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Abstract. In signal acquisition, Toeplitz and circulant matrices are widely

used as sensing operators. They correspond to discrete convolutions and are

easily or even naturally realized in various applications. For compressive sens-
ing, recent work has used random Toeplitz and circulant sensing matrices and

proved their efficiency in theory, by computer simulations, as well as through

physical optical experiments. Motivated by recent work [8], we propose mod-
els to learn a circulant sensing matrix/operator for one and higher dimensional

signals. Given the dictionary of the signal(s) to be sensed, the learned circulant

sensing matrix/operator is more effective than a randomly generated circulant
sensing matrix/operator, and even slightly so than a (non-circulant) Gaussian

random sensing matrix. In addition, by exploiting the circulant structure, we
improve the learning from the patch scale in [8] to the much large image scale.

Furthermore, we test learning the circulant sensing matrix/operator and the

nonparametric dictionary altogether and obtain even better performance. We
demonstrate these results using both synthetic sparse signals and real images.

1. Introduction. Compressive sensing (CS) ([7, 5]) acquires a compressible signal
from a small number of linear projections. Let x̄ denote an n-dimensional real or
complex vector that is sparse under a certain basis Ψ, i.e., one can write x̄ = Ψθ̄
with a sparse θ̄. Let b := Φx̄ represent a set of m linear projections of x̄. The basis
pursuit problem

(1) BP: min
θ
‖θ‖1 s.t. ΦΨθ = b,

as well as several other methods, has been known to return a sparse vector θ and
thus recover x = Ψθ under certain conditions on the sensing matrix Φ and basis Ψ.

Gaussian random matrix Φ is in the first studied CS matrices and has nice prop-
erties. Given enough underdetermined measurements, (1) with Gaussian random
matrix Φ is guaranteed to exactly recover a sparse x̄ with high probability. How-
ever, in many CS applications, the acquisition of the linear projections Φx̄ requires
a physical implementation. In most cases, the use of an i.i.d. Gaussian random
matrix Φ is either impossible or overly expensive. This motivates the study of eas-
ily implementable CS matrices. Two types of such matrices are the Toeplitz and
circulant matrices, which have been shown to be almost as effective as the Gaussian

2010 Mathematics Subject Classification. Primary: 94A08, 94A12; Secondary: 90C90.
Key words and phrases. Compressive sensing, sensing operator learning, sensing kernel learn-

ing, circulant matrix, Toeplitz matrix, dictionary learning.

1

http://dx.doi.org/10.3934/ipi.2014.8.901


2 Yangyang Xu, Wotao Yin and Stanley Osher

random matrix for CS encoding/decoding. A Toeplitz matrix T has the same ele-
ment on each diagonal, and a circulant matrix C is a special Toeplitz matrix with
each row obtained by shifting the preceeding row one element to the right, namely,

(2) T =



tn tn−1 · · · · · · t1

tn+1 tn tn−1

. . .
...

tn+2 tn+1

. . .
. . .

...
...

. . .
. . . tn tn−1

t2n−1 · · · tn+2 tn+1 tn


, C =



tn tn−1 · · · · · · t1

t1 tn tn−1

. . .
...

t2 t1
. . .

. . .
...

...
. . .

. . . tn tn−1

tn−1 · · · t2 t1 tn


.

When matrix T satisfies the additional property that ti = tn+i,∀i, it becomes a
circulant matrix C. For more about Toeplitz and circulant matrices, please refer to
the review paper [11]. Since a (partial1) Toeplitz matrix has very similar theoretical
and computational properties to a (partial) circulant matrix of the same size, our
discussions below are based exclusively on the circulant matrix. Using Toeplitz,
rather than circulant, matrices will incur some insignificant computation overhead
to the methods proposed in this paper.

1.1. Circulant Compressive Sensing. In various physical domains, it is easy
to realize Cx̄ since it is equivalent to the discrete convolution c ∗ x̄ for a certain
vector c; if P is a row-selection (downsampling) operator, PCx̄ becomes circulant
CS measurements of x̄. Using either Toeplitz or circulant matrices, Tropp et al.
[27] describes a random filter for acquiring a signal x̄; Haupt et al. [12] describes
a channel estimation problem to identify a vector x̄ (called impulse responses) that
characterizes a discrete linear time–invariant (LTI) system; Meng et al. [19, 20]
applies it to high-resolution OFDM channel estimation. Random convolutions can
also be applied in some imaging systems in which convolutions either naturally arise
or can be physically realized [3, 13, 17, 16, 24]. Furthermore, random convolutions
can be realized by an optical correlator [24]. Since any circulant matrix C in (2)
can be diagonalized by a Fourier transform, i.e., obeying

(3) C = FDF ∗,

where F is the discrete Fourier matrix of the same size as C and D is a diagonal
matrix, implementing Cx̄ is equivalent to implementing FDF ∗x̄, which can be real-
ized through optical lens and a static spatial light modulator (SLM) [29]. Recently,
the use of Toeplitz and circulant matrices has been proposed for compressive MR
imaging by Liang et al. [14].

There are rich theoretical results on circulant matrices for CS. In [2], Toeplitz
measurement matrices are constructed with i.i.d. random entries of ±1 or {−1, 0, 1};
their downsampling effectively selects the first m rows; and the number of measure-
ments for stable `1 recovery is shown to be m ≥ O(k3 · log n/k), where k is the
signal sparsity. The work [12] selects the first m rows of a Toeplitz matrix with
i.i.d. Bernoulli or Gaussian entries for sparse channel estimation. Their scheme
requires m ≥ O(k2 · log n) for stable `1 recovery. The work [20] establishes stable
recovery under the condition m ≥ O(k2 log(n/k)). In [24], random convolution with
either random downsampling or random demodulation is proposed and studied. It
is shown that the resulting measurement matrix is incoherent with any given sparse

1By “a partial Toeplitz matrix”, we refer to a submatrix formed by selecting m out of the
n rows of the original Toeplitz matrix, where m < n. Given a row selection operator P and a

Toeplitz matrix T , PT is a partial Toeplitz matrix.
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basis with high probability and `1 recovery is stable given m ≥ O(k · log n+ log3 n).
Recent results in [23] show that several random circulant matrices satisfy the re-
stricted isometry property (RIP) in expectation and with high probability given

m ≥ O(max{k3/2 log3/2 n, k log2 k log2 n}) with arbitrary downsampling, and thus
guarantee exact and stable CS recovery. We note that all these results are based
on random circulant matrices, so they do not apply to optimized circulant matrices
in this paper. We demonstrate that learned circulant matrices achieve even better
performance.

The use of circulant sensing matrices also allows faster signal and image recovery.
Practical algorithms (e.g., [28, 30, 31, 34, 32]) for CS are based on performing
operations including multiplications involving with Φ and Φ∗. For partial circulant
matrix Φ = PC, Φx and Φ∗y each can be quickly computed by two fast Fourier
transforms (FFTs) and simple component-wise operations. This is much cheaper
than multiplying a general matrix with a vector. For image recovery, a splitting
algorithm taking advantages of the circulant structure has been proposed in [33] and
shows both satisfactory recovery quality and speed. These fast algorithms apply to
the learned circulant matrices in this paper.

1.2. Learning dictionaries and sensing matrices. In CS, signal and image
reconstructions are based on how they are sparsely represented. The sparse rep-
resentation involves a choice of dictionary, a set of elementary signals (or atoms)
used to sparsely decompose the underlying signal or image. There are analytic
dictionaries and learned dictionaries. Examples of analytic dictionaries include the
discrete cosine basis, various wavelets bases, as well as tight frames. Some of them
are orthogonal while others are over-complete. Their analytic properties have been
studied, and they feature fast implementations; hence, they have found wide ap-
plications. Properly learned (as opposed to analytic) bases can give rise to even
sparser representations of signals and, in particular, images, so they can give better
encoding and decoding performance than the analytic dictionaries; see [22, 10, 21]
for examples and explanations. Although most theoretical results of CS recovery
do not apply to learned dictionaries and optimized sensing matrices, one useful tool
is the so-called mutual coherence between a dictionary Ψ and a sensing matrix Φ:
with D := ΦΨ = [d1, . . . , dK ], it is defined as [15]

(4) µ(D) := max
i 6=j,1≤i,j≤K

|d∗i dj |
‖di‖2‖dj‖2

.

A smaller µ(D) tends to allow more Ψ-sparse signals x̄ to be successfully recovered
from measurements Φx̄ via various CS algorithms. Hence, Elad [9] seeks means to
reduce µ(D). His work demonstrates improved recovery quality with learned (non-
circulant) sensing matrices Φ, and it has motivated the subsequent work [8], which
is not based on minimizing µ(D) but instead pursuing (ΦΨ)∗(ΦΨ) ≈ I, where I
denotes the identity matrix. Note that (ΦΨ)∗(ΦΨ) ≈ I directly targets the RIP of
ΦΨ, because in that case, any k×k leading minor of (ΦΨ)∗(ΦΨ) also approximates
the identity matrix. The results of [8] are even better than those in [9] since µ(D)
is a worst-case characteristic whereas (ΦΨ)∗(ΦΨ) ≈ I tends to reduce the average
of off-diagonal elements of (ΦΨ)∗(ΦΨ) and improve the recovery performance in
average. Also, the latter is easier to compute.

1.3. Contributions. We are motivated by [8] and propose numerical methods to
minimize ‖(ΦΨ)∗(ΦΨ) − I‖F , where Φ is either a full or partial circulant matrix.
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Specifically, we determine the spectrum vector d = diag(D) of Φ = PC = P (FDF ∗)
by numerically optimizing the magnitudes of the entries in d and then assigning
them uniformly random phases. Note that if a circulant matrix C is generated by
either assigning a random vector as its first row or following Romberg’s strategy [24],
then the corresponding vector d has uniformly random phases. The only yet key
difference among the different approaches lies on the magnitudes of d. Romberg [24]
assigns a unit magnitude uniformly whereas we choose to optimize the magnitudes
in order to adapt to the training data.

Like [8], we also learn Φ and Ψ together, performing the so-called coupled learning
of Φ and Ψ. While results of [8] are limited to one dimensional case2, we take ad-
vantages of the circulant structure and deal with more than one dimension, enabling
the learned circulant sensing for signals such as images and videos. Furthermore,
we address the patch-scale limitation of [8], namely, the sensing matrix size n must
equal the dictionary atom size; namely, if the dictionary for a 512 × 512 image is
formed by 8 × 8 patches, the sensing matrix generated in [8] has only 64 = 8 × 8
columns and applies to vectors of length 64, instead of 512×512. Hence, the learned
sensing matrix cannot be applied to the entire image. We remove this limitation and
perform image-scale learning by generating circulant sensing operators applicable
to the entire signals or images.

Our approaches are tested on synthetic 1D signals, as well as the images in
the Berkeley segmentation dataset [18]. The learned circulant sensing matrix gives
better recoverability over both random circulant and Gaussian random matrices.
For real image tests, the coupled learning approach achieves even better recovery
performance.

1.4. Notation. We let (·)> and (·)∗ denote transpose and conjugate transpose,
respectively. conj(·) stands for the conjugate operator. Define A •B =

∑
i,j AijBij

and 〈A,B〉 =
∑
i,j conj(Aij)Bij for any two matrices A,B of the same dimension.

vec(A) is a vector formed by stacking all the columns of A, and diag(·) is defined in
the same way as MATLAB function diag, which either extracts the diagonal entries
of a given matrix to form a vector or, given a vector, forms a diagonal matrix with
the vector’s entries. In addition, � and � denote component-wise multiplication
and division, respectively.

The rest of this paper is organized as follows. Section 2 overviews one and
two dimensional circulant correlations. A two-step procedure to optimize a partial
circulant sensing matrix/operator is described in section 3. Section 4 discusses how
to form an image-scale dictionary from a patch-scale one, and section 5 describes
how the involved optimization problems are solved. Numerical results are presented
in section 6.

2. Overview of circulant correlations. Given a kernel v ∈ Cn, the circulant
correlation x ? v for a vector x ∈ Cn is defined as

(5) (x ? v)k =

n∑
i=1

xivki , for k = 1, . . . , n,

2Strictly speaking, the work [8] also applies to two dimensional images. However, it needs to
reshape each two dimensional image patch into a one dimensional vector.
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where ki = mod(n+i−k, n)+1. Let c = [vn, vn−1, . . . , v1]>. Then x?v is equivalent
to the convolution x ∗ c, which is defined as

(x ∗ c)k =

n∑
i=1

xicki , for k = 1, . . . , n,

where ki = mod(n+ k − i− 1, n) + 1.
We next introduce three methods to compute x ? v. First, introducing the n× n

cyclic permutation matrix

(6) Pn =



0 0 · · · 0 1
1 0 · · · 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0 1 0

 ,

we can write formula (5) as

(x ? v)k = x>P k−1
n v, for k = 1, . . . , n.

Multiplying Pn from the left circularly down-shifts by a row and multiplying P>n
from the right circularly right-shifts a column. For example, given v = [1, 2, 3]>

and x = [−1, 0, 1]>, y = x ? v equals

y1 = x>P 0
3 v =− 1 · 1 + 0 · 2 + 1 · 3 = 2,

y2 = x>P3v =− 1 · 3 + 0 · 1 + 1 · 2 = −1,

y3 = x>P 2
3 v =− 1 · 2 + 0 · 3 + 1 · 1 = −1.

Secondly, we can compute x ? v via the matrix-vector multiplication Cx with the
circulant matrix

(7) C =


v1 v2 · · · vn
vn v1 · · · vn−1

. . .
. . .

. . .

v2 v3 · · · v1

 .
Thirdly, x ? v can be quickly computed by two fast Fourier transforms and some
component-wise multiplications as described in the following lemma, which is a
restatement of the convolution theorem.

Lemma 2.1. Any circulant matrix C in (7) can be written as C = FDF ∗, where
F is the n× n unitary discrete Fourier transform matrix, i.e.,

Fij =
1√
n

exp(−2π
√
−1ij

n
), for i = 1, . . . , n; j = 1, . . . , n,

and D = diag(d) where d =
√
nFv.

Remark 1. The matrix C is real-valued if d is conjugate symmetric, namely, di =
conj(di′) for every i and i′ = mod(n− i+ 1, n) + 1. Imposing conjugate symmetry
leads to real-valued C and reduces the freedom of d to nearly half.
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2D circulant correlation inherits the nice properties of 1D circulant correlation.
Given a kernel M ∈ Cn1×n2 , the 2D circulant correlation Y = X ? M for a given
matrix X ∈ Cn1×n2 is defined by

(8) (X ?M)ts =
∑
i,j

XijMtisj , for 1 ≤ t ≤ n1, 1 ≤ s ≤ n2,

where ti = mod(n1 + i− t, n1) + 1 and sj = mod(n2 + j − s, n2) + 1.
Similar to 1D circulant, X ?M can be computed in three ways. First, with cyclic

permutation matrices Pn1
and Pn2

, formula (8) can be written as

(X ?M)ts = X • (P t−1
n1

M(P>n2
)s−1), for 1 ≤ t ≤ n1, 1 ≤ s ≤ n2.

For instance, if

X =

[
1 −1 0
−2 0 1

]
and M =

[
1 2 3
4 5 6

]
,

then Y = X ?M has components

Y11 =

[
1 −1 0
−2 0 1

]
•
[
1 2 3
4 5 6

]
= −3, Y21 =

[
1 −1 0
−2 0 1

]
•
[
4 5 6
1 2 3

]
= 0,

Y12 =

[
1 −1 0
−2 0 1

]
•
[
3 1 2
6 4 5

]
= −5, Y22 =

[
1 −1 0
−2 0 1

]
•
[
6 4 5
3 1 2

]
= −2,

Y13 =

[
1 −1 0
−2 0 1

]
•
[
2 3 1
5 6 4

]
= −7, Y23 =

[
1 −1 0
−2 0 1

]
•
[
5 6 4
2 3 1

]
= −4.

Secondly, Y = X?M can be computed by matrix-vector multiplications via vec(Y ) =
C2vec(X), where

(9)
C2 =

[
vec(M1,1), vec(M2,1), . . . , vec(Mn1,1), . . . , vec(M1,s),

. . . , vec(Mn1,s), . . . , vec(Mn1,n2)
]>
,

with the notation M t,s := P t−1
n1

M(P>n2
)s−1 for 1 ≤ t ≤ n1 and 1 ≤ s ≤ n2. It is not

difficult to verify that C2 is a block-circulant matrix. For the above example, we
have

C2 =


1 4 2 5 3 6
4 1 5 2 6 3
3 6 1 4 2 5
6 3 4 1 5 2
2 5 3 6 1 4
5 2 6 3 4 1

 and C2vec(X) =


1 4 2 5 3 6
4 1 5 2 6 3
3 6 1 4 2 5
6 3 4 1 5 2
2 5 3 6 1 4
5 2 6 3 4 1

 ·


1
−2
−1
0
0
1

 =


−3
0
−5
−2
−7
−4

 .

Thirdly, we can quickly compute X ? M through two fast 2D Fourier transforms
and some component-wise multiplications according to the following lemma, which
is a restatement of the 2D convolution theorem.

Lemma 2.2. Given kernel M ∈ Cn1×n2 , define 2D circulant operator C2 on Cn1×n2

by C2(X) = X ?M for X ∈ Cn1×n2 . Then C2 can be represented as C2 = F2VF∗2 ,
where F2 is the orthogonal 2D discrete Fourier transformation operator on Cn1×n2 ,
F∗2 is the adjoint operator of F2 as well as its inverse operator, and V is an operator
on Cn1×n2 defined by V(X) = V �X for any X ∈ Cn1×n2 with V =

√
n1n2F2(M).

Remark 2. The block-circulant matrix C2 corresponding to C2 is real valued if V
is conjugate symmetric, namely, Vij = Vi′j′ for every pair of i, j and i′ = mod(n1 −
i+ 1, n1) + 1, j′ = mod(n2 − j + 1, n2) + 1.
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3. Learning circulant sensing matrix/operator. In this section, we illustrate
how to learn the 1D kernel v in formula (5) and the 2D kernel M in formula (8),
as well as their corresponding downsampling operators P (row selection) and PΩ

(sample selection); hence, we form a partial circulant sensing matrix PC ∈ Cm×n
and a partial 2D circulant sensing operator PΩC2, respectively. Here, P selects m
out of the n rows from C, and PΩ collects the entries in Ω ⊂ {1, . . . , n1}×{1, . . . , n2}
and forms a column vector. For example,

X =

1 2 3
4 5 6
7 8 9

 and Ω = {(1, 2), (2, 1), (3, 1), (2, 3)},

lead to PΩ(X) = [4, 7, 2, 6]>.

Remark 3. In our experiments, we will normalize each column of the sensing
matrix Φ, for otherwise the recovery can be numerically instable in particular when
Φ is a Gaussian random matrix. Note that the normalization to PC (or PΩC2) is
equivalent to multiplying a diagonal matrix (or having a componentwise operator)
to the right, and thus it only slightly increases the computation.

3.1. Learning 1D circulant kernel and downsampler. Let Ψ ∈ Cn×K be a
given dictionary such that the underlying signal x̄ = Ψθ̄, where θ̄ is a (nearly)
sparse vector. Following [8], we would like to design a partial circulant sensing
matrix Φ = PC such that Ψ∗Φ∗ΦΨ ≈ I, where C is an n× n circulant matrix and
P is an m × n downsampling matrix. To construct a partial circulant matrix Φ,
we shall determine P and C. We first learn the circulant matrix C and then the
downsampler P .

According to Lemma 2.1, C = FDF ∗ where the diagonal matrix D = diag(d)
with entries d =

√
nFv and v is the kernel of C. Therefore, learning C is equivalent

to choosing the best kernel v or vector d. Our approach is based on solving

(10) min
C
‖Ψ∗C∗CΨ− I‖F ,

so that Ψ∗C∗CΨ ≈ I. From F ∗F = I, we have

Ψ∗C∗CΨ = Ψ∗FD∗F ∗FDF ∗Ψ = Ψ∗Fdiag(d∗)diag(d)F ∗Ψ.

Introduce B := F ∗ΨΨ∗F , which satisfies B∗ = B. Let B̄ := [|Bij |2]. Given Ψ,
matrices B and B̄ are constant matrices. Let

(11) z := (|d1|2, |d2|2, . . . , |dn|2)> ≥ 0,

which are unknowns to be determined. We have diag(d∗)diag(d) = diag(z) and

1

2
‖Ψ∗C∗CΨ− I‖2F

=
1

2
‖Ψ∗Fdiag(d∗)diag(d)F ∗Ψ− I‖2F

=
1

2
tr(Ψ∗Fdiag(z)Bdiag(z)F ∗Ψ)− tr(Ψ∗Fdiag(z)F ∗Ψ) +

n

2

=
1

2
tr(diag(z)Bdiag(z)B)− tr(diag(z)B) +

n

2

=
1

2
z>diag(Bdiag(z)B)− z>diag(B) +

n

2

=
1

2
z>B̄z − z>diag(B) +

n

2
.
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Hence, we reduce (10) to

(12) min
z≥0

1

2
z>B̄z − z>diag(B).

Problem (12) is a convex quadratic program and can be reformulated as a non-
negative least-squares problem.

Given a solution z = zopt to (12), any d obeying (11) gives C = Fdiag(d)F ∗ as
a solution to (10). Since only |di|, i = 1, . . . , n, are specified, the phases of di are
still subject to determine. Generally, phases encode the location of the information
in a signal. Since such location is unknown at the time of sensing, we choose to
generate the phase of every di uniformly at random, which is suggested by [24]. We
want to mention that if Ψ is an orthogonal basis or tight frame, i.e., ΨΨ∗ = I, the
solution of (12) is simply a vector with all ones, and in this case our generated d
is the same as that in [24]. However, as ΨΨ∗ 6= I, e.g., all the learned dictionaries
in our experiments, the solution of (12) is generally not the all-one vector, and the
optimized d is different from that in [24]. Models (10) and (12) lead to significant
improvement in sensing efficiency as we shall demonstrate by numerical examples
in section 6.

Remark 4. The above procedure generates a complex-valued C. To obtain a real-
valued C, one shall add constraints zi = zn−i+2 for i = 2, . . . , n in the problem (12)
and then generate a conjugate symmetric d from the solution zopt.

As Ψ is square, i.e., n = K, we also tested an alternative model as follows.
Although it does not work as well as (10), we believe it is worth conveying the
information to the readers. The model is

(13) min
C

1

2
‖CΨ− I‖2F ,

which is equivalent to

(14) min
d∈Cn

1

2
d∗Ad− 1

2
d>diag(F ∗ΨF )− 1

2
conj(d>diag(F ∗ΨF )),

where A is a diagonal matrix with diagonal entries given by vector diag(F ∗ΨΨ∗F ).
Since (14) is component-wise separable in di, it is easy to derive its closed-form
solution

(15) dopt = conj(diag(F ∗ΨF ))� diag(F ∗ΨΨ∗F ).

Our numerical experience suggests that this solution (and thus model (13)) is not
as effective as that of (10). On the other hand, Ψ is usually overcomplete, for which
case (13) is inapplicable.

After the circulant matrix C is determined, we now optimize P , and thus fully
determine Φ. A simple yet effective solution is the random selection, that is, let P
select m out of the n rows of C uniformly at random. This tends to work well on
signals without dominating frequencies.

We can also choose to minimize ‖Ψ∗Φ∗ΦΨ − I‖F so that Ψ∗Φ∗ΦΨ ≈ I. Let pi
be the binary variable indicating the selection of element i, i.e.,

(16) pi =

{
1, matrix P selects row i,

0, otherwise.
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Since Φ = PC, we shall solve

(17) min
P

1

2
‖Ψ∗C∗(P ∗P )CΨ− I‖2F =

∥∥∥∥∥
n∑
i=1

pi(qiq
∗
i )− I

∥∥∥∥∥
2

F

,

where qi is the i-th column of Ψ∗C∗. Model (17) is equivalent to the binary quadratic
program

(18)

{
minp ‖[vec(q1q

∗
1), · · · , vec(qnq

∗
n)]p− vec(I)‖22 ,

subject to
∑
i pi = m and pi ∈ {0, 1}, ∀i.

Here, [vec(q1q
∗
1), · · · , vec(qnq

∗
n)] is a matrix of n2 rows and n columns. By simple

calculation, we can write (18) into the following equivalent problem

(19) min
p
p>Hp− 2f>p, subject to

∑
i

pi = m and pi ∈ {0, 1}, ∀i,

where H = [|Gij |2], f = diag(G) and G = CΨΨ∗C∗. Problem (19) is NP-hard in
general and can be solved to a moderate size by solvers such as Gurobi [4].

3.2. Learning 2D circulant kernel and downsampler. A 2D circulant opera-
tor C2 is often used in imaging [25, 29]. It is not equivalent to a circulant matrix
even if the image is vectorized but can be reduced to a block circulant matrix with
circulant blocks [6].

Given a dictionary Ψ = [ψ1, ψ2, . . . , ψK ] where each ψi ∈ Cn1×n2 , we define a

linear operator Q on CK by Q(θ) =
∑K
i=1 θiψi for θ ∈ CK . An array X ∈ Cn1×n2

is sparse with respect to the dictionary Ψ if it can be represented as X = Q(θ)
with a sparse θ ∈ CK . Let PΩ be the downsampling operator on Cn1×n2 defined at
the beginning of this section. Then the basis pursuit problem to recover X can be
written as

(20) min
θ
‖θ‖1, subject to PΩC2Q(θ) = b,

where b = PΩC2(X) contains the measurements of X. To improve the recoverability
of the `1 optimization problem (20), we shall try to make (C2Q)∗C2Q close to the
identity operator I on CK . The adjoint operator of Q is defined as

Q∗(X) = [〈ψ1, X〉, 〈ψ2, X〉, . . . , 〈ψK , X〉]>, for any X ∈ Cn1×n2 .

Hence, for any θ ∈ CK ,

(C2Q)∗C2Q(θ) =

[
〈C2(ψ1),

K∑
i=1

θiC2(ψi)〉, . . . , 〈C2(ψK),

K∑
i=1

θiC2(ψi)〉

]>
,

and making (C2Q)∗C2Q ≈ I is equivalent to making 〈C2(ψj),
∑K
i=1 θiC2(ψi)〉 ≈ θj

for 1 ≤ j ≤ K. Toward this goal, we solve

(21) min
G
‖G− I‖2F , subject to Gts = 〈C2(ψt), C2(ψs)〉,

which can be simplified as follows. According to Lemma 2.2, we have

〈C2(ψt), C2(ψs)〉 = 〈F2VF∗2 (ψt),F2VF∗2 (ψs)〉

= 〈VF∗2 (ψt),VF∗2 (ψs)〉 = 〈V∗VF∗2 (ψt),F∗2 (ψs)〉.
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Let U = conj(V )�V and define U := V∗V, where V∗ is the adjoint operator of V. We
have U(X) = U �X for any X ∈ Cn1×n2 . Let u = vec(U) and Y = [y1, y2, . . . , yK ]
with ys = vec(F∗2 (ψs)) for s = 1, 2, . . . ,K. Then

Gts = 〈V∗VF∗2 (ψt),F∗2 (ψs)〉 = (u� yt)∗ys = u∗(conj(yt)� ys).

Hence,

‖G‖2F =
∑
t,s

conj (Gts) ·Gts

=
∑
t,s

conj
(
u∗(conj(yt)� ys)

)
·
(
u∗(conj(yt)� ys)

)
=
∑
t,s

u∗(conj(yt)� ys)
(
(conj(yt)� ys)

)∗
u

=
∑
t,s

u∗
(
conj(yt(yt)∗)� (ys(ys)∗)

)
u = u∗Au,

where A :=
∑
t,s conj(yt(yt)∗)� (ys(ys)∗) = conj(Y Y ∗)� (Y Y ∗). In addition,

tr(G) = tr(G∗) =
∑
t

u∗(conj(yt)� yt) = (diag(Y Y ∗))∗u = f∗u,

with f := diag(Y Y ∗). Therefore, problem (21) is equivalent to the convex quadratic
program

(22) min
u≥0

1

2
u>Au− f>u

in the same form of (12), where we have used real transpose instead of conjugate
transpose since f, u and A are all real.

Given a solution u = uopt of (22), we can obtain matrix U via u = vec(U). Any
V satisfying U = conj(V )� V defines C2 = F2VF∗2 as a solution to (21). Like done
in Section 3.1 for 1D circulant, we choose to generate the phase of each entry Vts
uniformly at random.

Remark 5. The above procedure gives a complex-valued C2. To obtain a real-
valued C2, we can add constraints u(n1−1)j+i = u(n1−1)j′+i′ for every pair of i, j and
i′ = mod(n1− i+ 1, n1) + 1, j′ = mod(n2− j+ 1, n2) + 1 to (22), and then generate
a conjugate symmetric V from the solution uopt.

Given C2, we can choose Ω uniformly at random or optimize PΩ such that
(PΩC2Q)∗(PΩC2Q) ≈ I, which can be achieved by solving

(23) min
G
‖G− I‖2F , subject to Gts = 〈PΩC2(ψt),PΩC2(ψs)〉.

Let n = n1n2 and DΩ ∈ Cn×n be a diagonal matrix with diagonal entries defined
by

(24) (DΩ)kijkij =

{
1, if (i, j) ∈ Ω,

0, otherwise,
for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2,

where kij = i + (j − 1)n1. Then 〈DΩvec(X), DΩvec(Y )〉 = 〈PΩX,PΩY 〉 for any
X,Y ∈ Cn1×n2 . Letting yt = vec(C2(ψt)) for t = 1, . . . ,K, we have

Gts = 〈PΩC2(ψt),PΩC2(ψs)〉 = 〈DΩy
t, DΩy

s〉 = (yt)∗DΩy
s.
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Let Y =
∑
s y

s(ys)∗. Then

‖G‖2F =
∑
t,s

conj(Gts) ·Gts =
∑
t,s

(
(yt)∗DΩy

s
)
·
(
(ys)∗DΩy

t
)

=
∑
t

(yt)∗(DΩY DΩ)yt =
∑
t

tr
(
DΩY DΩy

t(yt)∗
)

= tr(DΩY DΩY )

=
∑
i

(DΩY DΩY )ii =
∑
i,j

(DΩY )ij · (DΩY )ji =
∑
i,j

(DΩ)ii · Yij · (DΩ)jj · Yji

=
∑
i,j

(DΩ)ii · Yij · conj(Yij) · (DΩ)jj = p>Hp,

where H = [|Yij |2] and p = diag(DΩ). In addition,

tr(G) =
∑
t

Gtt =
∑
t

(yt)∗DΩy
t =

∑
t

tr(DΩy
t(yt)∗) = tr(DΩY ) = f>p,

where f = diag(Y ). Hence, (23) is equivalent to

(25) min
p

1

2
p>Hp− f>p, subject to

∑
k

pk = |Ω| and pk ∈ {0, 1}, ∀k.

4. Image-scale dictionary. For natural images, current dictionary learning meth-
ods, e.g., KSVD [1], train a dictionary Ψ0 from a set of image patches. Hence, the
dictionary atoms have the same size as patches. In practice, we often take measure-
ments directly from an entire image X̂ instead of its small patches, so the learned
dictionary Ψ0 does not match the image X̂. How can we use Ψ0 to recover X̂
from the directly taken measurements? One approach is to make an image-scale
dictionary under which X̂ is sparse.

Given a patch-scale atom, we construct a list of image-scale atoms that have
no common non-zero parts by placing the patch-scale atom at each possible place
in the image. Special cares are given near the boundary where only part of the
patch-scale atom is used. The precise treatment is specified below.

Let X̂ ∈ CN1×N2 be an image, and assume that each of its small patches x ∈
Cn1×n2 , where n1 < N1 and n2 < N2, has a sparse representation under dictionary
Ψ0 = [ψ1, . . . , ψK ]. We want to construct an image-scale dictionary Ψ from Ψ0

such that X̂ is sparse under Ψ. Let nr = bN1

n1
c, nc = bN2

n2
c, sr = N1 − nrn1, sc =

N2−ncn2, and N = nrnc+ sign(sr)nc+ sign(sc)nr + sign(srsc). For each atom ψk,
we form N image-scale atoms Ψk

1 ,Ψ
k
2 , . . . ,Ψ

k
N ∈ CN1×N2 as follows.

• For j = 1, . . . , nc and i = 1, . . . , nr, let t = (j− 1)nr + i and Ψk
t be the matrix

with all elements being zero except having ψk on the submatrix indexed by
the (nr(i − 1) + 1)th through (nri)th row and the (nc(j − 1) + 1)th through
(ncj)th column.

• If sr 6= 0, let t = nrnc + j and Ψk
t be the matrix with all elements being

zero except having the last sr rows of ψk on the submatrix indexed by the
(nrn1 + 1)th through N1th row and the (nc(j − 1) + 1)th through (ncj)th
column for j = 1, . . . , nc.

• If sc 6= 0, nr more atoms are formed in a similar way using the last sc columns
of ψk.

• If scsr 6= 0, we form the last atom Ψk
N with all elements being zero except

having the right-bottom sr × sc submatrix of ψk on its right-bottom sr × sc
submatrix.
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Ψ1 Ψ2

. . .

Ψnr

. . . . . .

Ψnr(nc−1)+1

. . .

Ψnrnc

Ψnrnc+1

. . . . . .

Ψnrnc+nc Ψnrnc+nc+1

. . . . . .

Ψnrnc+nc+nr ΨN

Figure 1. From a small patch ψ, we form N image-scale atoms
Ψ1,Ψ2, . . . ,ΨN that have no common non-zero parts by placing ψ
at each possible place in the image-size frame. Special cares are
given near the boundary where only part of the patch-scale atom
is used.

Note that any two atoms generated from ψk have no common non-zero parts. The
image X̂ has a sparse representation under Ψ since each patch of X̂ is sparse under
Ψ0. Figure 1 illustrates how we form N image-scale atoms Ψ1,Ψ2, . . . ,ΨN from a
small atom ψ. In section 6, we will show that this generated image-scale dictionary
works well in recovering an entire image from its linear measurements.

5. Algorithm and implementation. With a given dictionary Ψ, Algorithm 1
outlines our approach for optimizing a partial circulant matrix Φ.

Algorithm 1

1: Solve (12) for z, generate randomly-phased d from z via (11), and then form C =
Fdiag(d)F ∗.

2: Solve (19) for p or randomly generate p and then form P from p via (16).
3: Generate Φ = PC.

For 2D, an optimized partial circulant operator PΩC2 can be obtained in a similar
way. At Step 1 of Algorithm 1, we use the MATLAB function quadprog to solve
(12) with its default settings. At Step 2, we use the commercial code Gurobi [4]
with MATLAB interface [35] to solve the binary program (19). In our test, the
maximum number of iterations was set to 2000. Usually, Gurobi terminated at the
maximum number of iterations with the best solution obtained. Hence, (19) was
only approximately solved.

We used both synthetic and real data for test. For synthetic data, Ψ was Gaussian
randomly generated basis or discrete Fourier basis, and Φ was learned by Algorithm
1. For real data, Ψ was learned in either an uncoupled way or a coupled way. In the
uncoupled test, we first learned Ψ from a set of training data X = [X1, . . . , XL] ∈
Cn×L by applying KSVD [1] to

(26) min
Ψ,Θ
‖X −ΨΘ‖2F , subject to ‖Θi‖0 ≤ S,∀i
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for a given sparsity level S, where Θ = [Θ1, . . . ,ΘL] and ‖Θi‖0 denotes the number
of non-zeros of Θi. Then we learned Φ by Algorithm 1. In the coupled test, we
simultaneously learned a pair of Ψ and Φ in a way similar to [8]. Specifically, during
each loop of the coupled algorithm, we first compute Φ via Algorithm 1 with a fixed
Ψ, then update Θ by applying OMP [26] to

(27) min
Θ

α‖X −ΨΘ‖2F + ‖ΦX − ΦΨΘ‖2F , subject to ‖Θi‖0 ≤ S,

where α > 0 is a weight parameter, and finally update Ψ and Θ via solving (27) with
respect to Ψ and the current nonzero entries of Θ jointly. Algorithm 2 summarizes
our coupledly learning method, and in our experiments we terminated the algorithm
if the relative changes of ‖X −ΨΘ‖F is less than 10−6.

Algorithm 2

1: Initialization: randomly generate Ψ or set Ψ as some learned dictionary.
2: while Not converged do
3: Compute Φ via Algorithm 1 with Ψ fixed;
4: Update Θ by solving (27);
5: Update Ψ and Θ jointly by solving (27) with Φ and the nonzero locations of Θ fixed.
6: end while

After obtaining Ψ and Φ, we used YALL1 [31] (version 1.4) to recover the sparse
signal θ̄ via solving

(28) min
θ
‖θ‖1 +

1

ρ
‖ΦΨθ − b‖22,

where b = Φ(Ψθ̄ + η) was the measurement contaminated by Gaussian noise η ∼
N (0, σ2I) and ρ ≥ 0 was a parameter corresponding to σ. Throughout our tests, σ
was known, and the parameter ρ was set to σ. If ρ = 0, problem (28) reduces to

(29) min
θ
‖θ‖1, subject to ΦΨθ = b.

The stopping tolerance for YALL1 was set to 10−5 for noiseless case and 10−3 for
noise case, unless specified otherwise. The maximum number of iterations was set to
104, which is sufficiently large to make YALL1 converge within the given tolerance.

6. Numerical simulations. We compared the performance of optimized circulant
sensing matrices/operators to that of random ones on both synthetic and real-world
data. In addition, we tested a pair of circulant sensing matrix Φ and dictionary Ψ
learned together on real-world data. The tested sensing matrices and 2D operators
are listed in Table 1. To be fair, we either take all the compared sensing matrices
and 2D operators to be real-valued or take all of them to be complex-valued in the
same test. In addition, except for the coupled learned circulant matrix coupled-
plus-rand-circ, all sensing matrices or 2D operators were generated and tested with
the same set of synthetic or learned dictionaries.

As in [8], throughout our tests, all columns of Ψ and Φ were normalized to have
the unit 2-norm. The normalization of Ψ is only for convenience while that of Φ
is critical, in particular when Φ is a Gaussian randomly matrix, for otherwise the
recovery by YALL1 or other solvers may become instable. Similarly, we normalized
all partial 2D circulant operators. We next introduce an efficient way to normalize
1D matrix PC and 2D operator PΩC2.
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Table 1. List of tested sensing matrices and 2D operators∗

name type real/complex kernel downsampler dimension

rand-circ circulant complex random random 1D
real-rand-circ circulant real random random 1D

Gaussian Gaussian complex —— random 1D
real-Gaussian Gaussian real —— random 1D

opt-circ circulant complex optimized random 1D
real-opt-circ circulant real optimized random 1D

opt-circ-and-P circulant complex optimized optimized 1D
real-opt-circ-and-P circulant real optimized optimized 1D

opt-plus-rand-circ circulant complex optimized+random† random 1D
coupled-plus-rand-circ circulant complex optimized+random random 1D

rand-2D-circ circulant complex random random 2D
opt-plus-rand-2D-circ circulant complex optimized+random random 2D

∗The kernel v for real random 1D circulant was generated by MATLAB command randn(n,1)

and that for complex random 1D circulant by randn(n,1)+1i*randn(n,1); real Gaussian was

generated by randn(m,n) and complex Gaussian by randn(m,n)+1i*randn(m,n); the kernel M for
real random 2D circulant was generated by randn(n1,n2) and that for complex random 2D

circulant by randn(n1,n2)+1i*randn(n1,n2);
†60% of the normalized optimized circulant plus 40% of a normalized real random circulant.

6.1. Normalization of 1D matrix PC and 2D operator PΩC2. Let C be
defined in (7) and c = [v1, vn, vn−1, . . . , v2]> be its first column. It is easy to
verify that the jth column of C is Cj = [cn−j+2, cn−j+3, . . . , cn, c1, . . . , cn−j+1]>.
Let ` = [`1, . . . , `n]> with `j being the Euclidean norm of the jth column of PC.
Recalling (16), we have for j = 1, . . . , n that

`2j = ‖PCj‖22 = p1c
2
n−j+2 + p2c

2
n−j+3 + . . . pj−1c

2
n + pjc

2
1 + . . . pnc

2
n−j+1 =

n∑
i=1

pic
2
sij ,

where sij = mod(n+ i− j, n) + 1. Hence, `j =
√∑n

i=1 pic
2
sij , for j = 1, . . . , n, and

PC(diag(`))−1 has columns with the unit 2-norm.
For PΩC2, recall (9) and (24). Then normalizing PΩC2 is equivalent to normal-

izing DΩC2. Let n = n1n2 and ` = [`1, . . . , `n]> with `j being the Euclidean norm
of the jth column of DΩC2. Note that for 1 ≤ t, τ ≤ n1 and 1 ≤ s, κ ≤ n2,

(C2)itsjτκ = M t,s
τκ = Mαtτβsκ

where its = t+(s−1)n1, jτκ = τ+(κ−1)n1 and αtτ = mod(n1 +τ−t, n1)+1, βsκ =
mod(n2 + κ − s, n2) + 1. Hence, for each pair of (τ, κ), we can compute `j with
j = τ + (κ− 1)n1 via

`j =

√∑
t,s

(DΩ)itsitsM
2
αtτβsκ

.

Therefore, we normalize DΩC2 to DΩC2(diag(`))−1 and PΩC2 to PΩC2L, where
L(X) = X�L for any X ∈ Cn1×n2 with L ∈ Cn1×n2 obtained from ` via ` = vec(L).

6.2. Synthetic data. We tested different optimized circulant sensing matrices Φ
on synthetic data along with two kinds of bases Ψ: the Gaussian random basis and
the discrete Fourier basis. The performance was compared to that of unoptimized
random circulant, as well as random Gaussian, sensing matrices. The Gaussian
random basis was generated by MATLAB command randn(n) and then turned to
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an orthogonal matrix by QR decomposition, and the Fourier basis was generated
by MATLAB command dftmtx(n)/sqrt(n). Both bases were 512 × 512, and the
sensing matrices had the size 64 × 512, i.e., an 8x downsample. In this test, θ̄
was generated with k randomly located nonzero entries sampled from the standard
Gaussian distribution and then normalized to have the unit 2-norm. The stopping
tolerance for YALL1 was set to 5 × 10−8. Figure 2 depicts the comparison results
of sensing matrices: rand-circ, Gaussian, opt-circ, opt-circ-and-P, as well as their
real-valued counterparts. We call a recovery θ∗ successful if the relative error ‖θ∗−
θ̄‖2/‖θ̄‖2 was below 10−4. We calculated the success rate out of 50 independent
trials at every sparsity level k.

All the four subfigures of Figure 2 reveal that optimized circulant sensing matri-
ces led to equally good performance as random Gaussian matrices. For the random
basis, random circulant matrices achieved similar recovery success rate, while they
performed extremely bad for the discrete Fourier basis. The reason for the bad
performace of random circulant matrices can be found in [33]. On the other hand,
optimizing the selection matrix P hardly made further improvement. We believe
that unless the underlying signal has dominant frequencies, optimizing the selection
matrix P will not lead to consistent improvement. Therefore, in the subsequent
tests, we let P be random selection matrices. In addition, the improvement by
optimizing circulant sensing matrices over randomly generated ones is similar for
real and complex-valued. For convenience, we use complex-valued sensing matri-
ces/operators in the rest tests.

Although the tests above are based on synthetic signals that are exactly sparse,
similar performance of different sensing matrices was observed on those that are
nearly sparse. Since real images are nearly sparse (under certain dictionaries), we
skip presenting the results of nearly sparse synthetic signals and proceed to the real
image tests.

6.3. Image tests with circulant matrices. In this subsection, we present the
performance of sensing matrices rand-circ, Gaussian, opt-plus-rand-circ and coupled-
plus-rand-circ on real images.3 The dictionaries for all of them were learned from
the same training set and had size 64 × 256, namely, we set K = 256. The first
three sensing matrices shared the same set of dictionaries learned by KSVD [1] with
sparsity level S = 6, 8 in (26), and the last one was learned simultaneously with
its corresponding dictionary by the coupled method described in Section 5 with
sparsity level S = 6, 8 and α = 1

32 in (27). This choice of α was recommended
in [8]. All images used in these tests were scaled to have the unit maximum pixel
value. The training data consists of 20,000 8 × 8 patches, that are 100 randomly
extracted patches from each of the 200 images in the training set of the Berkeley
segmentation dataset [18]. The 100 images in the testing set were used to measure
the recovery performance.

In the first set of tests, we uniformly randomly extracted non-overlapping 600
patches from the 100 test images to recover using their measurements obtained
with the four sensing matrices. Figure 3 depicts the mean squared error: MSE =∑`
i=1 ‖xi−Ψθi‖22/(64`), for sparsity level S = 6, 8 and measurement size m = 16, 24.

Here, xi is the vector obtained by reshaping the ith selected patch, ` = 600 is the

3We also tested opt-circ and coupled-circ, and found that they performed as well as opt-plus-
rand-circ and coupled-plus-rand-circ on average. However, they tend to cause the loss of small

image features that may not be well described by the dictionary.
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Figure 2. Comparison results of two groups of sensing matrices:
rand-circ, Gaussian, opt-circ, opt-circ-and-P, and their real valued
counterparts with Gaussian random basis (left) and Fourier basis
(right).

number of tested patches, and θi was the YALL1 solution of

(30) min
θ
‖θ‖1 +

1

σ
‖ΦΨθ − b‖22,

where b = Φ(xi+ση) and σ = σ̂‖xi‖∞/‖η‖∞ with η ∼ N (0, I) and σ̂ varying among
{0, 0.01, 0.05, 0.10, 0.15}. All results are the averages of 20 independent trials.

All the four pictures in Figure 3 reveal that both uncoupled and coupled learning
approaches achieved significantly better recovery over random circulant matrices,
and they did even better than Gaussian random matrices when m = 16. The
coupled learning approach made slight improvement over the uncoupled one.

In the second set of tests, we chose two out of the 100 test images to recover
using their measurements obtained with the four different sensing matrices. The
first image had the resolution of 481× 321, and the second one had the resolution
of 321 × 481. For convenience, we removed the last row and the last column of
both the two images and partitioned each images into 1,200 8 × 8 patches. Then
we used YALL1 to solve (30) for each patch with the dictionary Ψ learned by
KSVD with the sparsity level S = 6. We used peak-signal-to-noise-ratio (PSNR)
and mean squared error (MSE) to measure the performance of recovery. Table 2
lists the average results of 20 independent trials for measurement size m = 16, 24
and noise level σ̂ = 0, 0.01, 0.05, 0.10, 0.15. One set of the recovered images are
shown in Figure 4. From the results, we can see that both uncoupled and coupled
learning approaches made significant improvement over random circulant matrices,
especially for m = 16. When σ̂ ≥ 0.10 or m = 16, the coupled learning approach
did even better than random Gaussian matrices. Coupled learned circulant matrices
tend to do better than Gaussian random ones when m is smaller. Although the best
PSNRs were achieved with Gaussian random matrices, the best visual results are
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(a) m = 16, S = 6
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(b) m = 24, S = 6
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(c) m = 16, S = 8
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(d) m = 24, S = 8

∗Some MSEs are out of the display range and they are larger than 0.02.

Figure 3. Comparison results∗ of four different sensing matrices:
rand-circ, Gaussian, opt-plus-rand-circ and coupled-plus-rand-circ
on Berkeley segmentation dataset for different KSVD sparsity levels
S = 6, 8 and different sampled row numbers m = 16, 24.

those with the coupled learned circulant matrices. In addition, the coupled approach
did slightly better than the uncoupled one.

6.4. Image tests with 2D circulant. For the tests in Section 6.3, each selected
patch was reshaped to a vector by stacking its columns. In this subsection, we
compare rand-2D-circ and opt-plus-rand-2D-circ to illustrate how to directly apply
2D circulant operator on the squared patches. The dictionary learned by KSVD in
Section 6.3 with the sparsity level S = 6 was used in this test. Note that each atom
in the dictionary becomes a squared patch as opposed to a vector. We used the
same 600 patches and the same two images as in Section 6.3 for this test. Instead
of solving (30), now YALL1 was employed to solve

(31) min
θ
‖θ‖1 +

1

σ
‖PΩC2LQ(θ)− b‖22,

where PΩC2L denotes normalized partial 2D circulant operator, Q is defined in
Section 3.2, b = PΩC2L(Xi+ση) with the same η and σ to those in Section 6.3, and
Xi is the ith tested patch corresponding to the reshaped vector xi in (30). Figure 5
plots the average MSEs of 20 independent trials with the number of measurements
m = 16, 24 and noise level σ̂ = 0, 0.01, 0.05, 0.10, 0.15, and Figure 6 plots one set
of recovered images Castle and Gulf by YALL1 with the number of measurements
m = 24 and noise level σ̂ = 0.01. We can see that similar results were obtained as
in Section 6.3 where circulant sensing matrices were compared.
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rand-circ Gaussian opt-plus-rand-circ coupled-plus-rand-circ
PSNR=25.74 PSNR=27.83 PSNR=27.38 PSNR=27.58

rand-circ, PSNR=25.99 Gaussian, PSNR=28.05

opt-plus-rand-circ, PSNR=27.84 coupled-plus-rand-circ, PSNR=27.88

Figure 4. One set of recovered images Castle (upper four) and
Gulf (lower four) by YALL1 with four different sensing matrices:
rand-circ, Gaussian, opt-plus-rand-circ, coupled-plus-rand-circ for
noise level σ̂ = 0.01, KSVD sparsity level S = 6 and selected row
number m = 24
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∗Some MSEs are out of the display range and larger than 0.02 or even 0.04.

Figure 5. Comparison results∗ of solutions by YALL1 with two
different 2D circulant operators: rand-2D-circ and opt-plus-rand-
2D-circ from m = 16 (left) and m = 24 (right) measurements
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Table 2. Comparison results of recovered images Castle and Gulf
by YALL1 with four different sensing matrices: rand-circ, Gauss-
ian, opt-plus-rand-circ, coupled-plus-rand-circ

Castle rand-circ Gaussian opt-plus-rand-circ coupled-plus-rand-circ

m σ̂ PSNR MSE PSNR MSE PSNR MSE PSNR MSE

16 0.00 19.41 4.78e-2 25.58 2.96e-3 25.03 3.16e-3 25.31 2.96e-3

16 0.01 18.61 4.36e-2 24.40 3.85e-3 24.41 3.66e-3 24.72 3.39e-3

16 0.05 17.87 5.06e-2 23.55 4.67e-3 23.56 4.44e-3 23.95 4.05e-3

16 0.10 16.88 5.54e-2 22.35 6.24e-3 22.70 5.40e-3 23.05 4.98e-3

16 0.15 16.22 5.87e-2 21.27 8.03e-3 22.15 6.12e-3 22.42 5.76e-3

24 0.00 25.66 8.57e-3 28.77 1.33e-3 27.02 2.00e-3 27.43 1.82e-3

24 0.01 24.05 8.31e-3 27.22 1.91e-3 26.05 2.57e-3 26.50 2.27e-3

24 0.05 22.07 1.82e-2 25.58 2.79e-3 24.31 3.77e-3 24.76 3.38e-3

24 0.10 20.15 3.17e-2 23.91 4.11e-3 22.99 5.06e-3 23.36 4.65e-3

24 0.15 18.82 4.08e-2 22.56 5.62e-3 22.28 5.95e-3 22.53 5.61e-3

Gulf rand-circ Gaussian opt-plus-rand-circ coupled-plus-rand-circ

m σ̂ PSNR MSE PSNR MSE PSNR MSE PSNR MSE

16 0.00 19.57 4.29e-2 25.64 2.91e-3 25.13 3.11e-3 25.36 2.93e-3

16 0.01 18.87 3.94e-2 24.48 3.74e-3 24.59 3.52e-3 24.87 3.28e-3

16 0.05 18.06 4.51e-2 23.65 4.55e-3 23.69 4.32e-3 24.06 3.96e-3

16 0.10 17.23 4.91e-2 22.51 5.93e-3 22.76 5.35e-3 23.15 4.89e-3

16 0.15 16.48 5.26e-2 21.39 7.83e-3 22.16 6.12e-3 22.47 5.70e-3

24 0.00 25.91 7.79e-3 29.06 1.24e-3 27.39 1.85e-3 27.58 1.76e-3

24 0.01 24.29 7.82e-3 27.55 1.78e-3 26.45 2.34e-3 26.77 2.13e-3

24 0.05 22.35 1.65e-2 25.81 2.64e-3 24.56 3.57e-3 25.01 3.20e-3

24 0.10 20.44 2.84e-2 24.08 3.95e-3 23.12 4.93e-3 23.55 4.47e-3

24 0.15 19.06 3.64e-2 22.73 5.40e-3 22.29 5.94e-3 22.68 5.44e-3

rand-2D-circ opt-plus-rand-2D-circ
PSNR = 25.53 PSNR = 27.47

rand-2D-circ, PSNR = 25.54

opt-plus-rand-2D-circ, PSNR = 27.68

Figure 6. One set of recovered images Castle (left two) and Gulf
(right two) by YALL1 using rand-2D-circ and opt-plus-rand-2D-
circ with m = 24 measurements and noise level σ̂ = 0.01
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rand-2D-circ opt-plus-rand-2D-circ
PSNR = 29.82 PSNR = 30.59

rand-2D-circ opt-plus-rand-2D-circ
PSNR = 26.59 PSNR = 27.21

Figure 7. One set of recovered images Plane (left two) and Gulf
(right two) by YALL1 with two different 2D circulant operators:
rand-2D-circ and opt-plus-rand-2D-circ for sample ratio SR = 0.30
and noise level σ̂ = 0.01

6.5. Image-scale recovery. In previous tests, we divided an image into a number
of small patches and recovered each patch from its linear measurements, since the
learned circulant sensing matrices/operators need to match those dictionary atoms
in size. In practice, we often take measurements directly from the entire image
instead of its small patches, so the previous learned patch-scale dictionaries do not
match the image. In this section, we first use the method discussed in section 4 to
generate an image-scale dictionary Ψ from the patch-scale one learned by KSVD
in section 6.3 with sparsity level S = 6. Then we use Ψ to recover an image
X̂ ∈ CN1×N2 from its measurements b = G(X̂ + ση) by solving

(32) min
θ
‖θ‖1 +

1

σ
‖GQ(θ)− b‖22,

where G = PΩC2L is a normalized partial 2D circulant operator defined on CN1×N2 ,
η ∼ N (0, I) is Gaussian noise, σ = σ̂‖X̂‖∞/‖η‖∞, and Q is a 2D operator (corre-
sponding to Ψ) defined in the same way as in section 3.2.

At first glance, the recovery by solving (32) may take a lot of time since the
dictionary Ψ has so many atoms. However, the sparsity structure of these atoms
enables recoveries to be as fast as those using patch-size dictionaries. Note that
fully random sensing operators are out of the game at the image scale since the
number of free entries of each is at least ten thousand times of the image resolution,
making such an operator impossible to fit in the memory of a typical workstation.

We compared rand-2D-circ and opt-plus-rand-2D-circ on two images. Both of
them had the resolution of 241 × 129, and they were obtained by cropping4 their
larger originals Plane and Gulf in the testing set of Berkeley segmentation dataset.

The noise level σ̂ was set to 0, 0.01, 0.05, 0.10, 0.15 and the sample ratio SR := |Ω|
N1N2

to 0.20, 0.30. Table 3 lists the average results of 20 independent trials, and Figure 7
plots one set of recovered images Plane (left two) and Gulf (right two) for σ̂ = 0.01
and SR = 0.30. From the table, we can see that the generated image-scale dictionary
performed well in recovering the images with sufficiently many measurements, and
that the optimized circulant operators did significantly better than the random ones
on average.

Acknowledgments. The authors thank Prof. Guillermo Sapiro for his encour-
agement and very valuable suggestions, and Dr. Ming Yan for his comments on

4Though the recovery by solving (32) did not take much time, it took us quite a long time to
obtain the optimized 2D circulant operator by the method discussed in section 3.2. The learning

on larger images would take much more time. To save time, we simply used the cropped images
to test our idea.
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Table 3. Comparison results of recovered full-size images by
YALL1 with two different 2D circulant operators: rand-2D-circ
and opt-plus-rand-2D-circ; SR=sample ratio

Plane rand-2D-circ
opt-plus-

Plane rand-2D-circ
opt-plus-

rand-2D-circ rand-2D-circ

SR σ̂ PSNR MSE PSNR MSE SR σ̂ PSNR MSE PSNR MSE
0.20 0.00 22.35 3.54e-2 26.87 2.01e-3 0.30 0.00 28.35 3.47e-3 30.01 1.00e-3
0.20 0.01 22.50 3.31e-2 26.78 2.10e-3 0.30 0.01 28.57 3.00e-3 30.05 9.93e-4
0.20 0.05 22.11 3.24e-2 26.23 2.38e-3 0.30 0.05 27.73 3.59e-3 29.20 1.21e-3
0.20 0.10 21.16 3.41e-2 25.04 3.14e-3 0.30 0.10 25.99 5.22e-3 27.48 1.80e-3
0.20 0.15 20.12 3.67e-2 23.84 4.13e-3 0.30 0.15 24.38 7.34e-3 25.94 2.56e-3

Gulf rand-2D-circ
opt-plus-

Gulf rand-2D-circ
opt-plus-

rand-2D-circ rand-2D-circ

SR σ̂ PSNR MSE PSNR MSE SR σ̂ PSNR MSE PSNR MSE
0.20 0.00 21.33 1.61e-2 24.62 3.46e-3 0.30 0.00 25.58 5.00e-3 27.00 2.00e-3
0.20 0.01 21.38 1.59e-2 24.52 3.53e-3 0.30 0.01 25.66 4.67e-3 26.97 2.02e-3
0.20 0.05 21.19 1.62e-2 24.31 3.71e-3 0.30 0.05 25.32 4.95e-3 26.65 2.17e-3
0.20 0.10 20.68 1.72e-2 23.71 4.26e-3 0.30 0.10 24.34 6.24e-3 25.75 2.67e-3
0.20 0.15 20.02 1.87e-2 22.98 5.04e-3 0.30 0.15 23.28 7.90e-2 24.75 3.37e-3

complex-valued random sensing matrices. They also would like to thank three
anonymous referees and the associate editor for their very valuable comments. The
authors’ work has been supported in part by AFOSR, ARL and ARO, DARPA,
NSF, and ONR.
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