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Abstract. This paper is concerned with overlapping domain decomposition methods

(DDMs), based on successive subspace correction (SSC) and parallel subspace correc-

tion (PSC), for the Rudin, Osher and Fatemi (ROF) model in image restoration. In
contrast to recent attempts, we work with a dual formulation of the ROF model, where

one significant difficulty lies in the decomposition of the global constraint of the dual
problem. We propose a stable ”Unit Decomposition” and this leads us to come natural

overlapping domain decomposition schemes for the dual problem. We further analyze

the convergence of the proposed algorithms, and obtain the rate O(n−1/2) where n is the
number of iterations. Move, the dependence of the convergence rate on the overlapping

size, regularization parameter and relaxation parameter is clearly given. To the best of

our knowledge, such a convergence has not been claimed so far for domain decomposition
related algorithms the ROF model.

1. Introduction

The Rudin-Osher-Fatemi model given in [27] is one of the fundamental variational models

for image processing. It is known that the ROF model restores a noise image g on a domain

Ω (e.g. in R2) by solving the minimization problem:

min
u∈BV (Ω)

{
λTV (u) +

1

2
‖u− g‖2L2(Ω)

}
, (1.1)

where λ > 0 and BV (Ω) is the space of functions of bounded variation, and the total

variation of u is defined as in [1] by

TV (u) := sup
p∈K

∫
Ω

udivp dx with (1.2)

K :=
{
p = (p1, p2) ∈ (C1

0 (Ω))2 : |p| := (p2
1 + p2

2)1/2 ≤ 1
}
. (1.3)

As usual, p is known as the dual variable, while u is the primal variable.
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Over the last last two decades, many methods have been proposed to solve the ROF

model. In general, they can be classified into three categories based on the nature of

manipulating the primal and/or dual variables and one can refer to [29].

• Primal approaches. The gradient descent method (cf. [25, 27]) via the evolution of

a parabolic equation or lagged diffusivity fixed-point iteration (cf. [1, 37, 38, 39, 40])

via linearized the curvature term is reliable and restores the image of high quality,

but slowly convergent. The most popular algorithms based on Bregman iteration

(cf. [16, 41, 42]) and augmented Lagrangian methods (cf. [18, 43]) are quite efficient

and fast because the reduced problems can be solved by variable-splitting technique

and FFT for subproblems. Usually after few iterations degraded images are well

restored. For other algorithms like graph cuts method, additive operator splitting

(AOS), multigrid method, one can refer to the [44] which gives the concise review

and detailed references.

• Dual approaches. A typical and efficient approach (see, e.g., [5]) is to apply the

KKT condition to (1.1) and (1.2), which allows to solve the dual variable:

inf
p∈K

{
D(p) :=

∫
Ω

(λdivp− g)2dx
}
, (1.4)

and finally update the primal variable by

u = g − λdivp. (1.5)

• Primal-dual approaches. This type of approach was first introduced in [2, 3]. Then

the applications to image processing were done in [4, 11, 47]. By virtue of Legendre-

Fenchel’ s duality, they formed the saddle point problem. Finally iterations including

alternating dual and primal steps were constructed. In [11] they generalized the

primal-dual hybrid gradient (PDHG) algorithm [47] and a general framework was

set up. Further in [4] they proved the convergence of a primal-dual gap to zero

whose convergence was of first order. Some accelerated techniques were adopted to

improve the algorithm with second order as O(
1

n2
) with n is the iteration number.

There has been much recent interest in developing domain decomposition methods for

image processing. As an important numerical means for PDEs, the DDM enjoys two ap-

parent merits: (i) it can break down the problem into a sequence of subproblems of much

smaller scale, so better-conditioned solvers can be constructed over each subdomain; and

(ii) it allows for parallel computations.

For domain decomposition methods [6, 10, 17, 28, 46] they built up the framework for

general applications. It is well known that there exist two different approaches to apply

domain decomposition methods to the variational problems. One is to use domain decom-

position methods to the Euler-Lagrangian equations of the variational problems which are

usually linear partial differential equations. Then lots of techniques for linear partial differ-

ential equations, such as [10, 22, 23, 24, 28, 46], consisting of two level methods, multigrid

methods and precondition technique can be adopted to solve the problem in parallel. But

if the Euler-Lagrangian equation is not linear, it is difficult to give the convergence analy-

sis and the energy is not guaranteed to decrease monotonely. The other is to use parallel
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or successive subspace correction methods [30, 31, 32, 33, 34] to decompose the variational

problems into sub-variational problems over subdomains. The energy decreases monotonely.

Besides, this approach can be applied to more general, or complex variational problems.

In the areas for applying DDM in image processing, DDM as mentioned above was

adopted. The classical domain decomposition methods with Dirichlet boundary condition

transmission (which is equivalent to PSC or SSC) was adopted for in image denoising us-

ing Gaussian curvature [15], PSC or SSC was applied to graph cuts for image restoration

and segmentation in [9, 35, 44]. During these applications they successfully decomposed

the original problem into more small subproblems which were solved parallel. With fewer

outer iterations they got the satisfying processed images. Especially in [44], a coarse mesh

correction has been added to the proposed domain decompistiuon scheme which is often

not an easy task for nonlinear problems. Xu and Chang [45] also applied the DDMs to the

image deblurring problems, which owned the special properties of the blur operator. Chang

et al.[7] considered the DDMs for the nonlocal total variation based image restoration prob-

lems. They also pointed out their proposed algorithms can be adopted to solve the total

variation problems directly.

Meanwhile, some variant of classical DDM was proposed in [12, 13, 14, 20, 21]. Instead of

solving the subproblem deduced by SSC or PSC directly, Fornasier, Langer, and Schönlieb

introduced the surrogate functional to form an approximation(or iterative proximity-map)

of the subproblem. Then the new subproblem was solved by via oblique thresholding. The

algorithm was tested to be efficient in image restoration and compress sensing. The algo-

rithm proposed in Hintermuller-Lamnger [20] is a nonlinear subspace correction algorithm

for the ROF model. In [21], subspace correction technique is combined with the Bregmann-

splitting idea to get domain decomposition type of algorithms. Convergence of the algorithm

was proved in [20, 14, 21]. However, convergence rate was unknown.

In contrast with most of existing work, we are interested in the DDM for the dual for-

mulation (1.4). Indeed, the dual approach, e.g., the Chambolle’s algorithm, has proven to

be efficient for solving ROF model. However, for image of large size, it is advantageous to

employ domain decomposition technique for the vector-valued dual variable. However, one

difficulty lies in the decomposition of the convex set K with the constraint |p| ≤ 1.

The original ROF model is highly nonlinear and the owns some singularity. The dual

model overcomes these difficulties. So we try to apply the domain decomposition methods

to dual model. However, the new difficulties exist in two aspects. On one hand, during

the realization or construction of the algorithm, the global constraint of the dual variable

is difficult to be decomposed over the subdomains. On the other hand, for the convergence

analysis, the objective functional of the dual model is not strictly convex or strongly convex.

This property is causing problem to use the theory of [30] to obtain the convergence rate.

In the following section, we will supply some techniques to overcome these difficulties and

deduce the convergence rate for the proposed domain decomposition methods. We focus on

dealing with model (1.4) using subspace correction methods Successive Subspace Correction

(SSC) and Parallel Subspace Correction (PSC) methods in our paper.
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The paper is organized as follows. We give the overlapping domain decomposition method

in Section 2. The convergence analysis is presented in Section 3. Detailed algorithms and

numerical examples for the proposed algorithms are given in Section 4. At last we conclude

this paper in Section 5.

2. The overlapping domain decomposition algorithms

In this section, we formulate the overlapping domain decomposition algorithms for (1.4).

For this purpose, we introduce the space of functions with square-integrable divergence:

H(div; Ω) =
{
p ∈ (L2(Ω))2 : divp ∈ L2(Ω)

}
, (2.1)

equipped with the graph norm

‖p‖H(div;Ω) =
(
‖p‖2(L2(Ω))2 + ‖div p‖2L2(Ω)

) 1
2 .

Define the subspace by density:

H0(div; Ω) = closure of (C∞0 (Ω))2 in the H(div; Ω) graph norm. (2.2)

It is known that (see, e.g., [26, Theorem 3.25]) if Ω is a bounded Lipschitz domain in R2,

then

H0(div; Ω) =
{
p ∈ H(div; Ω) : p · n|∂Ω = 0

}
, (2.3)

where n is the outer unit vector normal to ∂Ω. In view of this, we define

K :=
{
p ∈ H0(div; Ω) : |p| ≤ 1

}
, (2.4)

and consider the alternative formulation of (1.4):

min
p∈K

{
D(p) :=

∫
Ω

(λdivp− g)2dx
}
, (2.5)

Notice that the functional D(p) is convex but not strictly convex, so the problem (2.5)

admits at least one minimizer p∗ ∈ K. To ensure the uniqueness, one may modify the

energy functional (see, e.g., [19, 8]) and consider

Dε(p) = D(p) + ε‖p‖2L2(Ω), where 0 < ε� 1, (2.6)

but this requires a delicate convergence analysis for ε → 0. Hence, it is more desirable to

directly work with the problem (2.5). Indeed, we just need one optimum p∗ to resolve the

primal variable via u∗ = g − λ div p∗.

2.1. General setup. To formulate the DDM algorithms, we start with the decomposition

of the domain Ω and the convex constraint set K. For clarity of presentation, we assume

that Ω is a rectangular domain. We partition Ω into Mc classes of overlapping subdomains,

and suppose that each class is colored with a different color, that is,

Ω =

Mc⋃
j=1

Ωj , where Ωj is a union of mj disjoint subdomains with the same color. (2.7)

We assume that the overlapping size of subdomains is δ. Hence, the total number of subdo-

mains that covers Ω is mT =
∑Mc

j=1mj . We illustrate in Figure 2.1 a typical decomposition

of a rectangular domains with subdomains of four colors.
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In what follows, let N0 be the maximum number of subdomains, among all mT subdo-

mains of the partition, yacht an over at a point x ∈ Ω. For example, N0 = 4 for the partition

depicted in Figure 2.1.

Figure 2.1. Domain decomposition with coloring technique. Here, Mc =
4,m1 = 9,m2 = 6,m3 = 6,m4 = 4 and mT = 25.

An essential technique for our method is to decompose the convex constraint set K into

a sum of convex constraint sets over the subdomains. For this purpose, we need to use an

”Unit Partition Function” (UPF), denoted by {θj}Mc
j=1, which are one-to-one associated with

{Ωj}Mc
j=1, and satisfy

(i)

Mc∑
j=1

θj ≡ 1, θj ≥ 0, on Ω; (2.8)

(ii) θj ∈ H1(Ω), supp(θj) ⊂ Ω̄j , 1 ≤ j ≤Mc; (2.9)

(iii) ‖∇θj‖∞ ≤
C0

δ
, 1 ≤ j ≤Mc, (2.10)

where C0 is a positive constant independent of δ, and ‖ · ‖∞ as usual is the L∞-norm.

Correspondingly, we define the convex subsets as:

Kj =
{
p ∈ H0(div; Ω) : |p| ≤ θj

}
, 1 ≤ j ≤Mc. (2.11)

It follows from (2.9) that for any p ∈ Kj , we have supp(p) ⊂ Ω̄j .

Proposition 2.1. We have

K = K1 +K2 + · · ·+KMc
. (2.12)

Proof. On one hand, for any p ∈ K, we define pj = θjp, for 1 ≤ j ≤Mc. By the definition

(2.8)-(2.10), we find that pj ∈ Kj , and p =
Mc∑
j=1

pj . On the other hand, given p =
Mc∑
j=1

pj

with pj ∈ Kj , we have p ∈ H0(div; Ω), and

|p| =
∣∣∣ Mc∑
j=1

pj

∣∣∣ ≤ Mc∑
j=1

|pj | ≤
Mc∑
j=1

θj = 1,

so p ∈ K. �
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2.2. Formulation of DDMs. With the above setup, we are now ready to formulate the

DDMs based on the formulation (2.5). Hereafter, let α > 0 be the relaxation parameter.

Algorithm I: Parallel Subspace Correction (PSC)

1. Initialization: choose p0 and select a relaxation parameter1

α ∈ (0,M−1
c ]. (2.13)

2. For n = 0, 1, · · · ,
compute pn+1 by

pn+1 = (1− α)pn + α

Mc∑
j=1

q̂nj , (2.14)

where

q̂nj = arg min
v∈Kj

D
(
v +

∑
i6=j

θip
n
)
, 1 ≤ j ≤Mc. (2.15)

3. Endfor till some stopping criterion meets.

We see that the minimization of (2.5) breaks down to solving a sequence of subdomain

problems (2.15) with much smaller scale, which can be resolved in parallel. Notice that

when we update pn+1 by (2.14), we could use the available qualities {q̂nj } to replace the

corresponding values {pn|Kj
}. This leads to the successive subspace correction algorithm.

Indeed, the situation is reminiscent of the Jacobi and Gauss-Seidel methods for solving

linear systems.

Algorithm II: Successive Subspace Correction (SSC)

1. Initialization: choose p0 and select a relaxation parameter α ∈ (0, 1].

2. For n = 0, 1, · · · , find pn+1 in the following two steps:

(i) Find {q̂nj }
Mc
j=1 sequentially for 1 ≤ j ≤Mc such that

q̂nj = arg min
v∈Kj

D
(
v +

∑
i<j

qni +
∑
i>j

θip
n
)
, (2.16)

and then define

qnj = (1− α)θjp
n + αq̂nj .

(ii) Update

pn+1 = (1− α)pn + α

Mc∑
j=1

q̂nj . (2.17)

3. Endfor till some stopping rule meets.

1The section of α in this specific interval will be justified by the analysis in the forthcoming section. This
also applies to Algorithm II.
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Remark 2.1. The difference between the above algorithms with those in [30] mainly lies in

two aspects. First, the functional is strongly and strictly convexity. Second, there exists

the convex set constraints over vector p to the variational problems. These bring about

significant difficulties for analysis and lead to different convergence behaviors as well.

Remark 2.2. The coloring of the subdomains is needed for the analysis and implementation

for the SSC algorithms. For the PSC algorithms, the coloring is only needed for the analysis,

but not needed in the implementations.

3. Convergence rate analysis

This section is devoted to the convergence analysis of the previously proposed overlapping

DDMs. We first state the main result, and then present the some necessary lemmas of

relevance to the proof, followed by the proof of the main result. Here, we restrict our

attentions to analyze Algorithm I, since the convergence of Algorithm II can be estimated

in a similar fashion (see [30]).

3.1. Main result.

Theorem 3.1. Let p∗ be a minimizer of (2.5), i.e.,

p∗ = arg min
p∈K

D(p), (3.1)

and let {pn} be the sequence generated by Algorithm I. Define

un := g − λdiv pn, u∗ := g − λdiv p∗. (3.2)

Then we have

‖un − u∗‖L2(Ω) ≤
C√
n
, (3.3)

where

C =
√
ζ0

{
2

α

(
1 + 8M2

c + 4
√

2Mc

)
+
(

16C0λ|Ω|
1
2 (ζ0)−

1
2

)Mc

√
N0

δ
√
α

+
√

2− 1

}
, (3.4)

and ζ0 = D(p0) − D(p∗) is the initial error of the energy functional. Here, the constant

C0 is used in (2.10) which implies the upper bound of the unit decomposition (N0 = 4 if

Ω ∈ R2), and Mc is the number of subdomains. The parameter α is the relaxation parameter

in Algorithm I, and δ is the overlapping size.

The proof of Theorem 3.1 is postponed to the Subsection 3.3 and 3.4. Here we give some

remarks about the relationship between the convergence rates and the overlapping size δ,

and the number of blocks mT .

Remark 3.1. The theorem indicates the convergence of the algorithm as n → 0. Further,

the convergence rate is of half order O
(
n−1/2

)
, where n is the iteration number of outer

loop.
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Remark 3.2. We see that the constant C depends on the parameters such as overlapping

size δ and the number of colors Mc. Usually we can use fixed number of colors to divide the

partitions. From (3.4), one readily obtains C increases as over overlapping size δ decreases.

That is to say, the convergence becomes slow as the overlapping size decreases. This constant

also relies on the regularized parameter λ, which implies that our proposed DDMs are

sensitive to λ. One can observe that from Figure 4.12 in the numerical tests.

3.2. Some lemmas. For clarity of presentation, we denote the norm of L2(Ω) by ‖ · ‖, and

define |p|1,∗ = ‖λdiv p‖. Let D(p) be the cost functional defined in (1.4).

D(p)−D(q)−D′(q)(p− q) = |p− q|21,∗, (3.5)

where D′(q) defines the Gâteaux derivative. One verifies readily that

(D′(p)−D′(q), p− q) = 2|p− q|21,∗. (3.6)

Lemma 3.1. There hold the following two inequalities:( Mc∑
i=1

|θip|21,∗
) 1

2 ≤
√

2|p|1,∗ +
C0

√
2N0λ

δ
‖p‖, ∀ p ∈ K (3.7)

and
Mc∑
i,j=1

|〈D′(qij + pi)−D′(qij), p̂j〉| ≤ 2Mc

( Mc∑
i=1

|pi|21,∗
) 1

2
( Mc∑
i=1

|p̂i|21,∗
) 1

2

(3.8)

for any qij ∈ K, pi ∈ Ki and p̂j ∈ Kj for 1 ≤ i, j ≤Mc, where C0 already exists in (2.10).

Proof. Firstly, we prove (3.7). It is clear that

|θip|21,∗ = λ2‖div(θip)‖2 = λ2‖∇θi · p+ θidivp‖2 ≤ 2λ2‖∇θi · p‖2 + 2λ2‖θidivp‖2.

Summing up the above equations over i from 1 to Mc and using (2.10) yields

Mc∑
i=1

|θip|21,∗ ≤ 2λ2

∫
Ω

( Mc∑
i=1

|∇θi|2
)
p2 + 2λ2

∫
Ω

( Mc∑
i=1

θ2
i

)
(divp)2

≤2N0λ
2
(C0

δ

)2

‖p‖2 + 2λ2

∫ ( Mc∑
i=1

θi

)
(divp)2 ≤ 2N0λ

2
(C0

δ

)2

‖p‖2 + 2|p|21,∗

Thus we obtain ( Mc∑
i=1

|θip|21,∗
) 1

2 ≤
√

2|p|1,∗ +

√
2N0C0λ

δ
‖p‖.

Now, we prove the second inequality (3.8). One readily verifies that

〈D′(qij + pi)−D′(qij), p̂j〉 = 2λ2(divpi,divp̂j).

Summing up the above over i, j from 1 to Mc, leads to

Mc∑
i,j=1

|〈D′(qij + pi)−D′(qi,j), p̂j〉| ≤ 2

Mc∑
i,j=1

λ2|(divpi,divp̂j)|

≤2Mc

( Mc∑
i=1

|pi|21,∗
) 1

2
( Mc∑
j=1

|p̂j |21,∗
) 1

2

.
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This ends the proof. �

Define

eni := q̂ni − θipn, q̂n :=

Mc∑
i=1

q̂ni = pn +

Mc∑
i=1

eni ,

qni
Mc

:=
(∑
j 6=i

θjp
n
)

+ q̂ni = pn + eni .

(3.9)

From (2.15) we derive the first order optimality condition

〈D′(qni
Mc

), q̃ − q̂ni 〉 ≥ 0, ∀ q̃ ∈ Ki, 1 ≤ i ≤Mc,

which is equivalent to ∫
Ω

(
λdivqni

Mc

− g
)
div(q̃ − q̂ni ) ≥ 0, ∀ q̃ ∈ Ki. (3.10)

The following Lemmas in this subsection are important, which give the analysis for two

successive iteration solutions.

Lemma 3.2. There holds

D(pn)−D(pn+1) ≥ α
Mc∑
i=1

|eni |21,∗. (3.11)

Proof. It follows from (2.17) and (3.9) that

pn+1 = pn +α

Mc∑
i=1

(q̂ni − θipn) = pn +α

Mc∑
i=1

(qni
Mc

−pn) = (1−Mcα)pn +α

Mc∑
i=1

qni
Mc

. (3.12)

Thus by using (3.5),(3.12) and 1−Mcα ≥ 0 due to (2.13), we obtain

D(pn)−D(pn+1) = D(pn)−D
(

(1−Mcα)pn + α

Mc∑
i=1

qni
Mc

)
≥ D(pn)− (1−Mcα)D(pn)− α

Mc∑
i=1

D(qni
Mc

)

= α

Mc∑
i=1

(
D(pn)−D(qni

Mc

)
)

= −α
Mc∑
i=1

〈D′(qni
Mc

), eni 〉+ α

Mc∑
i=1

|eni |21,∗.

(3.13)

Setting q̃ := θip
n ∈ Ki in (3.10) yields

〈D′(qni
Mc

), eni 〉 ≤ 0. (3.14)

Therefore we deduce (3.11) from (3.13) and (3.14). �

Lemma 3.2 guarantees the decreasing of the energy. The following lemma provides more

precise estimate of the energy decay.
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Lemma 3.3. Given µ ∈ (0, 1), we have

D(pn+1)−D(p∗) ≤ γ(D(pn)−D(p∗)) + C3

(
D(pn)−D(pn+1)

) 1
2 , (3.15)

where

C3 =
2C1
√
αµ|Ω| 12

µ+ C2
, γ = 1− α(1− µ)µ

µ+ C2
, (3.16)

with

C1 =
4C0λMc

√
N0

δ
, C2 = 4M2

c + 2
√

2Mc (3.17)

Proof. By the convexity of D(·), we have

D(pn+1)−D(p∗) ≤ (1− α)D(pn) + αD(q̂n)−D(p∗)

= (1− α)(D(pn)−D(p∗)) + α(D(q̂n)−D(p∗)).
(3.18)

Let us estimate D(q̂n)−D(p∗). Introduce functions as

φij =


pn +

j+i−1∑
k=i

enk , j ∈ [1,Mc − i+ 1], (3.19a)

pn +

Mc∑
k=i

enk +

j−Mc+i−1∑
k=1

enk , j ∈ [Mc − i+ 2,Mc]. (3.19b)

We therefore obtain

D′
(
pn +

Mc∑
i=1

enj

)
−D′(pn + eni ) =

Mc∑
j=2

(
D′(φi

j)−D′(φij−1)
)
. (3.20)

Using (3.7), (3.8), (3.10) and (3.20), we derive

〈D′(q̂n), q̂n − p∗〉 =

Mc∑
i=1

〈D′(q̂n), q̂ni − θip∗〉 ≤
Mc∑
i=1

〈D′(q̂n)−D′(pn + eni ), q̂ni − θip∗〉

=

Mc∑
i=1,j=2

〈D′(φi
j)−D′(φi

j−1), q̂ni − θip∗〉 ≤ 2Mc

( Mc∑
j=1

|enj |21,∗
) 1

2
( Mc∑
i=1

|q̂ni − θip∗|21,∗
) 1

2

=2Mc

( Mc∑
j=1

|enj |21,∗
) 1

2
( Mc∑
i=1

|eni + θip
n − θip∗|21,∗

) 1
2

,

so

〈D′(q̂n), q̂n − p∗〉 ≤ 2
√

2Mc

( Mc∑
j=1

|enj |21,∗
) 1

2
(( Mc∑

i=1

|eni |21,∗
) 1

2

+
( Mc∑
i=1

|θipn − θip∗|21,∗
) 1

2
)

≤2
√

2Mc

( Mc∑
j=1

|enj |21,∗
) 1

2
(( Mc∑

i=1

|eni |21,∗
) 1

2

+
√

2|pn − p∗|1,∗ +
C
√

2N0λ

δ
‖pn − p∗‖

)

=2
√

2Mc

( Mc∑
j=1

|enj |21,∗
)

+ 4Mc|pn − p∗|1,∗
( Mc∑
j=1

|enj |21,∗
) 1

2

+
4CλMc

√
N0

δ
‖pn − p∗‖

( Mc∑
j=1

|enj |21,∗
) 1

2

.

(3.21)
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From the first order optimal condition of (2.5) that 〈D′(p∗), q̃−p∗〉 ≥ 0 for any q̃ in K and

(3.5), we obtain

D(pn)−D(p∗) ≥ |pn − p∗|21,∗. (3.22)

Using inequality ab ≤ a2

4µ
+ µb2 with 0 < µ < 1 and (3.11), (3.21) and (3.22), we obtain

D(q̂n)−D(p∗) ≤ 〈D′(q̂n), q̂n − p∗〉

≤2
√

2Mc

α
(D(pn)−D(pn+1)) +

4Mc√
α

(
D(pn)−D(pn+1)

) 1
2
(
D(pn)−D(p∗)

) 1
2

+
4CλMc

√
N0

δ
√
α

(
D(pn)−D(pn+1)

) 1
2 ‖pn − p∗‖

≤ 1

αµ

(
4M2

c + 2
√

2Mc

)(
D(pn)−D(pn+1)

)
+ µ

(
D(pn)−D(p∗)

)
+

4CλMc

√
N0

δ
√
α

(D(pn)−D(pn+1))
1
2 ‖pn − p∗‖

(3.23)

such that

D(q̂n)−D(p∗) ≤C2

αµ
(D(pn)−D(pn+1)) + µ(D(pn)−D(p∗))

+
C1√
α
‖pn − p∗‖

(
D(pn)−D(pn+1)

) 1
2 .

(3.24)

Applying (3.24) to (3.18) leads to

D(pn+1)−D(p∗) ≤
(

1− α+ αµ+
C2

µ

)
(D(pn)−D(p∗))− C2

µ

(
D(pn+1)−D(p∗)

)
+ C1

√
α‖pn − p∗‖

(
D(pn)−D(pn+1)

) 1
2 .

Since pn, p∗ ∈ K such that ‖pn−p∗‖ ≤ 2|Ω| 12 , we derive (3.15) from the above estimates. �

Lemma 3.4. If a positive monotone decreasing {an}∞n=0 satisfies the following inequality

an+1 ≤ γan + C3

(
an − an+1

) 1
2 (3.25)

with 0 ≤ γ < 1 and 0 ≤ C3 <∞, then

an ≤ a0

C̃a0n+ 1
, (3.26)

where C̃ is given by

C̃ =
(1− γ)2

2a0(1− γ)2 + (γ
√
a0 + C3)2

.

Proof. We can also easily prove this lemma following [34]. It follows from (3.25) that

(1− γ)an+1 ≤ γ(an − an+1) + C3

(
an − an+1

) 1
2

=
(
γ
(
an − an+1

) 1
2 + C3

)(
an − an+1

) 1
2 ≤

(
γ
√
a0 + C3

)(
an − an+1

) 1
2 .

Thus we obtain (
an+1

)2 ≤ (γ√a0 + C3

1− γ

)2(
an − an+1

)
.

By Lemma 3.2 [34, Page 110] and proofs [34, Page 113], one readily obtains (3.26) �
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With the above preparations, we are now ready to prove the main results.

3.3. Proof of Theorem 3.1 for Algorithm I. We split the proof into two steps.

Step I. Let ζn = D(pn) − D(p∗). We prove ζn → 0 as n → ∞. By Lemma 3.2 and

(3.22), one can readily obtain the properties of the sequence as:

D(pn+1) ≤ D(pn), 0 ≤ ζn+1 ≤ ζn. (3.27)

Thus by Lemma 3.3, we have

D(pn+1)−D(p∗) ≤ γ(D(pn)−D(p∗)) + C3

(
D(pn)−D(pn+1)

) 1
2 , (3.28)

that is

ζn+1 ≤ γζn + C3

(
ζn − ζn+1

) 1
2 (3.29)

with 0 ≤ γ < 1. The sequence {ζn}∞n=1 is convergent due to the decreasing property (3.27).

Thus, by taking limit in (3.29), one readily obtains that ζn → 0 as n→∞.

Step II. It follows from (3.29) and Lemma 3.4 that

ζn ≤ ζ0

(C∗)
−1
n+ 1

≤ C∗

n
, (3.30)

with C∗ = ζ0 2ζ0(1− γ)2 + (γ
√
ζ0 + C3)2

ζ0(1− γ)2
. Then by (3.22) and (3.2), (3.3) is derived.

But the constant C∗ depends on µ. We need to optimal value of the factor C∗ by choosing

suitable µ . That is to say, we should choose optimal µ to minimize C∗ where µ is a relaxed

factor in Lemma 3.3.

µ∗ = arg min
0<µ<1

C∗

= arg max
µ

ζ0

2ζ0 +
(
γ
√
ζ0+C3

1−γ

)2 = arg min
µ

γ
√
ζ0 + C3

1− γ

= arg min
µ

(
1− α(1− µ)µ

µ+ C2

)√
ζ0 +

2C1
√
αµ

µ+ C2
|Ω| 12

α(1− µ)µ

µ+ C2

= arg min
µ

αµ+ C2

µ +
(
1− α+ 2

√
αC1|Ω|

1
2 (ζ0)

− 1
2
)

1− µ

= arg min
µ

µ+ C4

µ(1− µ)
=
√

(C4)2 + C4 − C4

(3.31)
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with C4 =
C2

1 + 2
√
αC1|Ω|

1
2 (ζ0)

− 1
2

. Thus, we have

C∗

ζ0
=2 +

((
α−1 + 2

C1√
α
|Ω| 12 (ζ0)−

1
2

)(√
C4 +

√
C4 + 1

)2 − 1
)2

=2 + α−2
((√

C2 +

√
1 + 2

√
αC1|Ω|

1
2 (ζ0)−

1
2 + C2

)2

− α
)2

≤2 +
( 2

α

(
1 + 2C2 + 2

√
αC1|Ω|

1
2 (ζ0)−

1
2

)
− 1
)2

=2 +
( 2

α

(
1 + 2C2

)
+

4C1√
α
|Ω| 12 (ζ0)−

1
2 − 1

)2

≤
( 2

α

(
1 + 2C2

)
+

4C1√
α
|Ω| 12 (ζ0)−

1
2 +
√

2− 1
)2

.

The proof of Theorem 3.1 for Algorithm I is completed.

3.4. Proof of Theorem 3.1 for Algorithm II. The convergence analysis of Algorithm

II is similar to that of Algorithm I (see [30]). The difference lies in the proof of (3.21)

in Lemma 3.3. However, the second term in the 3rd row of (3.21) can be enlarged to be

the same as the term for PSC. Therefore, the deduced convergence rate is the same as

Algorithm I, and we just give the sketch of the proof.

Proof. Similarly to [30], define

qni
Mc

:=
∑
j≤i

qnj +
∑
j>i

θip
n, q̂ni

Mc

:=
∑
j≤i

qnj + q̂nj +
∑
j>i

θip
n

One can readily obtain that

〈D′(q̂ni
Mc

), q̃ − q̂ni 〉 ≥ 0, ∀q̃ ∈ Ki,

as q̂ni
Mc

is the minimizer of the subproblem (2.16). Therefore, we have

D(pn)−D(pn+1) =

Mc∑
i=1

(
D(qni−1

Mc

)−D(qni
Mc

)
)

≥α
Mc∑
i=1

(
D(qni−1

Mc

)−D(q̂ni
Mc

)
)
≥ α

Mc∑
i=1

|eni |21,∗

By introducing the functions φij

φij =


pn +

i−j∑
k=1

enk +

i∑
k=i−j+1

enk , j ≤ i,

pn +

j∑
k=1

enk , j > i,

We can obtain the same result as Lemma 3.3. Finally by Lemma 3.4, we can finish the

proof. �
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4. Numerical Experiments

In this section, we first give an algorithm to solve the sub-problems and then perform

several numerical tests to verify the theoretical results given in Subsection 3.

4.1. Algorithm for sub-problems of dual model. To solve (2.15) and (2.16) we can

apply the gradient projection methods similarly to [5]. One can choose other solvers for the

subproblem. We just realize this algorithm for examples. We will display how to solve (2.15),

while to solve (2.16) is similar. Assume p is the given initial value for arbitrary iterations.

Denoting q0
i :=

∑
j 6=i

θjp and gi =
g

λ
− divq0

i . From Karush-Kuhn-Tucker conditions, there

exists Lagrangian multiplier µi ≥ 0 satisfying the following equation:

D′(q̂i + q0
i ) + 2µiq̂i = 0. (4.1)

associated with either µi > 0 as |q̂i| = θi, or µi = 0 as |q̂i| < θi. Thus

θi
(
− λ2∇(divq̂i − gi)

)
+
∣∣− λ2∇(divq̂i − gi)

∣∣q̂i = 0. (4.2)

The iterative scheme is constructed as follows:

q̂n+1
i =

θiq̂
n
i + θiτ

(
∇(divq̂ni − gi)

)
θi + τ

∣∣∇(divq̂ni − gi)
∣∣ (4.3)

with suitable τ > 0.

4.2. Numerical examples. First we introduce difference schemes for Algorithm I and

Algorithm II. We use the classical difference scheme for PDE-based image processing

problem. For simplicity, set Ω = [0, 1]× [0, 1]. Divide the domain as

Ωh :=
{

(xi, yi)| xi = ihx, yj = jhy, 0 ≤ i ≤ m, 0 ≤ j ≤ n
}

with the grid size of hx and hy. The mesh size is defined by h = min{hx, hy}. Then define

the gradient and divergence of each ui,j as

(∇u)i,j =
(
(∇u)1

i,j , (∇u)2
i,j

)
,

where

(∇u)1
i,j =


1

hx

(
ui+1,j − ui,j

)
, i < m,

0, i = m,
(∇u)2

i,j =


1

hy

(
ui,j+1 − ui,j

)
, j < n,

0, j = n.

The divergence of p = (p1, p2) ∈ R2 satisfying div = −∇∗ in discrete form is defined as

(divp)i,j =


1
hx

(
p1
i,j − p1

i−1,j

)
( as 0 < i < m )

1
hx
p1
i,j ( as i = 0 )

− 1
hx
p1
i−1,j ( as i = m )

+


1
hy

(
p2
i,j − p2

i,j−1

)
( as 0 < j < n ),

1
hy
p2
i,j ( as j = 0 ),

− 1
hy
p2
i,j−1 ( as j = n ).

In the following tests, we set hx = hy = 1. Then the domain Ωh is decomposed into small

subdomains Ωih. For simple realization we use the color techniques and the subdomains are

classified into four “colors” that are shown in Figure 2.1. The unit decomposition functions

are shown in Figure 4.1.
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Figure 4.1. Unit decomposition functions {θi}4i=1: the subdomains have
four colors, overlapping size δ=2h.

Remark 4.1. In the real computation that is the discrete forms, we will employ a modified

unit partition as in [36]. Assume there exists a mesh on the domain Ω. Then interpolate

the partition function θj on the mesh as follows:

θ̃j := Ih(θj),

where Ih is the piecewise linear operator interpolating in the nodes on the mesh. One

readily knows that the modified functions {θ̃j} satisfy the above properties in (2.8), (2.9)

and (2.10). For 1-dimension case, assume that Ω = [0, 1]. The domain is decomposed into

two overlapping subdomains Ω1 = [0, a + δ], and Ω2 = [a − δ, 1] with 0 < a < 1
2 , δ is

overlapping size. Then

θ̃1 =


1, x ∈ [0, a− δ],
1− x−a+δ

2δ , x ∈ [a− δ, a+ δ],

0, x ∈ [a+ δ, 1],

and θ̃2 =


1, x ∈ [a+ δ, 1],
x−a+δ

2δ , x ∈ [a− δ, a+ δ],

0, x ∈ [0, a− δ].
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One readily verifies that θ̃j satisfies (2.8) and (2.9). we need to require ∇θ̃j ∈ L∞(Ω) instead

of θ̃j ∈ C1(Ω). It is easily known that θ̃j satisfies that

|θ̃j(x)− θ̃j(y)| ≤ C0

δ
|x− y|

for y ∈ Ωj , sufficiently close to x. Thus θ̃j satisfies (2.10) (see [36, Page57]). See Figure 4.1

for 2-dimension case for example as well. These partition functions are the tensors of that

in 1-dimension.

Next we give the numerical examples by Algorithm II by using coloring technique. Two

images in Figure 4.2 are tested. Define energy

E(p) :=

m∑
i=1

n∑
j=1

(λdivp− g)2
i,j , (4.4)

where the image resolution is m×n, and pDDM is computed by DDM. The error is defined

as

e :=

( m∑
i=1

n∑
j=1

(
λdiv(pDDM − p∗)

)2
i,j

) 1
2

( m∑
i=1

n∑
j=1

(g − λdivp∗)2
i,j

) 1
2

, (4.5)

with p∗ is approximated by dual methods after 107 iterations without DDM.

Figure 4.2. Left: resolution 128× 128. Right: resolution 256× 256

Some notations: subsize is the size of subdomain. The following tests are qualified by

the the decreasing of the energy defined by Energy := E(pDDM )−E(p∗) and Error := e.

4.2.1. Test 0: Verifying Convergence. We first show the performance of the proposed DDMs

in Figure 4.3. The denoising images are present in Fig. 4.3. The restored images, and the

differences between the solutions by proposed DDMs and the exact minimizer are shown

in Figure 4.4 within 4 iterations, and the convergence curve is shown in Figure 4.5. The

proposed DDMs work as good as the gradient projection method in Figure 4.3. Inferred

from Figure 4.4, denoising results are satisfactory within 4 iterations of the proposed DDMs.

Indeed, the proposed DDMs are convergent by observing Figure 4.5.
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Figure 4.3. α = 1, τ = 1
4 , subsize = 64, δ = 4, σ = 50, λ = 60, Nin =

1000. From left to right: Noised Image, Denoised Image without DDM and
Denoised by DDM; from up to down: 128× 128, and 256× 256
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Figure 4.4. First row: difference between the DDMs (δ=4, subsize=64,
σ = 50, α = 1, and λ = 60) and the exact minimizer within the first 4
iterations from the left to right; Second row: restored images by proposed
DDMs within first 4 iterations

4.2.2. Test 1: Verifying convergence rates. Convergence rates are tested in Fig. 4.6. From

the tests we see that the convergence rate of energy decay is between O(N−1) and O(N−2),

and that of the dual variables error is a bit larger than O(N−1), where N is the iterative

number. But we can just prove the rate of the convergence rate of average energy decay

is about O(N−1), and that of the dual variables average error is O(N−
1
2 ). We just give a
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Figure 4.5. Convergence performance of the proposed DDMs after 1000

iterations. The error is computed as
‖div(pk − p∗)‖
‖divp∗‖

, where pk is the iter-

ated solution by proposed DDMs, and p∗ is computed by gradient projec-
tion method after 107 iterations.

general bound estimate for the DDMs, and cannot give proof of the optimal order. Most

importantly, the convergence rate behavior is of pow function as O(N−σ), with σ > 0. The

following tests are based on the image with resolution 128× 128.

4.2.3. Test 2: Convergence rate V.S. overlapping size δ and number of blocks.

1) Fixing subsize = 64, we test how the convergence rate relies on the overlapping

size. δ = 2, 4, 8, and 16. See Figure 4.7. From the tests the convergence become fast

when overlapping size becomes large. But the rates vary not so much that implies

the convergence rate is not sensitive to the overlapping size δ which just affects

the coefficient of the convergence order. From the results we guess the coarse grid

correction may do not help to improve the convergence order which is also implied

in [44], but that can improve the coefficient.

2) Fixing δ = 4, we test how the convergence rate relies on the number of subdomain.

subsize = 8, 16, 32 and 64. See Figure 4.8. The convergence becomes fast when the

size of subdomain becomes small. We use color techniques that fixes Mc = 4. Then

the smaller size of the subdomain, the relative larger is the overlapping size.

3) Fixing subsize = 128 when the testing image is Lena(256 × 256), we test how the

convergence rate relies on the overlapping size. δ = 2, 4, 8, 16, and 24. See Figure

4.9. The convergence varies more obviously as the δ varies than that of Figure 4.7.

4.2.4. Test 3: Convergence rate V.S. relaxation parameter α. We test four different values.

α = 1/8, 1/4, 1/2 and 1. See Figure 4.10. The convergence is fast as α is close to 1, that is

consistent with (3.4) in Theorem 3.1.
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Figure 4.6. α = 1
4 , τ = 1

4 , subsize = 64, δ = 4, σ = 50, λ = 60, Nin = 500.
From left to right: Energy, and Error; from up to down: 128 × 128, and
256× 256
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Figure 4.7. α = 1
4 , τ = 1

4 , subsize = 64, σ = 50, λ = 60, Nin = 500. From
left to right: Energy, and Error.

4.2.5. Test 4: comparing with the gradient projection algorithm [5]. At last we show the

convergence behavior comparing with the gradient projection (GP) algorithm by Chambolle

[5]. One can readily infer that our proposed DDMs convergent much faster.
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Figure 4.8. α = 1
4 , τ = 1

4 , σ = 50, λ = 60, Nin = 500. From left to right:
Energy, and Error.
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Figure 4.9. α = 1
4 , τ = 1

4 , subsize = 128, σ = 50, λ = 60, Nin = 500.
From left to right: Energy, and Error.
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Figure 4.10. τ = 1
4 , σ = 50, subsize = 64, δ = 4, λ = 60, Nin = 500. From

left to right: Energy, and Error.
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Figure 4.11. Error comparison for gradient projection method(GP) and
the proposed DDMs(Nin = 10)

Remark 4.2. From the tests we see that this algorithm converges fast in the beginning but

stagnates after some iterations with the order O(N−σ). That maybe deduce by (3.29). For

the first iterations the errors are governed by

ζn+1 ≤ γζn,

that implies the convergence rate is linear. Then after many iterations the errors are gov-

erned by

ζn+1 ≤ C3

(
ζn − ζn+1

) 1
2

,

which implies the convergence rate is O(N−1).

Finally we test the performance of the proposed DDMs with respect to the regularized

parameter λ. The energy decay is shown in Figure 4.12. Our proposed DDMs are sensitive

to the parameter λ, that is consistent with the estimate of the convergence rate.

5. Conclusion

We propose the domain decomposition methods for the dual model of ROF. The conver-

gence rates are deduced as well. Big value of λ is needed if one wants to get the “scales”

images from the TV model. Then the coarse mesh correction shall be needed in order to

increase the robustness of the proposed DDMs. Thus for the future work, the results should

be extended to the case with a coarse mesh. The dual models with more applications in the

image processing ares should be considered as well.
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