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Abstract. Image super-resolution, a process to enhance image resolution, has important applications in
satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-
resolution images to recover one high-resolution image. In this paper, we present a thin-plate spline based
iterative reproducing kernel Hilbert space (RKHS) method to solve single image super-resolution problems. It
recovers a high quality high-resolution image from solely one low-resolution image. The iterative RKHS method
has a closed-form solution and the algorithm parameters are easy to select. Visual and quantitative comparisons
show that the proposed method can recover more accurate details. Especially, the proposed method overcomes
the jaggy effect of nearest-neighbor interpolation and reduces the blur effect of bicubic interpolation significantly.
The proposed method can also get comparable results with two state-of-the-art learning-based methods that
need a lot of training data.
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1. Introduction. Image super-resolution (SR), a quite active research field currently, is
a process to estimate a high-resolution (HR) image from one or multiple low-resolution (LR)
images. High-resolution means more details and better visibility. Due to limitation of hardware
devices and high cost, one sometimes only can collect low-resolution images. For instance,
synthetic aperture radar (SAR) and satellite imaging can not get high-resolution images due to
long distance and air turbulence. In medical imaging MRI, high-resolution images need more
time and cost [50, 38]. Thus, developing a more accurate and faster image super-resolution
algorithm is important and has a lot of applications.

1.1. Literature review. In this section we review some existing super-resolution meth-
ods, some of which will be compared with the proposed method.

Many existing image super-resolution methods need multiple low-resolution images as in-
puts. We refer to them as multiple image super-resolution. Mathematically, there are p low-
resolution images yi ∈ Rm available, yi is related to a high-resolution image x ∈ Rn by

(1.1) yi = DBix+ ni, 1 ≤ i ≤ p,

where D ∈ Rm×n is a down-sampling operator and Bi ∈ Rn×n is a blurring operator that might
happen due to for instance out of focus, ni ∈ Rm represents random noise [42].

This paper addresses single image super-resolution, i.e., p = 1 in equation (1.1). Compared
to multiple image super-resolution, single image super-resolution is more useful as one normally
only has one low-resolution image available. Obviously, it is also more challenging.

Existing image super-resolution methods can be divided into several categories: interpolation-
based methods, statistics-based methods, learning-based approaches and others (e.g., frequency
techniques, pixel classification methods, etc). Note that, these methods are not completely in-
dependent. For example, some of the learning-based methods may belong to the category of
statistics-based methods.

Interpolation is a straightforward idea for image super-resolution. There are two popu-
lar interpolation methods: nearest-neighbor interpolation and bicubic interpolation. Nearest-
neighbor interpolation fills in intensity at an unknown location by that of its nearest neighbor
point. It often causes jaggy effect (see the right image in Figure 1). Bicubic interpolation is
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Fig. 1. Left one is a low-resolution image; middle image is the super-resolution image using bicubic inter-
polation method (note the blurry effect); right one is the super-resolution image by nearest-neighbor interpolation
method (note the jaggy effect on the edges); upscaling factor is 4.

to utilize a cubic kernel to interpolate. It tends to create blur effect (see the middle image in
Figure 1).

Maximum a Posterior (MAP) and Maximum Likelihood estimator (MLE) are popular
statistics-based methods [18, 6, 19]. To preserve sharp edges, Fattal [19] utilized statistical
edge dependency to relate edge features in low and high resolution images. Farsin et al. [18]
proposed an alternate approach using L1 norm minimization and a bilateral prior based robust
regularization.

Learning-based approaches are a powerful tool for image super-resolution [24, 23, 45, 49,
25, 22, 44, 30, 29, 32, 60, 54, 47, 9, 20]. They normally start from two large training data
sets, one formed of low-resolution images and the other formed of high-resolution images, and
then learn a relation between low-resolution and high-resolution images. The relation is then
applied to a given low-resolution image to get a high-resolution image. The results depend
on the selection of training data. Learning-based methods usually can obtain high quality
images but they are computationally expensive. Additionally, they are not a completely single
image super-resolution since two large data sets are required for learning. In [45], Sun et al.
utilized sketch priors to extend the low vision learning approach in [24] to get clear edges,
ridges and corners. Sun et al. in [44] proposed a novel profile prior of image gradient which
can describe the shape and the sharpness of an image to obtain super-resolution images. Xie et
al. proposed a method via an example-based strategy which divides the high-frequency patches
of a low-resolution image into different classes [54]. This method can accelerate image super-
resolution procedure. Fernandez-Granda and Candès used transform-invariant group-sparse
regularization [20]. This method performs well for highly structured straight edges and high
upscaling factors. In recent years, sparsity methods, usually associated with learning-based
ideas, have been widely discussed for image super-resolution [57, 56, 55, 59, 26, 14, 58]. In
[57, 56], Yang et al. utilized sparse signal representation to develop a novel method for single
image super-resolution. The authors first sought a sparse representation for each patch of
the low-resolution image and computed corresponding coefficients, then generated the high-
resolution image via the computed coefficients. Recently, Zeyde and Elad et al. [58] proposed a
local sparse-land model on image patches based on the work of [57, 56], and obtained improved
results.

In addition, many other image super-resolution methods also have been proposed, e.g., a
frequency technique [3], pixel classification methods [1, 2], iterative back projection methods
[27, 31, 10, 46], a hybrid method [13], a kernel regression method [48] and others [51, 5, 21].

In summary, single image super-resolution is still a challenging problem. Existing single
image super-resolution methods either need training data sets and expensive computation or
lead to blur or jaggy effect. The aim of this paper is to use a simple mathematical scheme to
recover a high quality high-resolution images for one low-resolution image.

1.2. Motivation and contributions of the proposed work. In this paper, we plan to
use RKHS method to study single image super-resolution with only one low-resolution image
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as an input. We cast the super-resolution problem as an image intensity function estimation
problem. We assume that the intensity function f belongs to a special Hilbert space called
RKHS that can be spanned by a basis. We use intensities information of the given low-resolution
image defined on a coarse grid to estimate basis coefficients, and then utilize the coefficients to
generate high-resolution images at any fine grids. We will use thin-plate spline based RKHS
which has been used for smoothing problems in [52], one can apply the same model in [52]
for image super-resolution but it may cause blur. To overcome the blur effect, we propose an
iterative RKHS method based on thin-plate spline for single image super-resolution, aiming
to recover more sharp details. The iterative RKHS method is inspired by the iterative back
projection method in [27] and the iterative regularization method in [37].

This paper has the following main contributions:
• To the best of our knowledge, this is the first work to employ RKHS method to get com-
petitive image super-resolution results. RKHS-based methods have been considered as
a powerful tool to address machine learning for a long time. In image processing, how-
ever, only limited studies have been done, e.g., image denoising [4], image segmentation
[28] and image colorization [39].

• Single image super-resolution. The proposed method only needs one low-resolution
image as an input. Competitive learning-based methods actually need to train two
large data sets, one formed of low-resolution images and the other formed of high-
resolution images, to find a relation between the low-resolution and high-resolution
images.

• Simplicity and flexibility. The proposed RKHS model has a very simple formulation. It
has a closed-form solution. The parameter selection and upscaling factors are flexible.
Parameter selection is not sensitive and one can choose any integer or fraction upscaling
factors.

1.3. Organization of this paper. The organization of this paper is as follows. In Section
2, we review RKHS and splines based RKHS. We will also give three remarks in this section.
In Section 3, we proposed an iterative RKHS model for single image super-resolution, and give
a closed-form solution of the proposed model. Many visual and quantitative experiments are
shown in Section 4 to demonstrate the proposed method is a competitive approach for single
image super-resolution. Finally, we draw conclusions in Section 5.

2. Review on splines based RKHS. In this section, we review RKHS, splines based
RKHS in [52] and their applications in signal/image smoothing.

2.1. Review on RKHS and its applications. Given a subset X ⊂ R and a probability
measure P on X , we consider a Hilbert space H ⊂ L2(P), a family of functions g : X → R,
with ∥g∥L2(P) < ∞, and an associated inner product ⟨·, ·⟩H under which H is complete. The
space H is a reproducing kernel Hilbert space (RKHS), if there exists a symmetric function
K : X × X → R such that: (a) for each x ∈ X , the function K(·, x) belongs to Hilbert space
H, and (b) there exists reproducing relation f(x) = ⟨f, K(·, x)⟩H for all f ∈ H. Any such
symmetric kernel function must be positive semidefinite (see Definition 2.1). Under suitable
regularity conditions, Mercer’s theorem [34] guarantees that the kernel has an eigen-expansion
of the form K(x, x′) =

∑∞
k=1 λkϕk(x)ϕk(x

′), with λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0 being a non-negative
sequence of eigenvalues, and {ϕk}∞k=1 associated eigenfunctions, taken to be orthonormal in
L2(P).

Definition 2.1. (Positive Semidefinite Kernel) Let X be a nonempty set. The kernel
K : X × X → R is positive semidefinite if and only if Gram matrix K = [K(xi, xj)]N×N ,
xi ∈ X , i, j = 1, 2, · · · , N , is a positive semidefinite matrix.

Since the eigenfunctions {ϕk}∞k=1 form an orthonormal basis, any function f ∈ H has an ex-
pansion of the form f(x) =

∑∞
k=1

√
λkakϕk(x), where ak = ⟨f, ϕk⟩L2(P) =

∫
X f(x)ϕk(x) dP(x)

are (generalized) Fourier coefficients. Associated with any two functions inH, where f =
∑

k≥1

√
λkakϕk

and g =
∑

k≥1

√
λkbkϕk, are two distinct inner products. The first is the usual inner product in

the space L2(P) defined as ⟨f, g⟩L2(P) : =
∫
X f(x)g(x) dP(x) =

∑∞
k=1 λkakbk. by Parseval’s the-

orem. The second inner product, denoted ⟨f, g⟩H, defines the Hilbert space. It can be written
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in terms of the kernel eigenvalues and generalized Fourier coefficients as ⟨f, g⟩H =
∑∞

k=1 akbk.
Using this definition, the Hilbert ball of radius 1 for H with eigenvalues λk and eigenfunctions
ϕk(·), is BH(1) = {f ∈ H; f(·) =

∑∞
k=1

√
λkbkϕk(·) |

∑∞
k=1 b

2
k = ∥b∥22 ≤ 1}. The class of

RKHS contains many interesting classes that are widely used in practice including polynomi-
als of degree d (K(x, y) = (1 + ⟨x, y⟩)d), Sobolev spaces with smoothness ν, Lipschitz, and
smoothing splines. Moreover, kernel K(x, x′) = 1

2e
−γ|x−x′| leads to Sobolev space H1, i.e., a

space consisted of square integrable functions whose first order derivative is square integrable.
K(x, x′) ∝ |x − x′|,K(x, x′) ∝ |x − x′|3 correspond to 1D piecewise linear and cubic splines
respectively.

RKHS has appeared for many years, and it has been used as a powerful tool for machine
learning [52, 36, 40, 43, 11, 7, 8, 35, 12]. Its application in image processing is not so common
yet. In [4], Bouboulis et al. proposed an adaptive kernel method to deal with image denoising
problem in the spatial domain. This method can remove many kinds of noise (e.g., Gaussian
noise, impulse noise, mixed noise) and preserves image edges effectively. In addition, Kang et
al. utilized RKHS method to do image segmentation [28] and image/video colorization [39].

Wahba proposed splines based RKHS for smoothing problems in [52]. It shows that the
solution of an optimization problem consists of a set of polynomial splines. The proposed
method is based on splines based RKHS. We thus review them in the following two subsections.

2.2. A 1D spline and signal smoothing. For a real-valued function f ∈ G = {f : f ∈
Cm−1[0, 1], f (m) ∈ L2[0, 1]}, it can be expanded at t = 0 by Taylor series as:

(2.1) f(t) =
m−1∑
ν=0

tν

ν!
f (ν)(0) +

∫ 1

0

(t− u)m−1
+

(m− 1)!
f (m)(u)du = f0(t) + f1(t),

with f0(t) =
∑m−1

ν=0
tν

ν! f
(ν)(0) and f1(t) =

∫ 1

0

(t−u)m−1
+

(m−1)! f (m)(u)du, where (u)+ = u for u ≥ 0 and

(u)+ = 0 otherwise.

Let ϕν(t) =
tν−1

(ν−1)! , ν = 1, 2, ...,m,H0 = span{ϕ1, ϕ2, ..., ϕm} with norm ∥ϕ∥2 =
∑m−1

ν=0 [(D(ν)ϕ)(0)]2,

then D(m)(H0) = 0. It has been proved in [52] that H0 is a RKHS with reproducing kernel
R0(s, t) =

∑m
ν=1 ϕν(s)ϕν(t). For a function f0 ∈ H0, we can express f0 using the basis of H0,

i.e., f0(t) =
∑m

ν=1 dνϕν(t).

Let Bm be a set of functions satisfying boundary condition f (ν)(0) = 0, ν = 0, 1, 2, · · · ,m−1

and Gm(t, u) =
(t−u)m−1

+

(m−1)! , then f1(t) =
∫ 1

0

(t−u)m−1
+

(m−1)! f (m)(u)du =
∫ 1

0
Gm(t, u)f (m)(u)du belongs

to space H1 defined as follows

(2.2) H1 = {f : f ∈ Bm, f, f ′, ..., f (m−1)absolutely continuous, f (m) ∈ L2},

where H1 is a Hilbert space on [0,1] with norm ∥f∥2 =
∫ 1

0
(f (m)(t))2dt. H1 also has been

proved to be a RKHS in [52] with reproducing kernel R1(s, t) =
∫ 1

0
Gm(t, u)Gm(s, u)du. For a

function f1 ∈ H1, we can express f1 via the basis of H1, denoted by {ξi}ni=1, so that f1(t) =∑n
i=1 ciξi(t) =

∑n
i=1 ciR

1(si, t), where ξi = R1(si, ·).
Due to

∫ 1

0
((D(m)f0)(u))

2du = 0 and
∑m−1

ν=0 ((D(ν)f1)(0))
2 = 0, we can construct a direct

sum space Gm by the two RKHS spaces H0 and H1, i.e., Gm = H0 ⊕ H1. Gm is proved as a
RKHS in [52] with the following reproducing kernel

(2.3) R(s, t) =
m∑

ν=1

ϕν(s)ϕν(t) +

∫ 1

0

Gm(t, u)Gm(s, u)du,

and norm

(2.4) ∥f∥2 =
m−1∑
ν=0

[(D(ν)f)(0)]2 +

∫ 1

0

(f (m))2(t)dt,
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where f ∈ Gm. As a summary, for f ∈ Gm, we have f = f0 + f1, with f0 ∈ H0, f1 ∈ H1. It also
can be written as

(2.5) f(t) =
m∑

ν=1

dνϕν(t) +
n∑

i=1

ciξi(t),

where t ∈ [0, 1].

let f⃗ = (f(t1), f(t1), · · · , f(tn))′ be intensity values of f at ti ∈ [0, 1], i = 1, 2, · · · , n, let

(2.6) g⃗ = f⃗ + η,

be a noisy observation with η an additive Gaussian noise.
Let T be a n×mmatrix with Ti,ν = ϕν(ti) and let Σ be a n×nmatrix with Σi,j =< ξi, ξj >,

we have the relation f⃗ = Td+Σc where d = (d1, d2, · · · , dm)′ and c = (c1, c2, · · · , cn)′. In [52],

the following model is used to estimate f⃗ from noisy discrete measurements g⃗,

(2.7) min
c,d

1

n
∥g⃗ − Td− Σc∥2 + λc′Σc,

where the second term penalties nonsmoothness.
The simple model (2.7) has a closed-form solution: d = (T ′M−1T )−1T ′M−1g⃗, c = M−1(I−

T (T ′M−1T )−1T ′M−1)g⃗ where M = Σ + nλI with I an identity matrix. The computation
burden of matrix inverse can be reduced via QR decomposition (see details in Chapter 1 of
[52]).
Remark 1 Once c and d are estimated from equation (2.7), one can get an estimate for the
signal function f(x),

(2.8) f(x) =

m∑
ν=1

dνϕν(x) +

n∑
i=1

ciξi(x) =

m∑
ν=1

dνϕν(x) +

n∑
i=1

ciR
1(si, x),

for any x ∈ [0, 1].
Next, we will review 2D thin-plate spline which can be viewed as an extension of the

mentioned 1D spline.

2.3. 2D thin-plate spline and image smoothing. We use 2D thin-plate spline based
RKHS, introduced in [52], for image super-resolution in this paper. We thus review it.

Similar to the 1D case, let f be the intensity function of a 2D image defined on a continuous
domain E2 = [0, 1]× [0, 1]. We assume f belongs in a RKHS. Let f⃗ = (f(t1), f(t1), · · · , f(tn))′
be its discretization on grids ti = (xi, yi) ∈ [0, 1] × [0, 1], i = 1, 2, · · · , n, the noisy image of
vector form with an additive noise η can be described by

(2.9) g⃗ = f⃗ + η.

In [52], an optimal estimate of f for spline smoothing problems can be obtained by mini-
mizing the following model

(2.10) min
1

n
∥g⃗ − f⃗∥2 + λJm(f),

where m is a parameter to control the total degree of polynomial, and the penalty term is
defined as follows

(2.11) Jm(f) =

m∑
ν=0

∫ +∞

−∞

∫ +∞

−∞
Cν

m(
∂mf

∂xν∂ym−ν
)2dxdy,

From Chapter 2 of [52], we know that the null space of the penalty function Jm(f) is a
M = Cd

d+m−1 dimension space spanned by the polynomials of degree no more than m− 1. In
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the experiments, we let d = 2 (for 2D), m = 3, then M = Cd
d+m−1 = 6, so the null space

can be spanned by the following terms: ϕ1(x, y) = 1, ϕ2(x, y) = x, ϕ3(x, y) = y, ϕ4(x, y) =
xy, ϕ5(x, y) = x2, ϕ6(x, y) = y2. Duchon (see [17]) has proved that if there exists {ti}ni=1 so
that least squares regression on {ϕν}Mν=1 is unique, then the optimization model (2.10) has a
unique solution as follows

(2.12) fλ(t) =
M∑
ν=1

dνϕν(t) +
n∑

i=1

ciEm(t, ti),

where Em(t, ti) is a Green’s function for the m-iterated Laplacian defined as:

Em(s, t) = Em(|s− t|) = θm,d|s− t|2m−dln|s− t|,

where θm,d = (−1)d/2+m+1

22m−1πd/2(m−1)!(m−d/2)!
, especially, Em(t, ti) plays the same role with ξi(t) in 1D

case.
Similar with equation (2.7), model (2.10) can be rewritten as:

(2.13) min
1

n
∥g⃗ − (Td+Kc)∥2 + λc′Kc,

where T is a n×M matrix with Ti,ν = ϕν(ti) and K is a n× n matrix with Ki,j = Em(ti, tj).
This model also has a similar closed-form solution with 1D case: d = (T ′W−1T )−1T ′W−1g⃗,
c = W−1(I − T (T ′W−1T )−1T ′W−1)g⃗ where W = K + nλI. Additionally, a more economical
version that utilizing QR decomposition also has been provided to compute the coefficients c
and d (see details in [52]). Moreover, more information about the thin-plate spline can also be
found in [15, 16, 17, 33, 53, 41].
Remark 2 Once we have computed coefficients c and d, the underlying function f on the
continuous domain E2 can be estimated as

(2.14) f(w) =
M∑
ν=1

dνϕν(w) +
n∑

i=1

ciEm(ti, w),

for any w = (x, y)′ ∈ E2. One thus can get an estimate of f(w) at any w ∈ [0, 1]× [0, 1]. This
is very powerful and makes image super-resolution possible.

In particular, one can evaluate f on fine grids to get super-resolution images.
Remark 3 Let T̃ ∈ RN×M and K̃ ∈ RN×n be defined similarly with T ∈ Rn×M and K ∈
Rn×n, where n,N are the grid numbers on coarse grids and fine grids, respectively; c and d are
computed in model (2.13), then the discrete signal f̃ on fine grids can be represented as follows

(2.15) f̃ = T̃ d+ K̃c =
(
T̃ (T ′W−1T )−1T ′W−1 + K̃W−1(I − T (T ′W−1T )−1T ′W−1)

)
g⃗,

where W = K + nλI, g⃗ is the discrete signal on a coarse grid.
Since model (2.13) is for image smoothing, super-resolution result (2.15) sometimes tends

to be smooth. In what follows, we present a thin-plate spline based iterative RKHS method to
recover high quality high-resolution images with details.

3. The proposed iterative RKHS method. Let f represent intensity function of an
image defined on a continuous domain E2 = [0, 1]× [0, 1]. Let H,L be a high-resolution and a
low-resolution discretization of f , respectively. For notation simplicity, we interchangeably use
H,L to represent their matrix and vector representations. H and L are usually formulated by
L = DBH+ ϵ described in equation (1.1), with D,B a down-sampling and a blurring operator,
respectively, ϵ some random noise or 0 for noise-free case. We note that high-resolution image
H ∈ RU×V can be obtained by Hi = f(thi ) with thi = (xi, yi), xi ∈ {0, 1

U−1 ,
2

U−1 , · · · , 1}, yi ∈
{0, 1

V−1 ,
2

V−1 , · · · , 1} on a fine grid. Low-resolution image L ∈ RQ×S is gotten by the discretiza-

tion formula Li = f(tli) with tli = (xi, yi), xi ∈ {0, 1
Q−1 ,

2
Q−1 , · · · , 1}, yi ∈ {0, 1

S−1 ,
2

S−1 , · · · , 1}



USING SIAM’S LATEX MACROS 7

on a coarse grid. In particular, Q,S are smaller than U, V , respectively. Actually, T l ∈ Rn×M ,
Kl ∈ Rn×n and Th ∈ RN×M , Kh ∈ RN×n are the T,K matrices and T̃ , K̃ matrices in Section
2.3, respectively, where n = Q · S, N = U · V and M is the dimension of the null space of the
penalty term (see details also in Section 2.3). Motivated by the smoothing model (2.13), c, d
can be solved using the following model

(3.1) min
1

n
∥L−DB(Thd+Khc)∥2 + λc′Klc,

where H = Thd+Khc.

Model (3.1) leads to blur results along edges of high-resolution image due to smoothing
property of thin-plate spline model (2.13). In particular, we observe residual edges in difference
image L−DBH(1) where H(1) is the computed high-resolution image by model (3.1). Inspired
by the iterative back projection method [27] and the iterative regularization method [37], we
consider the difference L−DBH(1) as a new low-resolution input L, and recompute the model
to get a residual high-resolution image H(2). We repeat this process until the residual is small
enough. The sum of the high-resolution image H(1) and its residual high-resolution images
is the resulted super-resolution image Ĥ. The strategy can recover more image details. In
Figure 2, (c) and (d) show the details H(2) and H(3) recovered at iterate 2 and 3, respectively.
One can see that H(3) has no obvious edges. The resulted image (a), H(1) + H(2) + H(3), is
sharper than resulted image (b), H(1) that is the result of model (3.1). Instead of adding all

H(i) together, one can also do a weighted sum, i.e., Ĥ =
∑τ

i=1 αiH
(i) where τ is the maximum

number of iteration and αi ≥ 0. In our experiments, it is enough to iterate the process three
times. The following Algorithm 1 is the proposed iterative RKHS algorithm for single image
super-resolution. This algorithm can work for general D,B though we mainly tested it with
bicubic down-sampling and Gaussian blur in the experiments.

Algorithm 1 (Single image super-resolution via RKHS (SR-RKHS))

Input: one low-resolution image L ∈ RQ×S , λ > 0
τ : maximum number of iteration, αi ≥ 0, i = 1, 2, · · · , τ .

Output: high-resolution image Ĥ ∈ RU×V

1. Set coarse grids tl and fine grids th.
2. Construct matrices T l,Kl using T l

i,ν = ϕν(t
l
i) and Kl

i,j = Em(tli, t
l
j), i, j = 1, 2, · · · , n, n = Q.S,

ν = 1, 2, · · · ,M . Similarly for Th,Kh except i = 1, 2, · · · , N ; j = 1, 2, · · · , n, where N = U · V .
3. Initialization: L(1) = L.

for k = 1:τ
a. Compute the coefficients: (c(k), d(k)) = argmin 1

n∥L
(k) −DB(Thd+Khc)∥2 + λc′Klc.

b. Update the high-resolution image: H(k) = Thd(k) +Khc(k).

c. Down-sampling H(k) to coarse grid: L̃ = DBH(k).

d. Compute residual: L(k+1) = L(k) − L̃.
end

4. Compute the final high-resolution image with weighted correction:

Ĥ =
∑τ

i=1 αiH
(i).

Note that although we introduce some parameters in the super-resolution algorithm, these
parameters are all not sensitive and easy to select. For example, parameter λ, required as
small as possible for noise-free case, is 1× 10−35 in all experiments. If we choose λ = 10−30 or
λ = 10−40, the algorithm leads to similar results. The iterative RKHS method needs only a few
iterations (τ = 3 in all experiments). In addition, weighting coefficients α1 = 1, α2 = 1, α3 = 1
in our experiments.

In this study, we have tested blur-free case (B = I), blur case and noise case. For these
cases, DB(Thd+Khc), in step 3a of Algorithm 1, is always considered as T ld+Klc in practice.
Then we obtain high-resolution image in step 3b of Algorithm 1 by the computed coefficients
in step 3a. Actually, step 3a and step 3b of Algorithm 1 can be replaced by the closed-form
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formula (2.15). Down-sampling operators D, associating with step 3a and step 3c in Algorithm
1, are done by bicubic interpolation (In MATLAB function: ‘imresize’).

Algorithm 1 has a closed-form solution for blur-free case.
Theorem 3.1. Let L be the vector form of a low-resolution image and I be an identity

matrix, τ is the number of maximum iteration in Algorithm 1, D represents a down-sampling
operator, the output of Algorithm 1 is as follows

(3.2) Ĥ =

 τ∑
i=1

αiR−
τ∑

i=2

αiRDR− αi

τ∑
i=3

i−2∑
j=1

RD(I −RD)jR

L,

where R = Th(T l′W−1T l)−1T l′W−1+KhW−1(I −T l(T l′W−1T l)−1T l′W−1), W = Kl+nλI,
λ is the regularization parameter in model (3.1).

Proof. According to Remark 3, we know that

H = Thd+Khc,

where c = W−1(I − T l(T l′W−1T l)−1T l′W−1)L, d = (T l′W−1T l)−1T l′W−1L.

Let R = Th(T l′W−1T l)−1T l′W−1 + KhW−1(I − T l(T l′W−1T l)−1T l′W−1), we have the
equation on each iteration: H(i) = RL(i), i = 1, 2, · · · , τ, (note that L(1) = L), so that the

finally solution Ĥ in Algorithm 1 can be written as

(3.3) Ĥ = R

τ∑
i=1

αiL
(i).

Additionally, we can summarize a relation from step 3d of Algorithm 1, that

(3.4) L(i) = L(1) −D

i−1∑
j=1

H(j), i = 2, 3, · · · , τ.

We have H(k+1) = RL(k+1) and L(k+1) = L(k) − DH(k) (see step 3d in Algorithm 1) so
that

(3.5) H(k+1) = H(k) −RDH(k), k = 1, 2, · · · , τ − 1.

It is not difficult to get the following derivation from equations (3.3), (3.4) and (3.5),

(3.6)

Ĥ = R
τ∑

i=1

αiL
(i)

= Rα1L
(1)

+Rα2(I −DR)L(1)

+Rα3 ((I −DR)−D(I −RD)R)L(1)

+Rα4

(
(I −DR)−D(I −RD)R−D(I −RD)2R

)
L(1)

...

+Rατ

(
(I −DR)−D(I −RD)R · · · −D(I −RD)τ−2R

)
L(1),

= R

α1I + α2(I −DR) +
τ∑

i=3

αi((I −DR)−
i−2∑
j=1

D(I −RD)jR)

L(1),

=

 τ∑
i=1

αiR−
τ∑

i=2

αiRDR− αi

τ∑
i=3

i−2∑
j=1

RD(I −RD)jR

L(1).



USING SIAM’S LATEX MACROS 9

(a) Ĥ (b) H(1) (c) H(2) (d) H(3)

Fig. 2. Super-resolution image ‘lena’ by Algorithm 1; (a) is the sum image of H(i), i = 1, 2, 3; (b) is the
computed image for first iteration. For better vision, we add 0.5 to the intensities of H(2) and H(3) to obtain
(c) and (d), respectively. From last two images, we know that H(2) and H(3) pick up some image details.

This is the closed-form expression of image super-resolution via the proposed iterative
RKHS method. Note that, D, a down-sampling operator from fine grids to coarse grids, is
not an explicit matrix sometimes, but it is easy to be implemented. For instance, if the down-
sampling approach is bicubic interpolation, we only need to use MATLAB command ‘imresize’
to image on the fine grid.

Corollary 3.2. In our experiments, we set τ = 3, α1 = α2 = α3 = 1. By Theorem 3.1,
the finally closed-form solution can be computed by

(3.7) Ĥ = (3R− 3RDR+RDRDR)L,

with R, L and D described in Theorem 3.1.
Remark 4 For blur case, we only need to replace D with DB in Theorem 3.1 where B is a
blurring operator, and get similar conclusions as in Theorem 3.1 and Corollary 3.2.

In what follows, we will compare the proposed approach with some competitive methods.

4. Numerical experiments. In this section, we compare the proposed approach with
nearest-neighbor interpolation, bicubic interpolation and two state-of-the-art learning-based
methods [56, 58].

We use two kinds of test images. One is low-resolution images without high-resolution
ground-truth images (see Section 4.1). One is simulated low-resolution images from known
high-resolution images (see Section 4.2). In the later case, one has high-resolution ground-truth
available for quantitative comparisons. Additionally, we divide Section 4.2 into three cases:
blur-free (see example 4), Gaussian blur (see example 5) and Gaussian noise (see example 6).
All experiments are done in MATLAB(R2013a) on a computer of 16Gb RAM and Intel(R)
Core(TM) i7-3820 CPU: @3.60 GHz, 3.60 GHz.

The proposed Algorithm 1 is for gray-scale images. To deal with color image super-
resolution, we apply Algorithm 1 to each channel. Peak signal-to-noise ration (PSNR) for
color images is defined as

(4.1) PSNR = 10 · log10

(
3mn · Peak2G
∥G⃗− H⃗∥22

)
,

where PeakG is the maximum possible intensity of image 1, G⃗ and H⃗ are vector forms of
ground-truth image G ∈ Rm×n×3 and computed image H ∈ Rm×n×3, respectively.
A remark on parameter selection: The related parameters in Algorithm 1 are easy to
select. We set λ = 10−35 for all noise-free case. For noise case, λ increases as the noise level
increases. We set maximum iteration to be 3, and coefficients α1 = 1, α2 = 1, α3 = 1 for all
experiments. Additionally, we set M = 6 so that ϕ1(t) = 1, ϕ2(t) = x,ϕ3(t) = y, ϕ4(t) = xy,
ϕ5(t) = x2, ϕ6(t) = y2 (see details in Section 2.3).

1http://en.wikipedia.org/wiki/Peak signal-to-noise ratio
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Nearest Bicubic SR-RKHS

Fig. 3. Visual results for example 1. Compare the proposed method with two classical super-resolution
methods: nearest-neighbor interpolation and bicubic interpolation. The test images are three natural images
captured online, i.e., ‘landscape’ (first row: low-resolution size 64 × 64, upscaling factor: 2), ‘butterflywing’
(second row: 64 × 64, upscaling factor: 133/64), and ‘text’ (third row: 74 × 64, upscaling factor: 4). First
column: low-resolution inputs; Second to fourth columns: super-resolution results of nearest-neighbor interpo-
lation, bicubic interpolation and the proposed method. Jaggy and blur artifacts are observed in nearest-neighbor
interpolation (second column) and bicubic interpolation (third column), respectively. The proposed SR-RKHS
performs best visually (color images are better visualized in the pdf file).

4.1. Results on low-resolution natural images without ground-truth. In this sec-
tion, experiments are based on natural images without ground-truth, so quantitative compar-
isons (e.g., PSNR) will not be done.

Example 1: Compare with nearest-neighbor and bicubic interpolation methods.
In this section, three natural images, ‘landscape’, ‘butterflywing’ and ‘text’, are used. Low-
resolution images with different sizes and upscaling factors have been tested. In Figure 3, we
compare the proposed SR-RKHS method with two interpolation methods: nearest-neighbor
interpolation and bicubic interpolation. The three test images have different upscaling factors:
2, 133/64 and 4. Resulted images by nearest-neighbor interpolation and bicubic interpolation
generate jaggy effect and blur effect, respectively, whereas SR-RKHS performs best.

Example 2: Compare with a state-of-the-art learning-based method. We compare the
proposed SR-RKHS method with a state-of-the-art learning-based method by Yang et. al [56].
In Figure 4, a natural image, ‘babyface’ with size 64×64, has been tested with upscaling factor
3. As shown in Figure 4, super-resolution images, obtained by nearest-neighbor and bicubic in-
terpolation methods, show somewhat jaggy and blur effect, respectively. Contrastively, the last
two images in Figure 4, generated by the learning-based method and the proposed SR-RKHS
method, respectively, preserve details well. The visual comparison demonstrates that the two
methods are comparable approaches. However, note that the learning-based method needs a
lot of data for learning while the proposed method only uses one low-resolution image.
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Nearest Bicubic Yang et al. [56] SR-RKHS

Fig. 4. Visual results for example 2. Compare the proposed method with two classical super-resolution
methods and one state-of-the-art learning-based method. From left to right: the low-resolution input ‘babyface’
with size 64 × 64, results of nearest-neighbor interpolation, bicubic interpolation, learning-based approach by
Yang et al. [56] and the proposed method. The upscaling factor is 3. The proposed method (last one) is better
than nearest-neighbor and bicubic interpolation methods, and is comparable with the learning-based method.

Nearest Bicubic SR-RKHS SR-RKHSdy

Fig. 5. Visual results for example 3. Compare the proposed method, using different down-sampling
approaches, with two interpolation methods. First column: low-resolution input ‘lena’; Second to fifth column-
s: super-resolution results of nearest-neighbor interpolation, bicubic interpolation, the proposed method using
bicubic interpolation down-sampling (SR-RKHS) and the proposed method using ‘dyaddwon’ down-sampling
(SR-RKHSdy). Upscaling factor is 2. Jaggy and blur artifacts are observed in nearest-neighbor interpola-
tion (second column) and bicubic interpolation (third column), respectively. The proposed SR-RKHSdy method
performs better than the proposed SR-RKHS method.

Example 3: The proposed method with different down-sampling operators D. In
the above two examples, we used bicubic interpolation as down-sampling operator D (see step
3c of Algorithm 1). In this section, we will take a different down-sampling method. We denote
the different down-sampling method as ‘dyaddown’ that means keeping every other one row
and column for high-resolution image. In Figure 5, we compare the proposed method, using
the mentioned down-sampling approaches, with nearest-neighbor interpolation and bicubic in-
terpolation. The proposed method with ‘dyaddown’ down-sampling, denoted as SR-RKHSdy,
performs best. Especially, it is better than the proposed method with bicubic interpolation
down-sampling, denoted as SR-RKHS (see last two columns in Figure 5). However, ‘dyaddown’
down-sampling requires the high-resolution image should be 2j (j = 1, 2, · · · ) times the size of
the low-resolution image. This makes ‘dyaddown’ down-sampling very limited. So we will not
use ‘dyaddown’ down-sampling in the following experiments.

4.2. Results on low-resolution images simulated from known ground-truth im-
ages. To provide quantitative comparisons in terms of PSNR, we start from some high-
resolution images, treat them as ground-truth and simulate low-resolution images according
to equation (1.1). We divide the experiments of this section into three cases: i) blur-free (ex-
ample 4); ii) Gaussian blur (example 5); iii) Gaussian noise (example 6). For these cases, we
compare the proposed method with nearest-neighbor interpolation, bicubic interpolation, one
learning-based method by Yang et al. [56] and another learning-based method by Zeyde et al.
[58].
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Table 1
PSNR(dB) for blur-free case: first to seventh examples: ‘purplebutterfly’ (size from 90×90 to 160×160),

‘text’ (90 × 90 to 150 × 150), ‘babyface’ (80 × 80 to 200 × 200), ‘lena’ (40 × 40 to 80 × 80), ‘sar’ (85 × 85 to
180×180),‘landscape’ (45×45 to 84×84) and ‘butterflywing’ (45×45 to 100×100); eighth two ninth examples:
‘babyface’ (80 × 80 to 240 × 240) and ‘dog’ (70 × 70 to 210 × 210); last two examples: ‘babyface’ (80 × 80 to
234 × 234 with shaving boundary) and ‘comic’ (80 × 50 to 234 × 144 with shaving boundary). The proposed
SR-RKHS method outperforms nearest-neighbor and bicubic interpolation methods, while performs similarly
with that of Yang et al. [56] and Zeyde et al. [58].

Test image Nearest-neighbor Bicubic SR-RKHS

purplebutterfly 22.83 25.55 26.74

text 27.07 31.34 33.70

babyface 29.81 31.19 31.51

lena 28.10 32.23 34.20

sar 19.48 22.42 23.96

landscape 25.01 27.01 27.91

butterflywing 23.93 28.30 29.27

Bicubic Yang et al. [56] SR-RKHS

babyface 29.85 29.99 30.00

dog 38.93 39.34 39.63

Yang et al. [56] Zeyde et al. [58] SR-RKHS

babyface 30.01 30.31 30.08

comic 21.70 21.80 21.24

Example 4: Results for blur-free case. In the section, we compare the proposed method
with nearest-neighbor and bicubic interpolation methods, and two state-of-the-art learning-
based methods. Visual and quantitative results are shown in Figure 6, Figure 7, Figure 8 and
Table 1. In Figure 6, the proposed SR-RKHS method (forth column) overcomes jaggy effect of
nearest-neighbor interpolation (second column) and reduces blur effect of bicubic interpolation
significantly (third column). Note that the proposed method can be applied to any upscal-
ing factors, including fractional factors, e.g., 16/9 for ‘purplebutterfly’ and 5/2 for ‘babyface’.
Whereas sometimes this is not true for other methods, such as [2]. In Figure 7, we compare the
proposed method with a state-of-the-art learning-based method by Yang et al. [56]. In Figure
8, another state-of-the-art method by Zeyde et al. [58] is also employed to compare with the
proposed method. The resulted super-resolution images by the proposed method and the two
learning-based methods are similar. In Table 1, quantitative results of more test images, e.g.,
‘lena’, ‘sar’, ‘landscape’ and ‘butterflywing’, can be found. From Table 1, the proposed method
gets higher PSNR than bicubic interpolation, and similar PSNR with the two learning-based
methods in [56, 58]. In particular, we have to note that the method in [58] shaves bound-
ary pixels of resulted super-resolution images. For instance, if we set upscaling factor 3 for a
80× 80 low-resolution image, the resulted image should be 240× 240. However, the method in
[58] shaves 3 pixels on the boundary to get 234 × 234 super-resolution image. From Figure 7
and Figure 8, we know that the proposed method is comparable with the both learning-based
methods.

Example 5: Results for Gaussian blur case. In this section, four test images, synthetic
aperture radar (SAR) image ‘sar’, natural images ‘babyface’, ‘dog’ and ‘pepper’, have been
employed. Different Gaussian blur are added to ground-truth images manually, then we get
blurred low-resolution images according to equation (1.1) with bicubic interpolation down-
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Original Nearest Bicubic SR-RKHS LR

PSNR=22.83 PSNR=25.55 PSNR=26.74

PSNR=27.07 PSNR=31.34 PSNR=33.70

PSNR=29.81 PSNR=31.19 PSNR=31.51

Fig. 6. Visual results for blur-free case (see example 4). Compare the proposed method with two
interpolation methods for blur-free case. Test images: ‘purplebutterfly’ from size 90×90 to 160×160 (first row),
‘text’ from 90×90 to 150×150 (second row), ‘babyface’ from 80×80 to 200×200 (third row); The low-resolution
images are simulated from known ground-truth images according to equation (1.1). First column: ground-
truth images; Second to fourth columns: results of nearest-neighbor interpolation, bicubic interpolation and the
proposed SR-RKHS method; The last column: low-resolution images (denoted as ‘LR’). Note that, the proposed
method can be applied to any upscaling factors, including fractional factors, e.g., 16/9 for ‘purplebutterfly’ and
5/3 for ‘text’.

sampling.
We compare the proposed SR-RKHS method with bicubic interpolation and two state-of-

the-art learning-based methods by Yang et al. [56] and Zeyde et al. [58]. In Figure 9 and
Figure 10, the learning-based methods and the proposed SR-RKHS method, both better than
bicubic interpolation, do not show significantly visual disparity. Additionally, PSNR shown in
Table 2 can not distinguish which method preforms significantly absolutely. Thus we regard
the proposed SR-RKHS method and the learning-based methods as three comparable and com-
petitive methods. The learning-based methods, however, need to train a lot of data to generate
a new dictionary when every time the upscaling factor changes. Furthermore, they are not
completely single image super-resolution as two large sets of low-resolution and high-resolution
images are required for learning. In comparison, the proposed non-learning SR-RKHS method,
only requiring one low-resolution image as an input, has a simple closed-form expression and
competitive performance, both visually and quantitatively.

Example 6: Results for noise case. We also compare the proposed method with bicubic
interpolation and two state-of-the-art learning-based methods by Yang et al. [56] and Zeyde
et al. [58], with noisy low-resolution images as inputs. We add 3%, 2% and 3% Gaussian
white noise to the ground-truth images ‘sar’, ‘babyface’ and ‘landscape’, respectively, then
get noisy low-resolution images by bicubic interpolation down-sampling (slightly different with
equation (1.1)). In Figure 11, the proposed method gets better visual results than bicubic
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Original Bicubic Yang et al. [56] SR-RKHS LR

PSNR=29.85 PSNR=29.99 PSNR=30.00

PSNR=38.93 PSNR= 39.34 PSNR=39.63

Fig. 7. Visual results for blur-free case (see example 4). Compare the proposed method with bicubic
interpolation method and the learning-based method by Yang et al.[56]. Test images: ‘babyface’ from size 80×80
to 240×240 (first row), ‘dog’ from 70×70 to 210×210 (second row). Third column: results of the learning-based
method [56].

Table 2
PSNR(dB) for Gaussian blur case and Gaussian noise case; ‘sd’ means the standard derivation,

‘Noise’ means the level of Gaussian noise.

Test image(Blur case) Bicubic Yang et al. [56] SR-RKHS

sar(sd:2) 18.59 19.48 19.50

babyface(sd:1.5) 29.13 29.38 29.92

dog(sd:2.5) 38.20 38.59 39.48

dog(sd:1) 38.45 38.83 39.98

Yang et al. [56] Zeyde et al. [58] SR-RKHS

pepper(sd:1) 29.28 29.52 29.51

Test image(Noise case) Bicubic Yang et al. [56] SR-RKHS

sar(Noise:3%) 19.15 19.47 19.50

babyface(Noise:2%) 30.84 30.88 30.95

Yang et al. [56] Zeyde et al. [58] SR-RKHS

landscape(Noise:3%) 24.40 24.58 24.21

interpolation method, and obtains comparable visual results with the learning-based method
in [56]. In Figure 12, it demonstrates that the proposed method and the two learning-based are
comparable approaches visually. From Table 2, we know that PSNR of the proposed method
and the two learning-based methods are comparable, and all higher than bicubic interpolation.

5. Conclusions. Given a low-resolution image, the super-resolution problem was casted as
an image intensity function estimation problem. We assumed the underlying intensity function,
defined on a continuous domain, belongs to a 2D thin-plate spline based RKHS. The basis
coefficients of the space were computed using the low-resolution image. To recover sharp high-
resolution images with details, we proposed an iterative RKHS method. The intensity function
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Original Yang et al. [56] Zeyde et al. [58] SR-RKHS LR

PSNR=30.01 PSNR=30.31 PSNR=30.08

PSNR=21.70 PSNR=21.80 PSNR=21.24

Fig. 8. Visual results for blur-free case (see the example 4). Compare the proposed method with bicubic
interpolation method and two learning-based methods. Test images: ‘babyface’ from size 80 × 80 to 234 × 234
with shaving boundary (see details on shaving boundary in example 4) (first row), ‘comic’ from 80 × 50 to
234× 144 with shaving boundary (second row). Third column: results of the learning-based method [58].

could then be estimated at any fine grids to get high-resolution image with any upscaling
factors. Moreover, a closed-form solution for the iterative RKHS method is also given in this
paper. Many quantitative and qualitative experiments in various cases (blur-free, blur and
noise) show that the proposed approach outperforms two classical single image super-resolution
methods: nearest-neighbor interpolation and bicubic interpolation. It is also comparable with
two state-of-the-art learning-based methods which need a lot of data for learning.
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