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ABSTRACT

In this paper, we develop efficient deconvolution and super-

resolution methodologies and apply these techniques to re-

duce image blurring and distortion inherent in an aperture

synthesis system. Such a system produces ringing at sharp

edges and other transitions in the observed field. The con-

ventional approach to suppressing sidelobes is to apply lin-

ear apodization, which has the undesirable side effect of de-

grading spatial resolution. We have developed an efficient to-

tal variation minimization technique based on Split Bregman

deconvolution that reduces image ringing while sharpening

the image and preserving information content. Furthermore,

a proposed multiframe super-resolution method is presented

that is robust to image noise and noise in the point spread

function and leads to additional improvements in spatial reso-

lution. Our super-resolution methodologies are based on cur-

rent research in sparse optimization and compressed sensing,

which lead to unprecedented efficiencies for solving image

reconstruction problems.

Index Terms— Super-resolution, spatial resolution,

sparse optimization, microwave imaging, inverse problems

1. INTRODUCTION

Hurricanes and other physically deforming phenomena will

soon be continuously imaged using geostationary microwave

sensors, which are designed to penetrate through thick clouds

to see the structure of a storm. Such images may represent

distribution of temperature, water vapor, and cloud liquid wa-

ter and are valuable for evaluating the storms internal pro-

cesses and its strength. The Geostationary Synthetic Thinned

Aperture Radiometer (GeoSTAR) is a microwave spectrom-

eter aperture synthesis system that has been under develop-

ment at JPL since 1998 [1] and will be used to capture hur-

ricane imagery. The instrument concept consists of an array

of individual microwave receivers arranged in a Y-pattern in

a plane facing the Earth. Each receiver has a small feed-

horn antenna, which views the entire Earth disc, and the re-

ceived signal is processed on-board to determine the cross-

correlation between pairs of receivers. The cross-correlations,

called visibilities, are equivalent to coefficients of a complex

2-dimensional Fourier series that represents the radiometric

image of the Earth disc. The visibilities are measured be-

tween all receiver pairs simultaneously and accumulated on-

board for a period of a few seconds before being downlinked

to the ground for further processing. There, the visibility im-

ages are converted to radiometric images, essentially through

an inverse Fourier transform (cf. Fig. 1).

A characteristic of an aperture synthesis system is that the

point spread function (PSF) is a 2-dimensional sinc-like func-

tion, showing positive and negative excursions (cf. Fig. 2),

that produces ringing at sharp edges and other transitions in

the observed field. The conventional approach to suppress-

ing sidelobes is to apply linear apodization, which has the

undesirable side effect of degrading spatial resolution. In

contrast to apodization, our approach reduces image ringing

while sharpening the image and preserving information con-

tent.

Since the convolution problem in the presence of noise is

highly ill-posed, regularization should be applied to achieve

stability while preserving a priori properties of the solution.

We formulate the restoration problem within the variational

framework, using the total variation regularization. Total

variation (TV) of an image measures the sum of the absolute

values of its gradient and increases in the presence of the

ringing artifact caused by sidelobes. By minimizing the TV

of an image using the numerical techniques detailed below,

our process reduces not only the ringing within the image,

but is shown below to significantly reduce the brightness

temperature errors in the overall image. To render these pro-

cesses efficiently, our methodologies are based on current

research in sparse optimization and compressed sensing. We

perform the total variation based deconvolution within the

Split Bregman optimization framework to achieve a factor of

five hundred computational time improvement over already

robust total-variation gradient descent based techniques. Ad-

ditionally, a proposed multiframe super-resolution method is

presented that is robust to image noise and noise in the point

spread function and leads to additional improvements in spa-

tial resolution. c© 2014 IEEE. Submitted to IEEE MicroRad.



Fig. 1. Sparse array (upper left) and u-v sampling pattern (up-

per right), as implemented in the GeoSTAR prototype. Typ-

ical visibility magnitudes in the uv-plane (lower-right) corre-

spond to the radiometric image (lower-left).

Fig. 2. The GeoSTAR point spread function.

2. NOTATION

For an image u ∈ R
n×n, the value of u at a pixel (i, j), with

0 ≤ i, j ≤ n, is denoted as uij . The norms are defined as:

||u||1 =
∑

(i,j)∈Ω

|uij |, ||u||2 =

√

∑

(i,j)∈Ω

|uij |2.

The discrete gradient of u at pixel (i, j) is denoted as

∇uij , with ∇uij ∈ R
2. For a vector-valued quantity

dij = ((d1)ij , (d2)ij) ∈ R
2, for example d = ∇u, the

norms are defined as

||d||1 =
∑

(i,j)∈Ω

||dij ||2, ||d||2 =

√

∑

(i,j)∈Ω

||dij ||22,

where ||dij ||2 =
√

(d1)2ij + (d2)2ij . Unless specified other-

wise, || · || = || · ||2 in the remainder of the paper.

Fig. 3. Original simulated 150GHz microwave 400x400 im-

age and its zoomed in region are shown.

3. FAST SPLIT BREGMAN DECONVOLUTION

Deconvolution process reverses effects of a blurring sensor

point spread function (PSF) on observed data in the presence

of noise. It is also an important step in multiframe super-

resolution.

Let u0 ∈ R
n×n be an original unknown image, K be

a convolution operator that represents point spread function,

and κ ∈ R
n×n be additive noise. A blurred, distorted, and

noisy observation f satisfies the model

f = K ∗ u0 + κ. (1)

Since the problem (1) is highly ill-posed, regularization

should be applied to achieve stability while preserving a

priori properties of the solution. We formulate the restoration

problem within the variational framework, using the total

variation regularization. Given a single observation f , we

solve the deconvolution problem as TV-L2 energy minimiza-

tion

min
u
||u||TV +

µ

2
||K ∗ u− f ||22, (2)

where u is a reconstruction and µ > 0 is a weight on the

L2 norm of the residual of (1). The value of µ can be cal-

culated automatically via Bregman iteration [2, 3]. The L1-

regularized type norm ||u||TV measures the total variation

(TV) of a signal, and is defined as ||u||TV =
∫

|∇u|, where

∇u is the gradient of u. The TV norm was originally pro-

posed for image denoising and deblurring [4, 5] and had since

been used to solve a variety of image reconstruction prob-

lems. The effectiveness of the TV norm stems from its ability

to preserve edges in an image.

In [6], the authors proposed the alternating minimization

algorithm for solving TV-L2 deconvolution problems. Also,

the Split Bregman algorithm for denoising images was pro-

posed in [7]. In their paper, the authors show that the Breg-

man iteration can be used to solve rapidly and accurately a

wide variety of constrained optimization problems. These

formulations are related to problems that arise frequently in

compressed sensing, where function u is reconstructed from

a small subset of its Fourier coefficients [8, 9]. Inspired by



(a) Blurry and noisy (b) Original Error. (c) Reconstruction (d) Final Error.

150GHz image RMS error = 20.5 Kelvin RMS error = 14.8 Kelvin

Fig. 4. Split Bregman deconvolution of a simulated 150 GHz hurricane image. (a) Original image from Figure 3 is convolved

with GeoSTAR kernel from Figure 2. (b) Error between clean image and blurry image. (c) Deconvolution result. (d) Error

between clean image and deconvolution result.

these methodologies, we minimize the deconvolution prob-

lem (2) within the Split Bregman minimization framework.

In order to minimize (2), an additional variable d is intro-

duced to transfer ∇u out of non-differentiable terms at each

pixel, and ||d−∇u||2 is penalized. Hence, the Split Bregman

formulation of the problem (2) is

min
u,d

||d||1 +
λ

2
||d−∇u− b||2 +

µ

2
||K ∗ u− f ||2. (3)

Here, λ is a nonnegative parameter, and variable b is chosen

through Bregman iteration [2, 3]: b← b+ (∇u − d). For a

fixed u, the minimization problems for d is

d
∗ = argmin

d

{

||d||1 +
λ

2
||d−∇u− b||2

}

,

which can be explicitly solved for d, at each pixel, by using a

generalized shrinkage formula [10, 11]:

d = max
{

||∇u+ b|| −
1

λ
, 0
} ∇u+ b

||∇u+ b||
.

For a fixed d, the minimization problem (3) is quadratic in u:

u∗ = argmin
u

{

||d−∇u− b||2 +
µ

λ
||K ∗ u− f ||2

}

,

and has the optimality condition:

µK̃ ∗K ∗ u− λ△u = µK̃ ∗ f − λ∇ · (d− b), (4)

where K̃(x) = K(−x). We solve (4) using the fast Fourier

transform.

We tested the method on the AMSU-B 150, 157, 166, 176,

and 180 GHz channel images of hurricane Rita, shown on

Figures 3 and 6. The images are 400 by 400 and were derived

from the cloud resolving numerical weather prediction model

(WRF) [12] simulation. We used 101 by 101 GeoSTAR point

spread function K , shown on Figure 2 to blur the images.

Figure 4(a) shows 150 GHz image of Figure 3 de-

graded with the GeoSTAR blur. The result in Figure 4(c)

is obtained using the efficient Split Bregman deconvolution

model. Figures 4(b,d) show the original error and error after

reconstruction as well as give root mean square (RMS) error

values. In Figures 4(a,b) we see how the GeoSTAR PSF ren-

ders an image which tends to “ring” spatially to produce an

unnatural appearance. In Figure 4(c), the proposed technique

has produced an image which not only appears to match the

true image, but in Figure 4(d) truly reduces image errors com-

pared to Figure 4(b). Such error reductions are not realized

by apodization (see Figure 5), which in fact raises the errors

relative to Figure 4(b) [13]. Figure 7 shows results for other

channels.

We also assessed computational efficiency of the fast

fourier transform-based Split Bregman deconvolution method.

Alternatively, a standard way of minimizing energy func-

tional (2) is to use the gradient descent method. We found

that solving deconvolution problem using the fast Split Breg-

man method is over five hundred times faster than using the

gradient descent method.



(a) Apodization result (b) Errror. RMSE = 23.5 K

Fig. 5. (a) Result obtained using conventional linear apodiza-

tion method and (b) corresponding error are shown.

4. MULTIFRAME SUPER-RESOLUTION

Multiframe super-resolution reconstruction produces a high-

resolution image from a sequence of blurry and noisy low-

resolution images. We assume we are given Q noisy and

blurry observations fk, where k = 1, . . . , Q. If the point

spread function K contains noise sk, the convolution model

describing the relation between the unknown image u0 and

each of the observations fk can be expressed as

fk = (K + sk) ∗ u0 + nk,

where nk is image noise. The PSF noise sk may be due to

contribution from the time-varying thermal misalignment and

constant alignment errors, among other error sources.

Availability of oversampled observations provides for

data redundancy and can be used to decrease the effects of

image noise and a noisy point spread function. The minimiza-

tion problem for multiframe super-resolution we consider is

min
u
||u||TV + µ

Q
∑

k=1

ωk||K ∗ u− fk||
2
2, (5)

where we choose weighting constants ωk using total variation

(TV) averaging: [14]: ωk = ||fk||TV /
∑

q ||fq||TV , with
∑

q ωq = 1. The similarity term in (5) does not involve

sk ∗ u term; however, the averaging process reduces the ef-

fective noise in a point spread function, as was shown in [15].

We can re-write the minimization problem (5) as

min
u
||u||TV + µ||K ∗ u− f̄ ||22, (6)

where f̄ =
∑

k ωkfk is weighted TV mean of the observa-

tions fk. The signal-to-noise ratio for an average image f̄

(a) 157 GHz (b) 166 GHz

(c) 176 GHz (d) 180 GHz

Fig. 6. Four microwave channels of a simulated AMSU-B

multispectral 400x400 hurricane image. 150GHz channel is

shown on Figure 3.

will be larger than that for each fk. In [14], the authors rig-

orously analyzed the advantages of using multiple degraded

images for reconstruction. It was shown that while high spa-

tial frequencies of fk are contaminated by noise, the averag-

ing process, such as TV averaging, reduces the amplitude of

high frequencies in f̄ . Hence, the minimization problem (6)

allows us to recover a wider range of frequencies of u0 as the

number of images increases. We apply fast Split Bregman

deconvolution to (6) as was described in the previous section.

Figures 8 and 9 show multiframe super-resolution results.

Figure 8(a,b) shows noisy GeoSTAR PSF corrupted with

10% visibility error. Clean image is consecutively blurred

with noisy PSF of this characteristic and is also corrupted

with additive image noise of variance σ2 = 5K to produce

a multiframe image sequence. One of the corrupted images

in a sequence is displayed on Figure 8(c). Super-resolution

reconstruction results are shown on Figure 9 for 3, 5, 10, and

20 frames. The quality of the reconstruction increases with

the number of images in a sequence.
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157 GHz 166 GHz 176 GHz 180 GHz

RMS error = 15.4 K RMS error = 10.5 K RMS error = 8.2 K RMS error = 5.2 K

(a) Blurry and noisy images

RMS error = 11.1 K RMS error = 6.6 K RMS error = 4.8 K RMS error = 3.0 K

(b) Reconstruction

Fig. 7. Split Bregman deconvolution of simulated hurricane images. The four columns represent different microwave channels.

(a) Original images from Figure 6 are convolved with GeoSTAR kernel from Figure 2. (b) Deconvolution results. Results for

150GHz channel are shown on Figure 4.
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(b) Cross-sections of noisy and clean GeoSTAR PSFs

(c) Image blurred with noisy PSF from (a)

Fig. 8. (a) Noisy GeoSTAR PSF corrupted with 10% visibil-
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(a) 3 frames

(b) 5 frames

(c) 10 frames

(d) 20 frames

Fig. 9. Multiframe super-resolution results. Clean image is

consecutively blurred with noisy PSF (one such PSF is shown

on Figure 8(a)) and is also corrupted with additive image

noise of variance σ2 = 5K to produce an image sequence.

Super-resolution reconstruction results are shown for 3, 5, 10,

and 20 frames.


