not quadratic in ũ, an additional variable z is introduced
to approximate ũ − f . Hence, we rewrite the minimization
problem for (7) as

min
ũ,d,z

{
||d||1 +

λ

2
||d−∇ũ||2 + µ||z||1

+
α

2
||z − (ũ− f)||2

}
, (8)

where λ and α are nonnegative parameters.

For a fixed ũ, the minimization problems for d and z are

d∗ = arg min
d

{
||d||1 +

λ

2
||d−∇ũ||2

}
, (9)

z∗ = arg min
z

{
µ||z||1 +

α

2
||z − (ũ− f)||2

}
,

which can be explicitly solved for d and z, at each pixel,
by using a generalized and the one-dimensional shrinkage
formulas, respectively [27], [28]:

d = max
{
||∇ũ|| − 1

λ
, 0
} ∇ũ
||∇ũ||

, (10)
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(a) True cirrus layer (left) and cumulus layer (right)

(b) Channel-by-channel cloud layer separation result

(c) Errors (magnified by a factor of 5) in channel-by-channel
cloud layer separation result

(d) Multichannel cloud layer separation result

(e) Errors (magnified by a factor of 5) in multichannel
cloud layer separation result

Fig. 6. Channel-by-channel and multichannel cloud layer separation of syn-
thetic image in Fig. 4(c), with ci/cu = 3.704, into cirrus and cumulus layers.
(a) The true layers are shown. (b) Channel-by-channel layer separation result
and (c) corresponding errors (magnified by a factor of 5) are shown. Errors
are the differences between computed result and the truth. (d) Multichannel
layer separation result and (e) corresponding errors (magnified by a factor of
5) are shown.

z = max
{
|ũ− f | − µ

α
, 0
}

sign(ũ− f).

For a fixed d and z, the minimization problem (8) is quadratic
in ũ:

ũ∗ = arg min
ũ

{
||d−∇ũ||2 +

α

λ
||z − (ũ− f)||2

}
,

and has the optimality condition:

(α− λ4) ũ = α(f + z)− λ∇ · d,

which we solve using the fast Fourier transform.

In our experiment, the choice of parameters was: µ = 0.1,
λ = 1.0, and α = 1.0µ. The minimum and maximum intensity
values for each image are 0 and 255, respectively.

See Fig. 1 (step 1) for an example of a result after scale
separation was performed.

B. Segmentation

Scale separation, as described in Appendix A-A, generates
only a rough estimate of multilayer separation. As seen on
Fig. 1 (step 1), scale separation leaves traces of optically
thick convective clouds in the image containing low-oscillatory
cirrus layer. Such irregularities occur in the regions where op-
tically thick lower convective clouds occupy large contiguous
areas in the image. Our aim is to perform disocclusion only
in these regions. However, we first need to find regions D or,
equivalently, determine region boundaries ∂D. In order to find
∂D, we perform segmentation of image ṽ (see Fig. 1, step 2).

The segmentation can be achieved, for example, via solving
the following minimization problem [21]:

F (a1, a2, ∂D) = γ

∫
∂D

ds

+

∫
D

(ṽ(x, y)− a1)2 dxdy

+

∫
Ω\D

(ṽ(x, y)− a2)2 dxdy, (11)

min
a1,a2,∂D

F (a1, a2, ∂D),

where a1 and a2 are averages of ṽ inside and outside D,
respectively. Minimizing the fitting error, which is represented
by the last two terms in the energy functional (11), the model
looks for the best segmentation of ṽ taking only two values,
namely a1 and a2. The first term is the regularizer in the form
of the length of the boundary ∂D, and γ > 0 is a parameter.
Eq. (11) can be re-written using level set formulation [29],
[30].

In our experiment, γ = 0.001 · 2552. See Fig. 1 (step 2) for
an example of segmentation result.

C. Disocclusion

Disocclusion, an important inverse problem with many
applications, is the process for reconstructing corrupted or
obstructed parts of an image. Image disocclusion received
considerable interest since the pioneering papers by [31], [32],
who proposed variational principles for obtaining solutions to
such problems.

Here, we use a different technique, based on fast operator
splitting methods, to solve disocclusion problem. After deter-
mining region D in Appendix A-B, we can perform disocclu-
sion to recover low-oscillatory layer u that is obstructed by
opaque layer v. Similar to scale separation functional (2), we
use ||u||TV as regularizer for the disocclusion minimization
problem (3), which can be written as{

min
u
||∇u||1 in D,

u = ũ in Ω\D,
(12)
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Fig. 7. RMS errors and errors in L1-norm and H1-norm between computed results and the truth for channel-by-channel and multichannel cloud layer
separations for different ci/cu ratios are shown. The values marked with solid black vertical lines correspond to the cases studied on Fig. 5 and dashed line
corresponds to the case of Fig. 6. For reference, the synthetic images were scaled to be between 0 and 255. See main text for more discussion.

with u0 = ũ as initial conditions and Neumann boundary
conditions.

Fast operator-splitting and alternating minimization methods
were proposed in [33], [34] for TV-L2 deconvolution problem.
Also, the Split Bregman method was proposed in [35] for
solving TV-L2 denoising problems. In these methods, and as
in (8), variable d is introduced and ||d−∇u||2 is penalized.
Hence, we rewrite the minimization problem for (12) as

min
u,d

{
||d||1 +

β

2
||d−∇u||2

}
, (13)

where β is a nonnegative parameter. For a fixed u, the
minimization problem for d and its solution are given by (9)
and (10), respectively. For a fixed d, the minimization problem
(13) is quadratic in u, and the minimizer u∗ is given by

u∗ = arg min
u
||d−∇u||2,

which has the optimality condition:

4u = ∇ · d.

In our experiment, β = 0.18. See Fig. 1 (step 3) for an
example of result after disocclusion was performed.

APPENDIX B
DETAILS ON MULTILAYER SEPARATION OF

MULTICHANNEL IMAGES

The regularization term R(u) in (4) and (5) is the multi-
channel total variation (MTV) [36], [37], defined as

||u||MTV = ||∇u||1

=
∑

(i,j)∈Ω

√
||∇u(1)

ij ||2 + ||∇u(2)
ij ||2 + . . .+ ||∇u(C)

ij ||2.

The norm || · ||∗ is || · ||1. Hence, similar to (7) and (12),
minimization problems for scale separation and disocclusion
can be written as

min
ũ
{ ||∇ũ||1 + µ||f − ũ||1 }

and {
min
u
||∇u||1 in D,

u = ũ in Ω\D,

respectively. The multichannel image segmentation method
[38] can be used to determine locations of optically thick and
high-oscillatory clouds:

F (a1,a2, ∂D) = γ

∫
∂D

ds

+

∫
D

1

C

C∑
c=1

(ṽ(c)(x, y)− a(c)
1 )2 dxdy

+

∫
Ω\D

1

C

C∑
c=1

(ṽ(c)(x, y)− a(c)
2 )2 dxdy,

min
a1,a2,∂D

F (a1,a2, ∂D),

where a1 = (a
(1)
1 , a

(2)
1 , . . . , a

(C)
1 ) and a2 =

(a
(1)
2 , a

(2)
2 , . . . , a

(C)
2 ) are unknown constant vectors,

representing averages of ṽ inside and outside D, respectively.
Following such generalizations to notations for vector-value

functions, equations for scale-separation, segmentation, and
disocclusion in multichannel case are similar to those in single-
channel case in Appendix A and are therefore omitted.

We consistently used the same set of parameters for all
multichannel experiments. The values of the parameters are:
µ = 0.05, λ = 1.0, and α = 1.0µ for scale separation,
γ = 0.001 · 2552 for segmentation, and β = 0.045 for
disocclusion. The minimum and maximum intensity values for
each image are 0 and 255, respectively.
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