
University of California

Los Angeles

Applications of Stochastic Simulation and

Compressed Sensing to Large Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Farzin Barekat

2014

c© Copyright by

Farzin Barekat

2014

Abstract of the Dissertation

Applications of Stochastic Simulation and

Compressed Sensing to Large Systems

by

Farzin Barekat

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Russel Caflisch, Chair

In this dissertation, three new algorithms for three distinct problems are proposed.

The three distinct problems considered here have applications to stochastic model-

ing, compressive sensing, and numerical solutions of partial differential equations.

A common aspect of these problems is that to obtain accurate results require an

ever increasing number of unknown variables. Since the proposed algorithms are

more efficient than the state of the art methods used for these problems, the use

of these new algorithms allows one to compute solutions to these problems with

substantially higher accuracy. In addition, some theoretical analysis is provided

relating to the investigated problems and the proposed algorithms.

ii

The dissertation of Farzin Barekat is approved.

Chris Anderson

Marek Biskup

Yingnian Wu

Russel Caflisch, Committee Chair

University of California, Los Angeles

2014

iii

To my parents,

Masoud and Sohila, for

their love, care, and sacrifice;

and to my brother, Fardin,

who made my life more beautiful.

iv

Table of Contents

1 Introduction . 1

2 Simulation with Fluctuating and Singular Rates 4

2.1 Reduced Rejection Sampling . 8

2.1.1 The Reduced Rejection sampling algorithm 9

2.1.2 Validity of the Reduced Rejection sampling 12

2.2 Comparison of Reduced Rejection and Other Sampling Methods . 17

2.3 Example 1: Reduced Rejection Sampling for a Random Variable

with Singular Density . 18

2.4 Example 2: Reduced Rejection Sampling for a Stochastic Process

with Fluctuating and Singular Rates 19

2.4.1 Statement of the stochastic process and the simulation al-

gorithm . 19

2.4.2 Theoretical results . 21

2.4.3 Simulation issues . 23

2.4.4 Use of the Reduced Rejection algorithm 24

2.4.5 Numerical result . 25

2.5 Example 3: Stochastic Simulation of Chemical Kinetics 28

2.6 Conclusions and Future Directions 31

3 A Time Continuation Based Fast Approximate Algorithm for

Compressed Sensing Related Optimization 32

3.1 Augmented Problems and Lagrangian Duality Formulation 36

3.2 Theoretical Results . 38

v

3.2.1 Unconstrained dual problem 40

3.2.2 Constrained dual problem 47

3.2.3 Approximate solution of the augmented problem 51

3.3 The TCCS Algorithm . 53

3.3.1 First part . 54

3.3.2 Second part . 55

3.3.3 Application to compressed sensing 56

3.4 Numerical Results . 57

3.4.1 TCCS versus LBSB . 58

3.4.2 TCCS versus OMP . 63

3.5 Conclusions . 63

4 Theoretical Analysis of Compressed Modes 67

4.1 Convergence of Energies . 70

4.2 Consistency Results for L1 Regularization 71

4.3 First Compressed Mode with Zero Potential 79

4.4 Upper Bounds on the Volume of Support of Compressed Modes . 81

4.5 Effect of Regularization Term . 88

4.6 Conclusions . 89

5 Theory and Fast Algorithms for Shift Orthogonal Functions . 91

5.1 Shift Orthogonal Basis Functions (SOBFs) 93

5.2 Fast Algorithm for Projection to the Set of Shift Orthogonal Func-

tions . 103

vi

5.2.1 Computational complexity and important features of the

algorithm . 107

5.3 Optimal SOBFs: Shift Orthogonal Plane Waves 109

5.4 Application to Solving CPWs . 112

5.5 Conclusions . 117

A Duality Formulation . 119

B Pseudo-code for the TCCS Algorithm 122

C Variational Origin of SOPWs . 125

D Laplacian of the SOPWs . 133

E First and Second Derivative of SOPWs 135

References . 141

vii

List of Figures

2.1 This figure illustrates the computational challenges involved in sam-

pling interactions of numerical particles, and how different methods

can handle them. Broken line represents challenges for which the

method becomes computationally inefficient, whereas, the solid line

represents the challenges for which the method is still computation-

ally efficient. 5

2.2 Flow chart of Algorithm I of the Reduced Rejection sampling method

attributing to the case I[p] ≥ I[q]. 10

2.3 Flow chart of Algorithm II of the Reduced Rejection sampling

method attributing to the case I[p] < I[q]. 11

2.4 This figure illustrates the Reduced Rejection method. Region A is

where q does not enclose p, and region B is where samples are re-

jected. Rejected samples from region B can be replaced by samples

from region A if |A| > |B|; otherwise (if |A| < |B|), some of the

rejected samples lead to repetition of the algorithm. 13

2.5 Theoretical (dashed line) and estimated values (solid lines) of E[g]

using different number of collisions. Here g(x1, . . . , xN) = x1 +

· · · + xN , N = 104, and α = 0.5. Also M = 4000 for the Re-

duced Rejection sampling. The theoretical value of E[g] is 5999.8.

The estimated value of E[g] after 106 collisions using Reduced Re-

jection sampling and Acceptance Rejection methods were, respec-

tively, 5994.59 and 5996.35. The reported result is the average of 5

independent runs. 26

viii

2.6 A Loglog plot of the processing time for Acceptance Rejection and

Reduced Rejection sampling. Here g(x1, . . . , xN) = x1 + · · · + xN ,

N = 104 and α = 0.5. Also M = 4000 for the Reduced Rejec-

tion sampling. The reported processing time is the average of 5

independent runs. 27

3.1 Performance comparison of the LBSB algorithm and the TCCS

algorithm in terms of processing time and relative error for different

sparsity levels. Here m = 100 and n = 2000, 4000, 8000. The panels

on the left show semilog plot of the relative error, while the right

panels show plot of processing time (in seconds). Each data point

is the average of 10 independent trials. 60

3.2 Performance comparison of the LBSB algorithm and the TCCS

algorithm in terms of processing time and relative error for different

sparsity levels. Here m = 200 and n = 2000, 4000, 8000. The panels

on the left show semilog plot of the relative error, while the right

panels show plot of processing time (in seconds). Each data point

is the average of 10 independent trials. 61

3.3 Performance comparison of the LBSB algorithm and the TCCS

algorithm in terms of processing time and relative error for different

sparsity levels. Here m = 400 and n = 2000, 4000, 8000. The panels

on the left show semilog plot of the relative error, while the right

panels show plot of processing time (in seconds). Each data point

is the average of 10 independent trials. 62

ix

3.4 Comparison of the relative error of the OMP algorithm and the

TCCS algorithm for different sparsity levels. Here the entries of

the support of the true signal are chosen to be independent and

identically distributed random variables. Each data point is the

arithmetic average of 10 independent trials. 64

3.5 Comparison of the relative error of the OMP algorithm and the

TCCS algorithm for different sparsity levels. Here the entries of

the support of the true signal are chosen from +1 or −1 at random.

Each data point is the arithmetic average of 10 independent trials. 65

5.1 Application of Algorithm 3 to find Πg (dashed line), projection

of function g (solid line) to the set of shift orthogonal functions.

In these examples, function g is constant, absolute value, Gaus-

sian, and sine function with unit L2 norm. In these computations,

SOPWs defined in Section 5.3 are used as the set of SOBFs basis.

Here, L = 20, w = 1 (the length of the shifts) and N = 6; that is

we are using total of 120 SOPWs to represent functions. 108

5.2 From top to bottom, the first 6 SOPWs given by equations (5.21)

and (5.22) with distinct depth index and shift index equal to L/2

for L = 20. 110

5.3 The first 4 one-dimensional BCPWs obtained by using Algorithms

4–6. 117

x

List of Tables

3.1 The comparison of the performance of the TCCS algorithm and

the LBSB algorithm. “Time” and “error”, respectively, refer to

processing time (in seconds) and relative error for each method.

Here, sparsity level is 2% and each row is the result of 10 indepen-

dent trials. 58

3.2 The comparison of the performance of the TCCS algorithm and the

LBSB algorithm. “Time” and “error” , respectively, refer to pro-

cessing time (in seconds) and relative error for each method. Here,

sparsity level is 10% and each row is the result of 10 independent

trials. 59

5.1 CPU time consumption (seconds) for computing the first 4 one-

dimensional Basic CPWs using SOPWs and FFT with the same

accuracy. For these computations, µ = 50, L = 100, and w = 5. . 117

E.1 Trigonometry identities for integers k, j and even positive number L.137

xi

Acknowledgments

I am indebted to Professor Russel Caflisch for his supervision and constant sup-

port. I am also indebted to Professor Stanley Osher for guiding and motivating

me throughout completion of this dissertation. Without them, none of this disser-

tation would have been possible. I am extremely thankful of these two professors

for revitalizing in me the exuberance of doing mathematics and making the Ph.D.

program a superb experience for me.

I would like to thank my other collaborators: Damek Davis, Rongjie Lai, Vidvuds

Ozoliņš, and Ke Yin. It’s been a real pleasure and a great experience working

with them. Some of the work presented here are the result of joint collaboration.

I would also like to thank my committee members Professors Chris Anderson,

Marek Biskup, and Yingnian Wu for helpful discussions and useful insights.

xii

Vita

2006 Silver medal in the 47th International Mathematical Olympiad.

2008–2010 NSERC USRA Scholarship for Summer Research.

2010 B.Sc. Combined Honours in Mathematics and Physics, Univer-

sity of British Columbia; Vancouver, Canada.

2010-2011 NSERC Postgraduate Scholarship PGS M.

2010–2013 Teaching Assistant, Mathematics Department, UCLA.

2011–present NSERC Postgraduate Scholarship PGS D.

2013–2014 Teaching Assistant, Anderson School of Management, UCLA.

2012–present Research Assistant, Mathematics Department, UCLA.

2013 PhD Intern, PIMCO.

Publications

F. Barekat, V. Reiner, S. van Willigenburg. Skew Schur function irreducibility,

note to go with “Coincidences among skew Schur functions”, Adv. Math., 220

(2009), pp. 1655–1656.

F. Barekat, S. van Willigenburg. Composition of transpositions and equality of

xiii

ribbon Schur Q-functions, The Electronic Journal of Combinatorics, 16 (2009),

pp. 1–28.

R.P. Anstee, F. Barekat, A. Sali. Small Forbidden Configurations V: Exact Bounds

for 4x2 cases, Studia Sci. Math. Hun., 48 (2011), pp. 1–22.

F. Barekat, R. Caflisch. Simulation with Fluctuating and Singular Rates, Com-

munications in Computational Physics, to appear.

R.P. Anstee, F. Barekat. Design Theory and Some Non-simple Forbidden Config-

urations, submitted to Journal of Combinatorial Designs, 27pp.

F. Barekat. On the Consistency of Compressed Modes for Variational Problems,

submitted to SIAM Journal of Math. Analysis.

F. Barekat, R. Caflisch, and S. Osher, On the Support of Compressed Modes,

submitted to SIAM Journal of Math. Analysis.

F. Barekat and S. Osher, A time continuation based fast approximate algorithm

for compressed sensing related optimization, submitted to Mathematics of Com-

putation.

xiv

CHAPTER 1

Introduction

An important aspect of scientific computing is the use of discrete approximation

of equations associated with mathematical models. A general feature of discrete

approximations is that the accuracy obtained is directly related to the number

of unknowns used in the approximations. For many applications computing so-

lutions to the discrete equations as the number of unknowns increases introduces

significant numerical and computational challenges. There are problems for which

available algorithms perform satisfactorily for a moderate number of unknowns;

however, these algorithms become very inefficient and practically useless when the

size of the problems increases. As a result, such problems remain unsolved when

high accuracy is sought. This phenomena has made the pursuit for faster and

more efficient algorithms a hot topic of research in science.

The general theme of this dissertation is to devise new algorithms and method-

ologies for three different problems, in very distinct settings, that are more effi-

cient than the state of the art methods used for these problems. The three distinct

problems considered here have applications to stochastic modeling, compressive

sensing, and numerical solutions of partial differential equations.

Chapter 2 presents a method to generate independent samples for a general

random variable, either continuous or discrete. The algorithm is an extension of

the Acceptance Rejection method, and it is particularly useful for kinetic simula-

tion in which the rates are dynamically updated in time and have singular limits,

as occurs for example in simulation of recombination interactions in a plasma.

1

Although it depends on some additional requirements, the new method is easy to

implement and rejects less samples than the Acceptance Rejection method.

Chapter 3 introduces a fast approximate algorithm to optimize an augmented

version of the Basis Pursuit problem and subsequently find the solution to the

Compressed Sensing problem. The methodology is to first solve the Lagrangian

dual formulation of the problem and then use the result to find an approximate so-

lution to the primal problem. Although we emphasize that the proposed algorithm

finds an approximate solution, numerical experiments show that the algorithm

perfectly recovers the solution when the solution is relatively sparse with respect

to the number of measurements. In these scenarios, the recovery is extremely fast

compared to other available methods. Numerical experiments also demonstrate

that the algorithm exhibits a sharp phase transition in success rate of recovery of

the solution to Compressed Sensing problems as sparsity of solution varies. The

algorithm proposed here is parameter free (except a tolerance parameter due to

numerical machine precision), and very easy to implement.

In Chapter 4 some theoretical result for Compressed Modes (CMs) are pre-

sented. Compressed modes are solutions of the Laplace equation with a potential

and a subgradient term. The subgradient term comes from addition of an L1

term in the corresponding variational principle. This chapter contains two anal-

yses of compressed modes. First, we provide theoretical consistency results for

compressed modes. It is proven that as the L1 regularization term in certain

non-convex variational optimization problems vanishes, the solution of the opti-

mization problem and the corresponding eigenvalues converge to a unitary trans-

formation of eigenfunctions and the eigenvalues of the Hamiltonian, respectively.

Second, we establish that compressed modes have compact support and find an

upper bound on the volume of the support.

Chapter 5 presents a fast algorithm for projecting a given function to the set

of shift orthogonal functions (i.e. the set containing functions with unit L2 norm

2

that are orthogonal to their prescribed shifts). The algorithm can be parallelized

easily and its computational complexity is bounded by O(M log(M)), where M

is the number of coefficients used for storing the input. To derive the algorithm,

a particular class of basis functions called Shift Orthogonal Basis Functions are

introduced and some theory regarding them is developed.

3

CHAPTER 2

Simulation with Fluctuating and Singular Rates

Kinetic transport for a gas or plasma involves particle interactions such as colli-

sions, excitation/deexcitation and ionization/recombination. Simulation of these

interactions is most often performed using the Direct Simulation Monte Carlo

(DSMC) method [5] or one of its variants, in which the actual particle distribu-

tion is represented by a relatively small number of numerical particles, each of

which is characterized by state variables, such as position x and energy E. In-

teractions between the numerical particles are performed by random selection of

the interacting particles and the interaction parameters, depending on the inter-

action rates. Correctly sampling these interactions involves several computational

challenges: First the number N of particles can be large (e.g., N = 106) and the

number of possible interaction events can be even larger (e.g., Nk for k = 2 or

3). Second, the interaction probabilities vary throughout the simulation since in-

teractions change the state of the interacting particles. These two difficulties are

routinely overcome using Acceptance Rejection sampling. Third, the interaction

rates can be nearly singular, for example in a recombination event between an

ion and two electrons (described in more detail in Section 2.4). This creates a

wide range of interaction rates that makes Acceptance Rejection computationally

intractable. Figure 2.1 illustrates these challenges and how different methods can

handle them. The sampling method presented here, which we call Reduced Re-

jection, was developed to overcome the challenges of a large number of interaction

events with fluctuating and singular rates.

4

Figure 2.1: This figure illustrates the computational challenges involved in sam-

pling interactions of numerical particles, and how different methods can handle

them. Broken line represents challenges for which the method becomes computa-

tionally inefficient, whereas, the solid line represents the challenges for which the

method is still computationally efficient.

5

Simulation of kinetics requires sampling methods that generate independent

samples. This rules out Markov Chain Monte Carlo schemes, such as Metropolis–

Hastings, Gibbs sampling, and Slice sampling. Although these methods are very

powerful and are used very often, this chapter focuses on sampling methods that

generate independent samples.

There are several efficient algorithms for simulation of discrete random vari-

ables, notably Marsaglia’s table method [41] and the Alias method [62, 63]. How-

ever, these methods require pre-processing time and, therefore, are not efficient

for sampling from a random variable whose probability function changes dur-

ing the simulation. For continuous random variables there are several different

algorithms; nevertheless, each of these algorithms has its own constraints. For ex-

ample, Inverse Transform Sampling method requires knowledge of the cumulative

distribution function and evaluation of its inverse, Box-Muller only applies to a

normal distribution, and Ziggurat algorithm [42] can be used for random variables

that have monotone decreasing (or symmetric unimodal) density function.

An algorithm of choice for general (both continuous and discrete) random

variables that generates independent samples and does not require preprocessing

time is Acceptance Rejection method (see for example [11]). Let q(x) be a real-

valued function on the sample space. Let I[q] denote the expectation of function

q(x) with respect to some given measure. By sampling according to function q(x)

we mean to sample using the probability distribution function q(x)/I[q]. We say

function q(x) encloses function p(x) if p(x) ≤ q(x) for all x in the sample space.

The idea of Acceptance Rejection method is to find a proposal function q(x) that

encloses function p(x). Suppose we already have a mechanism to sample according

to q(x), then Acceptance Rejection algorithm enables us to sample according to

p(x). In most cases the constant function is used as the proposal function q(x).

The main drawback of Acceptance Rejection method is that it might reject many

samples. Indeed the ratio of the number of rejected samples to the number of

6

accepted samples is approximately equal to the ratio of the area between curves

q(x) and p(x) to the area under the curve p(x).

For many given distributions, finding a good proposal function that encloses

it without leading to many rejected samples is difficult. One extension to Accep-

tance Rejection method is Adaptive Rejection Sampling [30]. The basic idea of

Adaptive Rejection Sampling is to construct proposal function q(x) that encloses

the given distribution by concatenating segments of one or more exponential dis-

tributions. As the algorithm proceeds, it successively updates the proposal func-

tion q(x) to correspond more closely to the given distribution. Another extension

to Acceptance Rejection method is the Economical method [23]. This method

is basically a generalization of Alias method for continuous distributions. In this

method, one needs to define a specific transformation that maps {x : p(x) > q(x)}

to {x : p(x) ≤ q(x)}. Although this method produces no rejection, finding the

required transformation is difficult in general.

In the Reduced Rejection method we sample according to a given function

p(x) based on a proposal function q(x). In contrast to the Acceptance Rejection

method, Reduced Rejection sampling does not require q(x) to enclose p(x) (i.e. it

allows p(x) > q(x) for some x). On the other hand, Reduced Rejection sampling

requires some extra knowledge about the functions p(x) and q(x).

The Reduced Rejection sampling method can be applied to a wide range of

sampling problems (for both continuous and discrete random variables) and in

many examples is more efficient than customary methods (three examples are

provided in Sections 2.3, 2.4 and 2.5). In particular, Reduced Rejection sampling

requires no pre-processing time and consequently is suitable for simulations in

which p(x) is changing constantly (see Section 2.2 for an elaboration on this point

and Sections 2.4 and 2.5 for examples of simulations with fluctuating p(x)). Also

in situations where p(x) has singularities or is highly peaked in certain regions,

Reduced Rejection sampling can be very efficient.

7

The next section describes the Reduced Rejection sampling and proves its

validity. Section 2.2 compares Reduced Rejection sampling to other methods

(including other generalizations of Acceptance Rejection), highlights advantages

of Reduced Rejection sampling in comparison to other methods, and points out

some of the challenges in applying Reduced Rejection sampling. In Section 2.3,

Reduced Rejection sampling is demonstrated on a simple example. In Section

2.4, Reduced Rejection sampling is applied to an example motivated from plasma

physics, for which other sampling methods cannot be used efficiently. In Section

2.5, we make some comments on how to apply Reduced Rejection in the context

of stochastic chemical kinetics.

2.1 Reduced Rejection Sampling

Consider a sample space Ω with Lebesgue measure µ on Ω, and two functions

q, p : Ω→ R. Denote

I[q] =

∫
Ω

q(x)dµ(x), I[p] =

∫
Ω

p(x)dµ(x).

By sampling from Ω according to p(x) we mean sampling from Ω using probability

distribution function p(x)/I[p]. Partition sample space Ω into two sets S and L:

L = {x ∈ Ω : p(x) > q(x)}, S = {x ∈ Ω : p(x) ≤ q(x)}.

Reduced Rejection sampling is a method for sampling from Ω according to p(x)

using an auxiliary function q(x). It depends on the following:

• The values of I[q], I[p] and
∫
L(p(x) − q(x))dµ(x). Note that the last value

is needed only for “Algorithm II”, see Subsection 2.1.1.

• A mechanism to sample from Ω according to q(x).

• A mechanism to sample from L according to p(x)− q(x).

8

Whereas the Acceptance Rejection method for sampling from p(x) requires

a function q(x) that encloses p(x) (i.e., 0 ≤ p(x) ≤ q(x) for all x ∈ Ω), the

Reduced Rejection sampling algorithm is a generalization of the Acceptance Re-

jection method, that allows p(x) > q(x) for some x. The Reduced Rejection

sampling algorithm is detailed in Section 2.1.1, and its validity as a method for

sampling from Ω according to p(x) is demonstrated in Section 2.1.2.

2.1.1 The Reduced Rejection sampling algorithm

The Reduced Rejection sampling method consists of two algorithms (i.e., two

different algorithms) depending on the relative values of I[p] and I[q]. Flow charts

for these two algorithms are presented in Figures 2.2 and 2.3. The outcome of

each algorithm is a value z that is an independent sample from Ω according to

p(x).

Algorithm I: I[p] ≥ I[q].

Proceed as follows:

i) With probability (I[p]−I[q])/I[p], sample x0 from L according to p(x)−q(x)

and accept z = x0.

ii) Otherwise (with probability (I[q]/I[p]), sample x0 from Ω according to q(x).

a) If x0 ∈ L, accept z = x0.

b) If x0 ∈ S, accept z = x0 with probability p(x0)/q(x0).

iii) If x0 was not accepted, then sample a new value of x1 from L according to

p(x)− q(x) and accept z = x1.

Algorithm II: I[p] < I[q].

Proceed as follows until a value z is accepted:

9

Figure 2.2: Flow chart of Algorithm I of the Reduced Rejection sampling method

attributing to the case I[p] ≥ I[q].

10

Figure 2.3: Flow chart of Algorithm II of the Reduced Rejection sampling method

attributing to the case I[p] < I[q].

11

i) Sample x0 from Ω according to q(x).

ii) If x0 ∈ L, accept z = x0.

iii) If x0 ∈ S, accept z = x0 with probability pa = p(x0)/q(x0),

iv) If x0 was not accepted, then

a) With probability pa select x1 from L according to p(x)−q(x) and accept

z = x1, in which

pa =

∫
L(p(x)− q(x))dµ(x)∫
S(q(x)− p(x))dµ(x)

=

∫
L(p(x)− q(x))dµ(x)

I[q]− I[p] +
∫
L(p(x)− q(x))dµ(x)

. (2.1)

b) Otherwise (i.e., with probability 1−pa), return to (i) without accepting

a value of z.

As described in Algorithms I and II, Reduced Rejection samples from p through

the following steps: On L, treat p as a mixture p = q + (p− q) and sample from

q and p− q with the correct probabilities; and on S, sample from p by sampling

from q and accepting the sample with probability p/q. Rejected samples in S

correspond to the region B in Figure 2.4, and the region A is where q does not

enclose p. If |A| > |B| (i.e., Algorithm I) then all of the rejected samples can be

replaced by samples from A; if |A| < |B| (i.e., Algorithm II) then a portion of the

rejected samples can be replaced by samples from A, and for the remainder, the

algorithm is repeated as in Acceptance Rejection.

2.1.2 Validity of the Reduced Rejection sampling

In this subsection we show the correctness of the Reduced Rejection sampling

method. As the method is different for Algorithms I and II, we prove the correct-

ness for each algorithm separately.

12

Figure 2.4: This figure illustrates the Reduced Rejection method. Region A is

where q does not enclose p, and region B is where samples are rejected. Rejected

samples from region B can be replaced by samples from region A if |A| > |B|;

otherwise (if |A| < |B|), some of the rejected samples lead to repetition of the

algorithm.

13

Proof for Algorithm I: For each z ∈ Ω, show that the algorithm of Algo-

rithm I returns in dz with probability distribution p(z)dµ(z)/I[p].

If z ∈ S, then part (ii) must have been selected, z must have been sampled in

(ii) and it must have been accepted in case (ii.b). Therefore, the probability of

returning z is

Pr[(ii) selected] Pr[z sampled in (ii)] Pr[z accepted in (ii.b)]

=
I[q]

I[p]
× q(z)dµ(z)

I[q]
× p(z)

q(z)

=
p(z)dµ(z)

I[p]
. (2.2)

Also note that for every x0 ∈ S, after x0 is selected in (ii.b) with probability

q(x)
I[q]

dµ(x), the probability of reaching (iii) is q(x0)−p(x0)
q(x0)

. Thus the total probability

of reaching (iii) after selecting (ii) is

Pr[reaching (iii)|(ii) selected] =

∫
S

q(x)− p(x)

q(x)

q(x)

I[q]
dµ(x) =

∫
S(q(x)− p(x))dµ(x)

I[q]
.

(2.3)

Next suppose that z ∈ L. The probability that z is returned from (i) is

Pr[z returned from (i)] =Pr[(i) selected] Pr[z sampled in (i)]

=
(I[p]− I[q])

I[p]
× (p(z)− q(z))dµ(z)∫

L(p(x)− q(x))dµ(x)
. (2.4)

The probability that z was returned from (ii.a) is

Pr[z returned from (ii.a)] =Pr[(ii) selected] Pr[z sampled in (ii.a)]

=
I[q]

I[p]
× q(z)dµ(z)

I[q]

=
q(z)dµ(z)

I[p]
. (2.5)

14

Also, using equation (2.3), the probability that z was returned from (iii) is

Pr[z returned from (iii)]

=Pr[(ii) selected] Pr[reaching (iii) | (ii) selected] Pr[z sampled from L in (iii)]

=
I[q]

I[p]
×
(∫
S(q(x)− p(x))dµ(x)

I[q]

)
× (p(z)− q(z))dµ(z)∫

L(p(x)− q(x))dµ(x)

=

∫
S(q(x)− p(x))dµ(x)

I[p]

(p(z)− q(z))dµ(z)∫
L(p(x)− q(x))dµ(x)

. (2.6)

Finally, using equations (2.4), (2.5), and (2.6), the probability of returning z is

Pr[z returned from (i)] + Pr[z returned from (ii.a)] + Pr[z returned from (iii)]

=
(I[p]− I[q])

I[p]

(p(z)− q(z))dµ(z)∫
L(p(x)− q(x))dµ(x)

+
q(z)dµ(z)

I[p]
+

+
(p(z)− q(z))dµ(z)∫
L(p(x)− q(x))dµ(x)

∫
S(q(x)− p(x))dµ(x)

I[p]

=
(p(z)− q(z))dµ(z)

I[p]
∫
L(p(x)− q(x))dµ(x)

(
I[p]− I[q] +

∫
S
(q(x)− p(x))dµ(x)

)
+
q(z)dµ(z)

I[p]

=
(p(z)− q(z))dµ(z)

I[p]
∫
L(p(x)− q(x))dµ(x)

(∫
L
(p(x)− q(x))dµ(x)

)
+
q(z)dµ(z)

I[p]

=
p(z)dµ(z)

I[p]
. (2.7)

Hence, by (2.2) and (2.7), whether z ∈ S or z ∈ L, the probability of returning

z is equal to p(z)dµ(z)/I[p]. This completes the proof for Algorithm I.

Proof for Algorithm II: For each z ∈ Ω, show that the algorithm in Algo-

rithm II returns in dz with probability distribution p(z)dµ(z)/I[p]. The algorithm

consists of some number of cycles, each consisting of steps (i)-(iv), until a value

z is accepted. We first calculate the probability that z is accepted within one of

the cycles.

Suppose that z ∈ S. Then z must be sampled in (i) and accepted in (iii).

15

Thus, the probability of returning z in (iii) is

Pr[z returned from (iii)] =Pr[z sampled in (i)] Pr[z accepted in (iii)]

=
q(z)dµ(z)

I[q]
× p(z)

q(z)

=
p(z)dµ(z)

I[q]
. (2.8)

Also note that for every x0 ∈ S,which is chosen with probability q(x0)dµ(x0)
I[q]

, the

probability that it is not accepted in (iii) is q(x0)−p(x0)
q(x0)

. Thus the total probability

of not returning an element of S in (iii), which is the same as the probability of

reaching (iv), is

Pr[reaching (iv)] =

∫
S

q(x)− p(x)

q(x)

q(x)

I[q]
dµ(x) =

∫
S

q(x)− p(x)

I[q]
dµ(x). (2.9)

Next suppose that z ∈ L. The probability that z is accepted in (ii) is

Pr[z returned from (ii)] =
q(z)dµ(z)

I[q]
. (2.10)

For z to be returned from (iv.a), the algorithm must reach (iv), then go to (iv.a)

and then select z in (iv.a). This has probability

Pr[z returned from (iv.a)]

=Pr[reach (iv)] Pr[go to (iv.a)] Pr[z sampled in (iv.a)]

=

(∫
S

q(x)− p(x)

I[q]
dµ(x)

)
×
∫
L(p(x)− q(x))dµ(x)∫
S(q(x)− p(x))dµ(x)

× (p(z)− q(z))dµ(z)∫
L(p(x)− q(x))dµ(x)

=
(p(z)− q(z))dµ(z)

I[q]
. (2.11)

Now using equations (2.10) and (2.11), the probability of returning z in a cycle is

Pr[z returned] =Pr[z returned from (ii)] + Pr[z returned from (iv.a)]

=
q(z)dµ(z)

I[q]
+

(p(z)− q(z))dµ(z)

I[q]

=
p(z)dµ(z)

I[q]
. (2.12)

16

Equations (2.8) and (2.12) imply that, whether z ∈ S or z ∈ L, the probability

that z is returned in a cycle is p(z)dµ(z)/I[q]. Integrating over all the samples

in Ω, we deduce that the probability that a sample is returned in a cycle is

I[p]/I[q]. Consequently, probability that no sample point is returned in a cycle is

1 − I[p]/I[q]. Because the cycle is repeated until a sample point is returned, we

conclude that the probability that the algorithm returns z is equal to

∞∑
k=1

(
1− I[p]

I[q]

)k−1
p(z)dµ(z)

I[q]
=
p(z)dµ(z)

I[p]
.

This completes the proof for Algorithm II.

Note that the efficiency of Algorithm II is nominally the same as acceptance

rejection, i.e. the probability of a rejection is 1 − I[p]/I[q]. Actually it can be

significantly better because I[q] can be smaller, since q < p is allowed. Also, note

that if I[p] = I[q], then Algorithms I and II are the same.

2.2 Comparison of Reduced Rejection and Other Sam-

pling Methods

One of the important features of Reduced Rejection sampling is that it requires

no preprocessing time. This is particularly useful for dynamic simulation; i.e.,

simulation in which the probability distribution function p(x) may change after

each sample (see Section 2.4 for an example from plasma physics). For dynamic

simulation, fast discrete sampling methods such as Marsaglia’s table method or the

Alias method, are not suitable as they require preprocessing time after each change

in p(x). Although, the Acceptance Rejection method requires no preprocessing

time and can be used for dynamic simulation, it may require changes in q(x) if

p(x) changes, which is usually not difficult, and it becomes very inefficient when

the ratio of the area under function p(x) to the area under proposal function

q(x) is small. Moreover, adaptive rejection sampling is not efficient, because the

17

process of adapting q(x) to p(x) starts over whenever p(x) changes.

The Reduced Rejection sampling method can be thought of as an extension of

the Acceptance Rejection method. In particular when the proposal function q(x)

encloses p(x) (i.e., q(x) ≥ p(x) for all x ∈ Ω so that L = ∅) the Reduced Rejection

sampling method reduces to Acceptance Rejection method. The advantage of Re-

duced Rejection sampling over Acceptance Rejection method is that the proposal

function q(x) does not need to enclose function p(x); i.e., it allows q(x) < p(x) for

some x. This is very useful in dynamic simulation as it can accommodate changes

in p(x) without requiring changes in q(x). Moreover, Reduced Rejection sampling

may result in fewer rejected samples than Acceptance Rejection does, especially

if p(x) has singularities or is highly peaked.

There are several challenges in implementing the Reduced Rejection sampling

method. The main challenge is the need to sample from set Ω according to q(x)

and from set L according to p(x) − q(x), which can be performed by various

sampling methods.

Another challenge in using Reduced Rejection sampling is the need to know

the values of I[q], I[p] and
∫
L(p(x) − q(x))dµ(x) (but note that the last value is

only for Algorithm II). In many situations, these values are readily available or

can be calculated during the simulation.

2.3 Example 1: Reduced Rejection Sampling for a Ran-

dom Variable with Singular Density

In this section, Reduced Rejection sampling method is applied to a simple prob-

lem. Let Ω = (0, 1) and sample according to

p(x) =
1√
x

+
1

5
√

1− x
(2.13)

18

which has singularities at 0 and 1. Using inverse transform sampling, it is easy to

sample according to 1/
√
x or 1/ 5

√
1− x, but inverse transform cannot be easily

applied to (2.13) as it requires finding the root of an eighth degree polynomial.

We apply Reduced Rejection sampling to this problem by setting q(x) = 1/
√
x.

Observe that L = Ω = (0, 1). As mentioned earlier, inverse transform sampling is

easily used to sample according to q(x) and according to p(x)−q(x). The Reduced

Rejection sampling is very fast and yields no unwanted sample points.

This example is equivalent to sampling from a mixture and can be extended

to sampling from a probability density p(x) that is a sum p = p1 + p2 + . . .+ pn,

if there is a method for sampling from each pk separately and the integrals I[pk]

are all known.

2.4 Example 2: Reduced Rejection Sampling for a Stochas-

tic Process with Fluctuating and Singular Rates

In this section, we apply Reduced Rejection sampling to an idealized problem

motivated by plasma physics. As discussed in Subsection 2.4.5, the unique features

of this problem makes other sampling methods inefficient to use.

2.4.1 Statement of the stochastic process and the simulation algorithm

The example presented here is a simplified version of simulation for recombination

by a collision of two electrons with an ion, in which one of the electrons is absorbed

into the atom and the other electron is scattered away. For incident electron

energies E1 and E2, the recombination rate is proportional to (E1E2)−1/2 [49, 72],

which can become singular if electrons of low energy are involved. This is an

obstacle to kinetic simulation of recombination by electron impact in a plasma.

Our goal is to simulate the evolution of the following system: Consider N par-

19

ticles labeled 1, . . . , N . To each particle i we associate a number xi ∈ (0, 1), called

the state of particle i (and corresponding to electron energy in the recombination

problem). Occasionally, where it does not cause confusion, we use xi to refer to

particle i. We refer to the set Γ = {x1, . . . , xn} as the configuration of the system.

For every pair of states xi and xj, Ti,j is a random variable with an exponential

distribution with parameter (xixj)
α, in which α is a fixed constant between 0 and

1. Ti,j is the time for collision between particle i and j which randomly occurs

with rate 1/(xixj)
α. After a scattering event occurs, say for the pair {k, l}, the

values of states xk and xl are replaced by new values x′k and x′l; consequently, the

distribution of Ti,j changes if either of i and j is equal to k or l.

We will consider a simple updating mechanism for the states after each col-

lision. In the simulations presented below, the updated values of x′k and x′l are

chosen independently and uniformly at random from (0, 1), without dependence

on xk and xl. This choice is made for simplicity and because the stationary dis-

tribution can be calculated for this choice (see Section 2.4.2), but we expect that

Reduced Rejection sampling would work equally well for more complex collision

rules. Indeed the Algorithm 2.4.1 described below and the more detailed algorithm

presented in Section 2.4.4 do not depend on the collision rules.

First we introduce some notation and make a few observations. Set si = 1/xαi

and s =
∑

i si. Let T (λ) denote an exponential random variable with parameter

λ (with rate 1/λ); then T (λ) = µT (µλ) for any scalar µ. We will use

si
s

sj
s
T (1/s2) = T (1/(sisj))

in the following algorithm, which is a variant of the Kinetic Monte Carlo (KMC)

algorithm (also known as the residence-time algorithm or the n-fold way or the

Bortz-Kalos-Lebowitz (BKL) algorithm [6]), that simulates the system described

above. This algorithm chooses collisions, by choosing two particles separately out

of the N number of particles, rather than choosing a pair of particles out of the

20

N2 number of pairs.

Algorithm 2.4.1 1. Start from t = 0.

2. Choose time ∆t by sampling from an exponential distribution with rate s2.

3. Choose index k with probability sk/s.

4. Choose index l with probability sl/s.

5. At time t+ ∆t collision between particles k and l occurs.

6. Update states xk and xl according to the updating mechanism and the update

value of s.

7. Set t = t+ ∆t and start over from 2.

We use Reduced Rejection sampling in Subsection 2.4.5 to perform steps 3 and

4 in the above algorithm. We also explain why other methods of sampling would

be inefficient in these circumstances. To verify that our simulation is working

properly, we perform the following test.

Let g(x1, . . . , xN) be a real-valued function on the configuration space, with

expectation of g over configurations of the system denoted by E[g]. For a simple

collision rule and specific g we can find the value of E[g] analytically, as shown in

Subsection 2.4.2. Consequently, the difference between the numerical and analytic

results provides a measure of the accuracy of the simulation as discussed at the

end of Subsection 2.4.5.

2.4.2 Theoretical results

Think of the system’s evolution as a random walk on the configurations of the

system. Suppose the updating process is that if states xk and xl collide, then

states x′k and x′l are chosen independently uniformly at random from (0, 1). In

21

this section, we find the stationary probability distribution for this random walk

and the value of E[g] for two functions g. Observe that for the updating mecha-

nism considered here, the random walk is irreducible; that is, it can go from any

configuration to any other configuration (i.e. if for example the updating mecha-

nism had additional constraints, such as x′k + x′l = xk + xl, then the random walk

would not be irreducible since it could reach only those configurations whose sum

of the states is the same as the sum of the states of the starting configuration).

For every configuration Γ = {x1 . . . , xN}, set

πΓ :=
(x1 · · · xN)α

Z

(∑
i,j

1

(xixj)α

)
,

where Z is the normalizing constant so that
∫

Γ
πΓ dx = 1. We will show that πΓ

is density of the stationary probability distribution for the system.

Suppose the current configuration of the system is Γ = {x1, . . . , xN}. Ac-

cording to steps 3 and 4 in Algorithm 2.4.1, the probability of collision occurring

between states xk and xl, with k 6= l, is proportional to sksl = 1/(xkxl)
α. Let

P (Γ′|Γ) denote the transition probability density of going from configuration Γ to

configuration Γ′. Then

P (Γ′|Γ) =


1/(xkxl)

α∑
i,j 1/(xixj)α

if Γ′ = {x′k, x′l} ∪ Γ \ {xk, xl} for some k 6= l.

0 otherwise.

Now it is straightforward to verify the detailed balance equation

πΓP (Γ′|Γ) = πΓ′P (Γ|Γ′).

Therefore, πΓ is the unique stationary distribution of the random walk. Unique-

ness follows from the fact that the random walk is irreducible.

The normalizing constant Z for probability distribution πΓ can be calculated

by

Z =

∫
(0,1)N

(x1 · · ·xN)α

(∑
i,j

1

(xixj)α

)
dx1 · · · dxN =

(
N
2

)
(α + 1)N−2

.

22

Hence for any function g(x1, . . . , xN),

E[g] =
(α + 1)N−2(

N
2

) ∫
(0,1)N

g(x1, . . . , xN)(x1 · · ·xN)α

(∑
i,j

1

(xixj)α

)
dx1 · · · dxN .

Some tedious algebra leads to the following proposition:

Proposition 2.4.2 Using the above notations and assumptions:

a) E[g] = α+1
α+2

(N − 2) + 1 when g(x1, . . . , xN) = x1 + · · ·+ xN .

b) E[g] = α+1
α+3

(N − 2) + 2
3

when g(x1, . . . , xN) = x2
1 + · · ·+ x2

N .

2.4.3 Simulation issues

In this section we make some remarks about the challenges involved in simulating

this system.

The main challenge of sampling in this dynamic simulation is that the si’s are

changing after each collision. Consequently, the sampling method should require

small or zero preprocessing time. For this reason, discrete sampling methods such

as Marsaglia’s table method or the Alias method are not very efficient for this

problem.

Next consider using Acceptance Rejection method based on uniform sampling

from 1 to n for the proposal distribution (i.e., q constant). As mentioned earlier,

the changing distribution property of the problem is not very detrimental for

Acceptance Rejection. On the other hand, the singularity in the rates at xi = 0

can lead to a large constant for q, for which there will be many rejected samples,

so that the method is inefficient.

Moreover, there seems to be no other clear choice for the proposal distribution q

other than a constant. Note that the sampling is from a discrete set of probabilities

si/s with little control over their values; for example the si’s are not monotonically

23

ordered. This is quite different from sampling a single random variable from the

density p(x) = x−α.

2.4.4 Use of the Reduced Rejection algorithm

In this section we explain how to use Reduced Rejection Sampling to perform

steps 3 and 4 in Algorithm 2.4.1. Reduced Rejection sampling can be readily used

in this dynamic simulation. Even though the values of the si’s change after each

collision, they do not change drastically; in each collision at most two of the si’s

change. Starting at time 0, we set qi = pi = si. After each collision, we update

the values of pi’s to pi = si, but do not change the values of qi’s. Note that

we can easily update the value of I[p] after each collision and keep track of set

L = {i : pi > qi} by comparing the updated values of pi’s to their corresponding

values of qi’s. Moreover, the size of set L changes by at most 2 after each collision

(but it can also decrease after some collisions).

We use Marsaglia’s table method to sample according to qi’s. Since we do not

update qi’s after each collision, the preprocessing time in Marsaglia’s table method

is only required for the first sampling and not for the subsequent samplings. To

sample from L according to pi − qi, we use Acceptance Rejection with uniform

distribution for the proposal distribution. As long as the size of set L is not too

big, the sampling from L is not very time consuming. To prevent L from getting

too large, we reset the values of qi’s to qi = pi = si, which sets L to be empty,

whenever the size of L exceeds a predetermined number M .

The size of M is important for the performance of the algorithm. If M is too

small, then there are many updates of the qi’s, each of which requires preprocessing

time for Marsaglia’s table method. On the other hand, if M is too big, then L

is large and costly to sample from by Acceptance Rejection. Our computational

experience shows that setting M equal to a multiple of
√
N is a good choice. It

24

might be better for the reinitialization criterion to be based on the efficiency of

the sampling from L (i.e., the fraction of rejected samples when using acceptance

rejection on L), rather than the size of L.

2.4.5 Numerical result

We simulated the evolution of the system under the conditions outlined in Sub-

section 2.4.2 with N = 104, and α = 0.5. We start with a random configuration at

time t = 0. The simulation is based the Reduced Rejection sampling method, us-

ing Marsaglia’s table method and the Acceptance Rejection method as described

above. After each collision, we evaluate g(x1, . . . , xN) = x1 + · · · + xN and take

the average to get an estimate for E[g]. Each result is produced by taking an

arithmetic average of five independent runs. Figure 2.5 compares the results for

E[g] from Reduced Rejection sampling with those from the Acceptance Rejection

method. The results of Figure 2.5 show excellent agreement between the values

of E[g] as a function of the number of collisions from the two methods, which

provides a validity check for Reduced Rejection sampling.

The advantage of Reduced Rejection sampling is demonstrated in Figure 2.6

which shows a log-log plot of the processing time as a function of the number

of collisions, for Reduced Rejection sampling and Acceptance Rejection. The

results show that Reduced Rejection sampling is much faster than the Acceptance

Rejection method. In fact, for n collisions, the computational time scales as O(n)

for Reduced Rejection sampling, and as O(n3/2) for Acceptance Rejection, in

the range 104 ≤ n ≤ 106. For small values of n, the initial pre-processing step

of Marsaglia’s table method dominates the computational time. For n > 104,

however, the pre-processing time (including the multiple pre-processing steps due

to reinitialization) is not a significant part of the computational time. The average

number of reinitialization steps for Reduced Rejection sampling is (0, 0, 0, 3.7, 53.1)

for n = (102, 103, 104, 105, 106), respectively. Another interesting advantage of

25

the Reduced Rejection sampling is that the variance of the processing time for

independent runs is much smaller in the Reduced Rejection sampling than it is in

the Acceptance Rejection method.

10
2

10
3

10
4

10
5

5000

5200

5400

5600

5800

6000

of interaction

 E
[g

]

 Reduced Rejection
 Acceptance−Rejection

Figure 2.5: Theoretical (dashed line) and estimated values (solid lines) of E[g]

using different number of collisions. Here g(x1, . . . , xN) = x1 + · · ·+xN , N = 104,

and α = 0.5. Also M = 4000 for the Reduced Rejection sampling. The theoretical

value of E[g] is 5999.8. The estimated value of E[g] after 106 collisions using Re-

duced Rejection sampling and Acceptance Rejection methods were, respectively,

5994.59 and 5996.35. The reported result is the average of 5 independent runs.

26

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

of interaction

 P
ro

ce
ss

in
g

tim
e

 Reduced Rejection
 Acceptance−Rejection

Figure 2.6: A Loglog plot of the processing time for Acceptance Rejection and

Reduced Rejection sampling. Here g(x1, . . . , xN) = x1 + · · · + xN , N = 104 and

α = 0.5. Also M = 4000 for the Reduced Rejection sampling. The reported

processing time is the average of 5 independent runs.

27

2.5 Example 3: Stochastic Simulation of Chemical Kinet-

ics

In this section we describe how we can use Reduced Rejection in the context of

stochastic chemical kinetics. The term stochastic simulation in chemical kinet-

ics typically refers to a Monte Carlo procedure to numerically simulate the time

evolution of a well-stirred chemically reacting system. The first Stochastic Sim-

ulation Algorithm, called the Direct Method, was presented in [32]. The Direct

Method is computationally expensive and there have been many adaptations of

this algorithm to achieve greater speed in simulation. The first-reaction method,

also in [32], is an equivalent formulation of the Direct Method. The next-reaction

method [28] is an improvement over the first-reaction method, using a binary-

tree structure to store the reaction times. The Modified Direct Method [16] and

Sorting Direct Method [45] speed up the Direct Method by indexing the reac-

tions in such a way that reactions with larger propensity function tend to have a

lower index value. Recently, some new Stochastic Simulation Algorithms, called

partial-propensity methods, were introduced that work only for elementary chem-

ical reactions (i.e. reactions with at most two different reactants) (see [54, 55, 56]).

Nevertheless, note that it is possible to decompose any non-elementary reaction

into combination of elementary reactions. There are also approximate Stochastic

Simulation Algorithms, such as tau-leaping and slow-scale, that provide better

computational efficiency in exchange for sacrificing some of the exactness in the

Direct Method (see [31] and the references therein for more details).

Next we give a brief review of stochastic simulation in chemical kinetics. An

excellent reference with more detailed explanation is [31]. Using the same no-

tation and terminology as in [31], consider a well-stirred system of molecules of

N chemical species {S1, . . . , SN}, which interact through M chemical reactions

{R1, . . . , RM}. Let Xi(t) denote the number of molecules of species Si in the sys-

28

tem at time t. The goal is to estimate the state vector X(t) ≡ (X1(t), . . . , XN(t))

given the system is initially in state X(0) = x0.

Similarly to Section 2.4, when the system is in state x, the time for reaction

Rj to occur is given by an exponential distribution whose rate is the propensity

function aj(x). When reaction Rj occurs, the state of the system changes from x

to x + (v1j, . . . , vNj), where vij is the change in the number of Si molecules when

one reaction Rj occurs.

Estimating the propensity functions is not an easy task in general. As noted,

the values of the propensity functions depend on the state of the system. For

example, if Ri and Rj are, respectively, the unimolecular reaction S1 → product(s)

and bimolecular reaction S1 + S2 → product(s), then ai(x) = cix1 and aj(x) =

cjx1x2 for some constants ci and cj. Therefore, the propensity functions of the

reactions are changing throughout the simulation. Moreover, if for some chemical

species the magnitude of their population differs drastically from others, we expect

the values of propensity functions to be very non-uniform.

For every state x, define

a(x) =
M∑
i=1

ai(x).

To simulate the chemical kinetics of the system the following algorithm is used,

which resembles Algorithm 2.4.1 in Section 2.4.

Algorithm 2.5.1 1. Start from time t = 0 and state x = x0.

2. Choose time ∆t by sampling from an exponential distribution with rate a(x).

3. Choose index k with probability ak(x)/a(x).

4. At time t+ ∆t reaction Rk occurs.

5. Update time t = t+ ∆t, state x = x + (v1k, . . . , vNk) and start over from 2.

29

In the original Direct Method [32] step 3 in the above Algorithm 2.5.1 is

performed by choosing number r uniformly at random in the unit interval and

setting

k = the smallest integer satisfying
k∑
i=1

ai(x) > ra(x). (2.14)

However, when we have many reactions with a wide range of propensity func-

tion values presented in the system, a scenario that is very common in biological

models, the above procedure of using partial sums becomes computationally ex-

pensive. As noted earlier, some methods, such as the Modified Direct Method

[16] and Sorting Direct Method [45], index the reactions in a smart way that re-

duces the average number of terms summed in equation (2.14), which results in

computational efficiency.

We propose a different approach to performing step 3 in Algorithm 2.5.1 using

the Acceptance Rejection or Reduced Rejection method. The approach is very

similar to what was done in Section 2.4. To be specific, we can use Acceptance

Rejection for step 3 in the following way: let

ā(x) = max
i
ai(x).

Until an index is accepted, select index k uniformly at random from {1, . . . , N}

and accept it with probability ak(x)/ā(x); otherwise, discard k and repeat. When

an index is accepted step 3 in Algorithm 2.5.1 is completed. Typically for chemical

reactions Rj, most of vij’s are zero; therefore, we can efficiently update the value

of ā(x) at each iteration of Algorithm 2.5.1.

However, as in Section 2.4, if the values of ai(x)’s are very non-uniform (for

example, when the population of some chemical species differ drastically from

that of other species in the system) the Acceptance Rejection method becomes

inefficient due to rejection of many samples. In these circumstances, the Reduced

Rejection algorithm can be readily used in a very similar way as it was used in

Section 2.4. We expect that the use of the Reduced Rejection algorithm in these

30

circumstances would greatly improve the computational efficiency of the exact

Stochastic Simulation Algorithms.

2.6 Conclusions and Future Directions

In this chapter we introduced a new Reduced Rejection sampling method that

can be used to generate independent samples for a discrete or continuous random

variable. The strength of this method is most evident for applications in which

Acceptance Rejection method is inefficient; namely, the probability distribution of

the sample random variable is highly peaked in certain regions or has singularities.

It is also useful when the probabilities are dynamically updated, so that discrete

methods that requiring preprocessing are inefficient. In particular, the Reduced

Rejection sampling method is expected to perform well on kinetic simulation of

electron-impact recombination in a plasma, which is difficult to simulate by other

methods.

The preliminary examples in this chapter are meant to illustrate these ad-

vantages of the Reduced Rejection sampling method. They provide evidence of

improvement in computation time using the Reduced Rejection sampling versus

Acceptance Rejection method. These examples also provide some insights on

implementation of the method.

One possible direction for future research is the nested use of Reduced Rejec-

tion sampling methods. For the most difficult step - sampling from L according to

p(x)− q(x) - we propose to apply the Reduced Rejection sampling method again

using a new proposal function. In essence, this would use one Reduced Rejection

sampling method inside another Reduced Rejection sampling method.

31

CHAPTER 3

A Time Continuation Based Fast Approximate

Algorithm for Compressed Sensing Related

Optimization

This chapter introduces a fast approximate algorithm to numerically solve a class

of optimization problems that are related to the Compressed Sensing problem.

The methodology is to first find an approximate solution to the Lagrangian dual

formulation of the problem and then use the result to find an approximate solution

to the primal problem.

The use of Lagrangian dual formulation to numerically solve optimization

problems is ubiquitous in optimization literatures. The ideas behind many op-

timization algorithms can be easily understood in the language of their dual for-

mulation. For example, the Dual Ascent method (see for example [7]) can be

thought of as performing an explicit gradient method on the dual problem. Also,

considering that the action of proximal operator is equivalent to an implicit gra-

dient (i.e. backward Euler) step, then methods such as Augmented Lagrangian

method [35, 53] (i.e. also known as the method of multipliers) can be thought as

performing an implicit gradient method on the dual problem.

It is also well understood that for some optimization problems, regularizing

the objective function may significantly simplify the problem for numerical com-

putations. Sometimes regularizing the primal problem may also result into an

easier-to-handle dual formulation (i.e. see section 3.1 for more details).

32

Consider the following minimization problem, also known as Basis Pursuit

problem (i.e. see for example [17]),

min
y
‖y‖1 subject to Ay = b. (3.1)

Throughout this chapter, | · | stands for the Euclidean norm ‖ · ‖2 and A for an

m×n matrix with m� n. Let R(t, y) be some specific function that incorporates

the constraint Ay = b. It has recently been noted in [20] that if the Basis Pursuit

problem is relaxed by adding regularization 1
2µ
|y|2 and penalty term R(t, y):

argmin
y∈Rm

{
‖y‖1 +

1

2µ
|y|2 +R(t, y)

}
, (3.2)

then the Lagrangian dual problem is of the form:

argmax
s∈Rn

{
〈b, s〉 − µ

2
|shrink(AT s,

−→
1)|2 − tH(|s|)

}
. (3.3)

For two vectors with same length ~x and ~v, the shrink operator is defined by

shrink(~x,~v)i = max(|xi| − vi, 0)
xi
|xi|

.

Here function H(·) is determined by R(t, y); for example, when R(t, y) = 1
2t
|Ay−

b|2 and R(t, y) = −
√
t2 − |Ay − b|2, then H(|s|) = 1

2
|s|2 and H(|s|) =

√
1 + |s|2,

respectively.

We also note that the idea of using duality for (3.2) was first used in [70], for

t = 0 and then in [20] to obtain formula (3.3). We note that there is an interesting

link between this duality formulation and viscosity solutions for certain Hamilton-

Jacobi equations, pointed out in [20] (see also [21]).

This chapter proposes a new and practical approximate algorithm that uses the

duality correspondence between (3.2) and (3.3) to find an approximate solution

to the Compressed Sensing problem. The algorithm is named Time Continua-

tion Compressed Sensing, or TCCS for short. The TCCS algorithm consists of

two parts. The first part of the algorithm finds an approximate solution to the

33

constrained problem

argmax
s
{〈b, s〉 − tH(|s|)} subject to −−→1 ≤ AT s ≤ −→1 . (3.4)

The second part of the TCCS algorithm uses the Lagrangian dual correspondence

between (3.2) and (3.3), and a first order approximation in terms of 1/µ to find

an approximate solution to problem

argmin
y∈Rm

{‖y‖1 +R(t, y)} , (3.5)

Although the TCCS algorithm does not find the exact optimal argument for

problem (3.5) (or (3.4)), it performs very well. Section 3.4 provides numerical

evidence that shows that when the TCCS algorithm is applied to Compressed

Sensing problems, it perfectly recovers the solution when it is relatively sparse.

Moreover, the TCCS algorithm is faster than some of the fastest methods used for

solving Compressed Sensing problems (see Section 3.4 for more details). Another

advantage of using the TCCS algorithm for Compressed Sensing problems is that

it is parameter free.

We also derive some theoretical results that are important in their own rights.

In particular, an alternative proof for the exact regularization property introduced

in [70] and [27] is presented. It is shown in Subsection 3.2.3 how the solution of

problem (3.4) can be used to yield an approximate solution to primal problem

(3.2) for sufficiently large µ.

Some readers might think that the idea used in the first part of the TCCS

algorithm resembles the Simplex method or the Interior method used in optimiza-

tion. However, the resemblance is misleading. Suppose a polytope Ω is defined

by

Ω = {s ∈ Rm : aTi s ≤ 1, for i = 1 . . . , n}.

For every point s ∈ Rm, let J(s) be the set of indices i ∈ {1, . . . , n} for which

aTi s ≥ 1. We call J(s) the set of violations of s. We sometimes use J instead

34

of J(s) when this does not cause confusion. Let AJ be the matrix formed by

columns of A whose index belongs to J .

In each iteration of the Simplex method, we move from an extreme point (a

point on the boundary of Ω for which the corresponding matrix AJ has rank m)

to another extreme point. On the other hand, in each iteration of the Interior

method, the corresponding points are inside Ω, and therefore their set of violations

is empty (i.e. by convention AJ has rank zero for these points). However, in the

TCCS algorithm, we start with a point inside the polytope Ω and at each iteration

move to a new point on a face of Ω in such a way that the rank of AJ increases

by at least one. As a consequence the algorithm stops after a maximum of m

iterations.

The algorithm also resembles LARS [25] and adaptive inverse scale space [10],

but is certainly different from these compressed sensing related algorithms.

Indeed, the algorithm used for the first part of the TCCS algorithm, belongs

to a class of techniques called Homotopy method (see, for example, [65] and [66]),

suitably adapted for the particular problem at hand. Let

gτ (s) = 〈b, s〉 − τH(|s|).

In essence, we generate a sequence τ0 > τ1 > · · · > τ` = t and iteratively find

approximate maximizers s1
opt, . . . , s

`
opt, respectively, for functions gτ0(s), . . . , gτ`(s)

subject to constraint −−→1 ≤ AT s ≤ −→1 . As a result, s`opt yields a good approximate

maximizer for (3.4) .

The main contribution of this chapter is to introduce an algorithm that per-

fectly recovers the solution of Compressed Sensing problems when the solution is

relatively sparse with respect to the number of measurements. For this regime of

sparsity, the recovery is extremely fast compare to other algorithms being used.

Moreover, the TCCS algorithm has a fixed number of iterations. Also, the TCCS

algorithm exhibits a sharp phase transition in the success rate of recovery of so-

35

lution when sparsity of solution varies.

The reminder of this chapter is organized as follows: Section 3.1 presents a

quick overview of different regularizations of the Basis Pursuit problem and their

corresponding Lagrangian dual formulation. Section 3.2 provides some theoretical

result that are used in developing the TCCS algorithm. Section 3.3 describes the

general idea of the TCCS algorithm. Section 3.4 contains numerical evidence

for the good performance of the TCCS algorithm. Section 3.5 contains some

concluding remarks. In Appendix B pseudo-codes for the TCCS algorithm are

presented.

3.1 Augmented Problems and Lagrangian Duality Formu-

lation

The goal of compressed sensing is to find sparse solutions to equation Ay = b,

where A is an m × n matrix with m � n. The Compressed Sensing problem is

formulated as

min
y
‖y‖0 subject to Ay = b, (3.6)

where ‖y‖0 counts the number of nonzero entries in y.

It turns out (i.e. see [13]) that the sparse solution is often the same as the

solution to the Basis Pursuit problem (3.1). The lack of smoothness of the ob-

jective function in (3.1) poses a challenge for numerical minimization. Moreover,

the Lagrangian dual of (3.1),

max
s
〈b, s〉 subject to AT s ≤ −→1 . (3.7)

is a constrained and non-strictly convex problem.

Problem (3.1) can be relaxed in several ways: For µ > 0, one can introduce a

36

regularization term and consider the problem

min
y

{
‖y‖1 +

1

2µ
|y|2
}

subject to Ay = b. (3.8)

It has been shown in [70] and [27] that the above problem has the exact regular-

ization property: there exist a large fixed µ0, depending on A and b, such that for

µ > µ0, the solution to (3.8) is the same as the solution to (3.1). In Corollary 3.2.7

an alternative proof for the exact regularization property is provided. Moreover,

as noted in [38], the Lagrange dual problem of (3.8) is unconstrained and differ-

entiable; consequently, many classical techniques such as Nesterov’s acceleration

method [47], Barzilai–Borwein step sizes [4], and non monotone line search can

be used to speed up computation.

Alternatively, one can add a penalty term to (3.1) and consider the following

problem (known in the literature as LASSO [60] or Basis Pursuit Denoising [19]):

min
y

{
‖y‖1 +

1

2t
|Ay − b|2

}
. (3.9)

For certain applications, b may contain noise; which makes solving (3.9) more

preferable than solving (3.1). The TCCS algorithm proposed in this chapter

yields approximate solution to problems of the type (3.9).

The primal problem (3.9) is unconstrained; however, its Lagrangian dual prob-

lem is constrained. In contrast, the primal problem (3.8) is constrained, whereas,

its Lagrangian dual problem is unconstrained.

Motivated by the above two relaxation procedure, next turn to problem (also

known as Augmented Lasso),

min
y

{
‖y‖1 +

1

2µ
|y|2 +

1

2t
|Ay − b|2

}
, (3.10)

and a related problem

min
y

{
‖y‖1 +

1

2µ
|y|2 −

√
t2 − |Ay − b|2

}
subject to |Ay − b|2 ≤ t. (3.11)

37

As it is shown in Appendix A, the Lagrangian dual of the above problems is of

the form

max
s∈Rm

{
〈b, s〉 − µ

2
|shrink(AT s,

−→
1)|2 − tH(|s|)

}
, (3.12)

with H(x) = x2/2 for problem (3.10), and H(x) =
√

1 + x2 for problem (3.11).

Hence, the Lagrangian dual formulation can be used to solve problems (3.10) and

(3.11) in the following way (see for example [21]): First compute

s∗ = argmax
s∈Rm

{
〈b, s〉 − µ

2
|shrink(AT s,

−→
1)|2 − tH(|s|)

}
, (3.13)

then compute

y∗ = µ · shrink(AT s∗,
−→
1).

As it turns out,

• if H(x) = 1
2
x2, then y∗ solves (3.10),

• if H(x) =
√

1 + x2, then y∗ solves (3.11).

Moreover [20, 21] demonstrate that,

ϕ(b, t) = sup
s

{
〈b, s〉 − µ

2
|shrink(AT s,

−→
1)|2 − tH(|s|)

}
is the solution to the initial value Hamilton-Jacobi equation

ϕt +H(Dbϕ) = 0

ϕ(b, 0) = infy

{
‖y‖1 + 1

2µ
|y|2
}

such that Ay = b.

3.2 Theoretical Results

This section establishes some theoretical results. In Subsections 3.2.1 and 3.2.2

we study the trajectory of the solutions for problems (3.3) and (3.4), respectively,

as we vary parameter t. In Subsection 3.2.3, a first order approximation in terms

of 1/µ is used to establish relation between the solution of (3.4) and the solution

of the of the primal problem (3.2) when µ is large.

38

Indeed, in the rest of the chapter, we consider the more general problems

sopt(t) = argmax{〈b, s〉 − tH(|s|)} subject to AT s ≤ −→1 , (3.14)

and

s∗(t, µ) = argmax
s∈Rm

{
〈b, s〉 − µ

2
|S(AT s,

−→
1)|2 − tH(|s|)

}
, (3.15)

where operator S is defined by S(~x,~v)i = max(xi− vi, 0) and AT is such that the

polytope

Ω = {s : AT s ≤ −→1 }

is bounded. Here, b, µ and t are fixed, A is m × n matrix with m � n. The

following assumptions about function H are made:

1. H is a function from positive real numbers to positive real numbers.

2. H is strictly convex and strictly increasing.

3. H is differentiable with h denoting its derivative.

4. h is a composition of polynomials and radicals.

5. h maps bounded sets to bounded sets.

Remark 3.2.1 Assumption 4 in above is used in Lemma 3.2.3 and Assumption 5

is used in Theorem 3.2.4. One might be able to weaken these assumptions.

Remark 3.2.2 The functions H given in Section 3.1, satisfy all these assump-

tions.

To see that the new formulation yields the original problem, observe that if Ã

denotes the concatenation of A and −A along their columns; that is

Ã =
[
A | −A

]
, (3.16)

39

then |shrink(AT s,
−→
1)| = |S(ÃT s,

−→
1)|. Therefore, the solution to (3.15), with Ã in

place of A, is the same as the solution to (3.13). Moreover, if y = µ·shrink(AT s,
−→
1)

and ỹ = µ · S(ÃT s,
−→
1), then

y =
[
I | −I

]
ỹ, (3.17)

where I is the identity matrix.

3.2.1 Unconstrained dual problem

This subsection investigates the solution to problem (3.14).

Set

fτ (s) = 〈b, s〉 − τH(|s|)− µ

2
|S(AT s,

−→
1)|2. (3.18)

Observe that

∇fτ (s) = b− τh(|s|) s

|s|
− µAS(AT s,

−→
1).

Because of the concavity of functions fτ (s) and since fτ (s) is bounded above when

µ > 0, we know that s∗ = s∗(τ, µ) = argmaxs(fτ (s)) is either the origin or satisfies

0 = b− τh(|s∗|) s∗

|s∗|
− µAS(AT s∗,

−→
1).

It is clear that for nontrivial cases, the optimal argument s∗ is not at the origin.

For that reason, we usually discard the origin in the discussion that follows.

For every point s ∈ Rm, let J(s) be the set of indices i for which

aTi s ≥ 1.

Here aTi denotes the ith row of matrix AT . We call J(s) the set of violations of s.

We sometimes use J instead of J(s) where this does not cause confusion. Let AT
J

be the matrix formed by appending the rows of AT whose index belong to J . Let

AJ be the transpose of AT
J ; that is, the matrix formed by appending the columns

of A whose index belongs to J . Now, the previous equation is equivalent to

0 = b− τh(|s∗|) s∗

|s∗|
− µAJ(AT

J s∗ −−→1).

40

Rearranging implies that

s∗ =

(
τ
h(|s∗|)
|s∗|

I + µAJA
T
J

)−1

(b + µAJ
−→
1), (3.19)

where I is the identity matrix. The matrix inverse in equation (3.19) always exist

for τ > 0, 0 < µ <∞ and s∗ not the origin1.

Consider SVD decomposition

AT
J = UΣ

V T

W T

 ,
where rows of V T (i.e. {vT1 , . . . , vTk }) and W T (i.e. {wT1 . . . , wTm−k}) corre-

spond, respectively, to nonzero and zero singular values of AT
J . In particu-

lar, span{ai}i∈J = span{vi}ki=1. Moreover, {v1, . . . , vk, w1 . . . , wm−k} form an or-

thonormal set of basis. Observe that,

AT
J =

k∑
i=1

uiσiv
T
i and AJA

T
J =

k∑
i=1

σ2
i viv

T
i .

Note that,

τ
h(|s∗|)
|s∗|

I + µAJA
T
J = τ

h(|s∗|)
|s∗|

m−k∑
i=1

wiw
T
i +

k∑
i=1

(µσ2
i + τ

h(|s∗|)
|s∗|

)viv
T
i . (3.20)

Taking an inverse and substituting in (3.19) yields that

s∗ =
|s∗|

τh(|s∗|)
(
m−k∑
i=1

wiw
T
i)(b + µAJ

−→
1) +

k∑
i=1

1

µσ2
i + τh(|s∗|)/|s∗|

viv
T
i (b + µAJ

−→
1).

The wi’s are in the space perpendicular to span{ai}i∈J , wTi AJ = 0. Therefore,

the above equation simplifies to

s∗(τ, µ) =
|s∗|

τh(|s∗|)
(
m−k∑
i=1

wiw
T
i)b +

k∑
i=1

1

1 + τ
µσ2

i
h(|s∗|)/|s∗|

viv
T
i

σ2
i

(b/µ+ AJ
−→
1).

(3.21)

1One way to see this is noting that eigenvalues of the matrix are strictly positive due to
positivity of h. See also equation (3.20).

41

This is one of the main equations that is used throughout this chapter. Equation

(3.21) describes an implicit equation for the trajectory of optimal argument s∗

as function of τ and µ. Note that AJ , σi’s, wi’s and vi’s depend on the set of

violations of s∗, J(s∗). Also equation (3.21) is valid for 0 < τ and 0 ≤ µ (since

the matrix in equation (3.19) must be invertible).

At first glance, equation (3.21) might not seem very helpful, as it is an implicit

equation. However, many useful properties can be inferred from this equation.

What follows is not very practical to implement; however, it is useful in deriving

some theoretical results. The TCCS algorithm inspired by these ideas is presented

in Section 3.3.

For every set J , τ and µ, write the implicit equation

s =
|s|

τh(|s|)
(
∑
i

wiw
T
i)b +

∑
i

1

1 + τ
µσ2

i
h(|s|)/|s|

viv
T
i

σ2
i

(b/µ+ AJ
−→
1). (3.22)

However, note that s in the above equation is not necessarily the optimal solution

because in equation (3.21), the set of violations J (i.e. consequently AT
J , σi’s, wi’s

and vi’s) implicitly depends on τ and µ.

For every set J and i ∈ {1, . . . , n}, let Θi(J) be the set of τ of positive real

numbers for which there exist s that satisfies both equation (3.22) and aTi s = 1.

The importance of set Θi(J) will be discussed shortly. However, we first show the

following lemma:

Lemma 3.2.3 For fixed µ, J and i, the set Θi(J) consists of a finite number of

intervals in R.

Proof: First take the Euclidean norm of both sides of equation (3.22) and sim-

plify. Orthogonality of the basis {w1, . . . , wm−k, v1, . . . , vk} considerably simplifies

the expression. Perform a series of algebraic manipulations (depending on the

form of function h), to reduce the expression into the form

P (|s|, τ) = 0, (3.23)

42

where P is a polynomial in two variables.

Next suppose that s satisfies aTi s = 1. Multiply both side of equation (3.22)

by aTi . The LHS equals to 1. Again, perform a series of algebraic manipulation

to reduce the expression into the form

Q(|s|, τ) = 0, (3.24)

where Q is a polynomial. Thus if τ is chosen such that s satisfies (3.22) and aTi s =

1, then |s| and τ must satisfy both (3.23) and (3.24). As it is well known (and

goes by the name Bezout’s theorem), polynomials P and Q have finite number

of intersections, unless they have a common component. In either case the set of

τ for which there exist |s| such that pair (|s|, τ) satisfies both (3.23) and (3.24)

consist of a finite number of intervals in R. The result follows.

Let us now move on to partition Rm into regions where the points of each

region have the same set of violations. Clearly there are a finite number of regions

(although many of them). Now going back to equation (3.21) recall that AT
J , σi’s,

wi’s and vi’s depend on the set of violations of s∗. Fix µ and think of s∗ as a

function of τ (to ease the notation we use s∗(τ) in place of s∗(τ, µ) and J(τ) in

place of J(s∗(τ, µ)). Let τ0 be sufficiently large so that s∗(τ0) is close to the origin

and J(τ0) is empty. Set τ = τ0.

Since the set of violations is empty, equation (3.21) implies that

s∗(τ) =
|s∗(τ)|

τh(|s∗(τ)|)
b. (3.25)

The above equation describes trajectory for s∗(τ) in the region where the set of

violations of the optimal argument is empty.

Next, slowly decrease τ from τ0. As τ → t, by continuity s∗(τ) → s∗(t).

Equation (3.25) continues to hold until the set of violations of s∗(τ) changes; that

is, s∗(τ) enters into a new region. Let τ1 denote the largest τ for which this

happens. Continue this process.

43

Suppose τ = τr for some r = 1, 2, Again by continuity, for τ < τr, s∗(τ)

follows a trajectory prescribed by equation (3.21) (using J(τr) in place of J), until

the set of violations of s∗(τ) changes; that is s∗(τ) enters into another region at

τ = τr+1. Therefore, as τ decreases from τr, τr+1 is the first τ for which s∗(τ)

passes through a plane given by {s : aTk s = 1} for some k ∈ {1, . . . , n}. Thus, τr+1

is equal to the largest element smaller than τr that belongs to Θk(J(τr)) for some

k, where τr and τr+1 are not on the same interval in Θk(J(τr)) (i.e. If τr and τr+1

are on the same interval of Θk(J(τr)), it means that for τr+1 ≤ τ ≤ τr, s∗(τ) lies

on the plane given by {s : aTk s = 1}, consequently, the set of violations of s∗(τ)

does not change due to k). This process is continued until τ reaches t.

The important observation is that because of Lemma 3.2.8 and since there

are finite number of regions (i.e. different set of violations) and indices i, the

above process does not continue indefinitely. Therefore, there exist a sequence

τ0 > τ1 > · · · > τN > τN+1 = 0, where for τ ∈ (τi+1, τi] s∗(τ) lies in the same

region.

The above observations are used to prove several results.

Theorem 3.2.4 For every µ there exist tc > 0 and a matrix AJ with rank m

such that for 0 < τ ≤ tc

s∗(τ, µ) =
∑
i

1

1 + τ
µσ2

i
h(|s∗|)/|s∗|

viv
T
i

σ2
i

(b/µ+ AJ
−→
1). (3.26)

Proof: In the discussions above, set tc = τN and AJ = AJ(τN). Then equation

(3.21) yields that for τ ∈ (0, tc],

s∗(τ, µ) =
|s∗|

τh(|s∗|)
(
m−k∑
i

wiw
T
i)b +

k∑
i

1

1 + τ
µσ2

i
h(|s∗|)/|s∗|

viv
T
i

σ2
i

(b/µ+ AJ
−→
1),

where AJ , wi’s, vi’s and σi’s are fixed. However, we know that s∗(τ, µ) is bounded

as τ → 0. Therefore, from assumption 5 about function h, h(|s∗|) is bounded as

τ → 0 and unless (
∑m−k

i wiw
T
i)b = 0, the first summand in the above equation

44

would blow up as τ approaches 0; which yields a contradiction. Thus it musty be

the case that k = m; that is, AT
J has m nonzero singular values, which implies

that AJ has rank m. The result follows.

Remark 3.2.5 The values of tc and matrix AJ in Theorem 3.2.4 are µ dependent.

Theorem 3.2.6 For µ sufficiently large, µ×S(AT s∗(0, µ), 1) is independent of µ.

Proof: The result of Theorem 3.2.4 implies that as τ approaches 0, the optimal

argument s∗(τ, µ) eventually satisfies equation (3.26). Although at τ = 0 there

might not be a unique optimal argument s∗; however, from equation (3.26), one

of them is given by

s∗(0, µ) =
∑
i

viv
T
i

σ2
i

(b/µ+ AJ
−→
1), (3.27)

where J = J(s∗(0, µ)) denote the set of violations of s∗(0, µ). Recall that AJ , vi’s

and σi’s depend on the value of µ. Next think of µ as variable. As µ increases,

s∗(0, µ) follows a trajectory given by (3.27). Using a similar argument to the one

used for decreasing τ shows that there exist µc such that for µ ≥ µc, s∗(0, µ) stays

in the same region.

Let µ ≥ µc. Observe that s∗(0, µ) still satisfies equation (3.27); however, AJ ,

vi’s and σi’s no longer depend on µ and are fixed. From the definition of the

violation set J , we can conclude that the only rows of S(AT s∗(t, µ),
−→
1) that are

nonzero are exactly the elements of J . Thus, it suffices to show the result for

µ× S(AT
J s∗(0, µ), 1).

Now recall that AT
J =

∑
j ujσjv

T
j . Thus

AT
J s∗(0, µ) = (

∑
j

ujσjv
T
j)(
∑
i

viv
T
i

σ2
i

(b/µ+AJ
−→
1)) =

∑
i

uiv
T
i

σi
(
b

µ
+AJ

−→
1). (3.28)

In the limiting case when µ approaches ∞, s∗(0, µ) approaches to the bound-

ary of Ω. Indeed, when µ = ∞, s∗(0,∞) is the optimal solution of the linear

45

programming problem

argmax
s

〈b, s〉 subject to AT s ≤ −→1 . (3.29)

Therefore, AT
J s∗(0,∞) =

−→
1 . By formally substituting ∞ in equation (3.28),

we conclude that
−→
1 =

∑
i
uiv

T
i

σi
AJ
−→
1 . Substituting this back into the above equa-

tion, implies that

AT
J s∗(0, µ) = (

∑
i

uiv
T
i

σi
)
b

µ
+
−→
1 .

Recall that by the definition of violation set J , entries of AT
J s∗(0, µ) are greater

or equal to one. Therefore, entries of (
∑

i
uiv

T
i

σi
)b
µ

are greater or equal to zero.

Hence,

µ× S(AT
J s∗(0, µ), 1) = (

∑
i

uiv
T
i

σi
)b.

Since the right hand side is the same for all µ ≥ µc, the result follows. Indeed,

one can easily show that
∑

i
uiv

T
i

σi
is the pseudo-inverse of AJ , A†J .

As a bonus, we also have that for sufficiently large µ, the nonzero elements of

µ× S(AT s∗(0, µ), 1)

are equal to A†Jb, where J is the set of active constraints for the optimal solution

of the linear programming problem (3.29).

The results of the above theorem shows the exact regularization property de-

scribed in [70] and [27].

Corollary 3.2.7 There exist fixed large µc such that for µ ≥ µc, the solution to

problem (3.8) is independent of µ. Indeed, let J denote the set of active constraints

of the maximizer of the linear programming problem

argmax
s

〈b, s〉 subject to ÃT s ≤ −→1 ,

where Ã is given by (3.16). Let ỹ be a column vector with 2n entries where n is

the number of columns of A. Moreover, those entries of ỹ whose index belong to J

46

are given by ỹ(J) = Ã†Jb, and the other entries of ỹ are zero. Then the minimizer

of problem (3.8) is given by [
I | −I

]
ỹ.

Proof: The Lagrangian dual correspondence in Section 3.1 shows that the solu-

tion of (3.8) is equal to µ · shrink(AT s∗,
−→
1) where s∗ is the solution of (3.13) with

t = 0. Now use the result of Theorem 3.2.6 and the relation (3.17).

3.2.2 Constrained dual problem

This section analyzes the solution to the constrained problem (3.14). This problem

can be viewed as the limiting case of problem (3.15) as µ approaches ∞. Many

of the ideas used in this section are similar to the previous section. However, the

formulas in this case become simpler and the results enables us to devise a fast

algorithm for finding the optimal argument.

Let

gτ (s) = 〈b, s〉 − τH(|s|),

and set

sopt(τ) = argmax
s

gτ (s) subject to AT s ≤ −→1 .

As in previous section, for any subset J of {1, . . . , n}, let AT
J denotes the

matrix formed from rows of AT whose index belong to J . The following lemma

is essential in the analysis done in this subsection:

Lemma 3.2.8 Suppose τ > 0 and J is a fixed subset of {1, . . . , n}. If function

gτ (s) has unique global max on the set {s : AT
J s =

−→
1 }, then this global maximum

is given by

sJ(τ) := argmax
s:AT

J s=
−→
1

gτ (s) = F (τ, J)−→α (J) +
−→
β (J) (3.30)

47

where −→α (J) := b−AJ(AT
JAJ)†AT

Jb is the projection of b on the space {s : AT
J s =

−→
1 }, and

−→
β (J) := AJ(AT

JAJ)†
−→
1 . Here, F is some function that is determined

by values of τ , the set J and the function h.

Proof: Since the set {s : AT
J s =

−→
1 } is convex and gτ is a concave function that

has a global maximum on this set, it suffices to solve the first order conditions for

the Lagrangian

L(s,
−→
λ) = 〈b, s〉 − τH(|s|) +

−→
λ T (AT

J s−−→1)

to find the global maximum.

First order conditions with respect to s imply that

b− τ h(|sJ |)
|sJ |

sJ + AJ

−→
λ ∗ = 0, (3.31)

and first order conditions with respect to
−→
λ imply that

AT
J sJ =

−→
1 . (3.32)

Multiplying both sides of (3.31) by AT
J , using (3.32), and rearranging yields that

−→
λ ∗ = (AT

JAJ)†
(
τ
h(|sJ |)
|sJ |

−→
1 − ATJb

)
.

Substituting the above into (3.31) and simplifying, yields that

sJ =
|sJ |

τh(|sJ |)
−→α +

−→
β , (3.33)

where −→α = b −AJ(AT
JAJ)†AT

Jb and
−→
β = AJ(AT

JAJ)†
−→
1 . It is straightforward

to verify that −→α is the projection of vector b onto the space {s : AT
J s = 1}, and

−→α and
−→
β are perpendicular to each other. Now taking Euclidean norm square of

(3.33), implies that

|sJ |2 =
|sJ |2

τ 2h(|sJ |)2
|−→α |2 + |

−→
β |2.

The above equation and properties of function h, yield that |sJ | is the root of some

polynomial that depends on τ and J . Substituting these roots into the RHS of

48

equation (3.33) yields an explicit formula for sJ . Moreover, since it is assumed that

gτ (s) has global maximum on the set (and global maximum is unique for τ > 0

due to strict concavity), it can be concluded that J and τ uniquely determine the

value of |sJ |
τh(|sJ |)

. It follows that,

sJ(τ) = F (τ, J)−→α (J) +
−→
β (J).

Example 3.2.9 In the case H(|s|) = |s|2/2:

sJ(τ) =
1

τ
−→α (J) +

−→
β (J).

Example 3.2.10 In the case H(|s|) =
√

1 + |s|2:

sJ(τ) =

√
1 + |
−→
β (J)|2

τ 2 − |−→α (J)|2
−→α (J) +

−→
β (J).

Next we analyze the path that the optimal argument sopt(τ) traverse as τ

decreases. When τ is sufficiently large, sopt(τ) lies in the interior of Ω. To find

sopt(τ), gradient of gτ (s) is set equal to zero:

b− τ h(|sopt|)
|sopt|

sopt = 0.

Taking norm from both sides and simplifying yields that

sopt(τ) =
1

|b|
h−1

(
|b|
τ

)
b = F (τ, ∅)α(∅). (3.34)

The second equality in the above equation comes from b = −→α (∅). It is written

here to highlight that the above equation is a special case of equation (3.30) when

J is the empty set.

Now decrease τ slowly. Note that sopt(τ) follows the path given by equation

(3.34) until it hits a boundary of polytope Ω. Let τ1 denote the first time that

this happens. As a consequence, for t ≤ τ ≤ τ1, the global maximum of gτ (s)

49

occurs outside of Ω if there was no constraints. Hence, because gτ is a concave

function and Ω is a convex set, sopt(τ) must be on a boundary of Ω for τ ≤ τ1.

Let J1 denote the set of indices i for which aTi sopt(τ1) = 1. In the language

of linear programming, J1 is called the set of active constraints for point sopt(τ1).

From the discussion above, as τ decreases from τ1, sopt(τ) moves along faces of

Ω. Suppose the set of constraints K1 determines the first face of Ω along which

sopt(τ) moves for τ ≤ τ1. Clearly K1 ⊂ J1. From Lemma 3.2.8, for τ ≤ τ1, sopt(τ)

moves along the path given by

F (τ,K1)−→α (K1) +
−→
β (K1),

until it hits another face of Ω. Let τ2 denote the first time that this happens;

that is, τ2 is the largest τ < τ1 for which the set of active constrained of sopt(τ) is

different than K1. Let J2 denote the set of active constraints of sopt(τ2). Again,

as τ decreases from τ2, sopt(τ) moves along a face of Ω. Let K2 denote the set of

constraints that determines this face. Again, K2 ⊂ J2, and repeat as before.

The above process is continued until τ reaches t. From the arguments in

Section 3.2.1, there exist a sequence

τ0 > τ1 > · · · > τN > τN+1 = 0, (3.35)

where for τ ∈ (τi+1, τi], sopt(τ) lies on the same face of the polytope. Therefore,

sopt(τ) moves along finite number of faces until τ becomes equal to t. As men-

tioned earlier, the constrained problem can be viewed as the limiting case of an

unconstrained problem as µ approaches∞. This insight and Theorem 3.2.4, yield

the following corollary:

Corollary 3.2.11 There exist tc > 0, such that for 0 < τ ≤ tc the optimal

argument sopt(τ) for constrained problem

argmax{〈b, s〉 − τH(|s|)} subject to AT s ≤ −→1 ,

are all the same and lie on an extreme point of the polytope Ω.

50

Proof: Formally substituting µ = ∞ in equation (3.26) of Theorem 3.2.4, we

observe that for 0 < τ ≤ tc, sopt(τ) is independent of τ . Furthermore, since AJ(tc)

has rank m, sopt(tc) is an extreme point of polytope Ω.

3.2.3 Approximate solution of the augmented problem

This subsection describes how sopt(t) can be used to find an approximation for

y∗(t, µ) = µS(AT s∗(t, µ),
−→
1) when µ is sufficiently large. The relationship is

established using first order approximation in terms of 1/µ.

Note that formally, sopt(t) = s∗(t,∞). For ease of notation, s∗ and sopt are

used occasionally in place of s∗(t, µ) and sopt(t), respectively, in the remainder of

this subsection. Using arguments similar to the one used in proof of Theorem

3.2.6, show that there exist µc such that for µ ≥ µc, s∗(t, µ) and sopt have the

same set of violations2. Suppose µ > µc. Assume that sopt does not lie in the

interior of Ω as in that case y∗(t, µ) = ~0 and there is nothing to show.

Assume that we can perform Taylor expansions,

s∗(t, µ) = sopt +
1

µ
Ψ +O(1/µ2), (3.36)

and
|s∗(t, µ)|

h(|s∗(t, µ)|)
=
|sopt|

h(|sopt|)
+

1

µ
Γ +O(1/µ2). (3.37)

2Even though for µ ≥ µc the set of violations of s∗(t, µ) are the same, sopt is a limit point
of sequence s∗(t, µ) as µ → ∞, and might have a larger set of violations. However here, as we
increase µ, the problem becomes more constrained and therefore it is expected that the set of
violations to decrease. So it is assumed that sopt and s∗(t, µ), for µ ≥ µc, have the same set of
violations.

51

Recall from equation (3.21) that,

s∗ =
|s∗|

th(|s∗|)
(
m−k∑
i=1

wiw
T
i)b +

k∑
i=1

1

1 + t
µσ2

i
h(|s∗|)/|s∗|

viv
T
i

σ2
i

(b/µ+ AJ
−→
1)

=
|s∗|

th(|s∗|)
(
m−k∑
i=1

wiw
T
i)b +

k∑
i=1

viv
T
i

σ2
i

AJ
−→
1 +

1

µ

k∑
i=1

viv
T
i

σ2
i

b

− t

µ

h(|s∗|)
|s∗|

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 +O(1/µ2)

Substituting (3.36) and (3.37) into the above expression, and equating coefficients

of 1/µ on both sides of the equality yields that

Ψ =
1

t
Γ
m−k∑
i=1

wiw
T
i b +

k∑
i=1

viv
T
i

σ2
i

b− th(|sopt|)
|sopt|

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 .

Multiplying both sides with AT
J =

∑
i uiσiv

T
i and using orthogonality of vi’s to

wi’s, we have

AT
JΨ = AT

J

k∑
i=1

viv
T
i

σ2
i

b− th(|sopt|)
|sopt|

AT
J

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 .

From definition of violation set J , one concludes that the only rows of S(AT s∗,
−→
1)

that are nonzero are exactly the elements of J . Therefore, it suffices to evaluate

S(AT
J s∗,
−→
1). Furthermore, because sopt is on the boundary of Ω and J is the set

of violations of both sopt and s∗,

AT
J sopt =

−→
1 , and AT

J s∗ ≥ −→1 .

Putting all these together,

~0 ≤ AT
J s∗ −−→1 = AT

J (sopt +
1

µ
Ψ +O(1/µ2))−−→1 =

=
1

µ
AT
J

k∑
i=1

viv
T
i

σ2
i

b− t

µ

h(|sopt|)
|sopt|

AT
J

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 +O(1/µ2).

52

Hence, nonzero elements of y∗(t, µ), for µ ≥ µc, are given by

µS(AT
J s∗(t, µ),

−→
1) = AT

J

k∑
i=1

viv
T
i

σ2
i

b− th(|sopt|)
|sopt|

AT
J

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 +O(1/µ)

= AT
J (AJA

T
J)†b− th(|sopt|)

|sopt|
AT
J ((AJA

T
J)†)2AJ

−→
1 +O(1/µ)

= A†Jb− t
h(|sopt|)
|sopt|

A†J(AT
J)†
−→
1 +O(1/µ),

where properties of the pseudo-inverse were used for the last equality.

Corollary 3.2.12 In problem (3.2), for each t, there exist fixed large µc such that

for µ ≥ µc, the solution to the corresponding problem is given as follows:

Let J denote the set of violations of the maximizer of

sopt = argmax
s
{〈b, s〉 − tH(|s|)} subject to ÃT s ≤ −→1 ,

where Ã is given by (3.16). Let ỹ be a column vector with 2n entries where n is

the number of columns of A. Moreover, those entries of ỹ whose index belong to

J are given by

ỹ(J) = Ã†Jb− t
h(|sopt|)
|sopt|

Ã†J(ÃT
J)†
−→
1 +O(1/µ),

and the other entries of ỹ are zero. Then the minimizer of problem (3.2) is given

by

y∗(t, µ) =
[
I | −I

]
ỹ.

Proof: The Lagrangian dual correspondence in Section 3.1 shows that the solu-

tion of problem (3.2) is equal to µ · shrink(AT s∗,
−→
1), where s∗ is the solution of

(3.13). Now use the result of this section and the relation (3.17).

3.3 The TCCS Algorithm

This section describes the TCCS algorithm. The TCCS algorithm consists of

two parts. The first part of the algorithm finds an approximate solution to the

53

constrained problem (3.14). This part is described in Subsection 3.3.1. The second

part of the algorithm takes the result of the first part of the algorithm and then

uses the result developed in Subsection 3.2.3 to yield an approximate solution

to problem (3.5). This part of the algorithm is described in Subsection 3.3.2.

Pseudo-codes for the TCCS algorithm are provided in Appendix B.

3.3.1 First part

For the first part of the TCCS algorithm we devise a fast algorithm that gives

an approximate solution for constrained problem (3.14). Other methods could be

used for this part of the TCCS algorithm. Nevertheless, we found the algorithm

described here to be effective and fast for optimizing constrained problems of form

(3.14).

The idea of the algorithm is to trace out an approximation to the path of

sopt(τ), as τ decreases, which was described in Section 3.2.2. Denote the approx-

imate path by s̃(τ). To construct this path, one proceeds very similarly to the

way the trajectory sopt(τ) was determined at the end of Section 3.2.2. The only

difference is that whenever s̃(τ) hits a new face of polytope Ω, say at τi, Ji is used

as proxy for Ki and proceed. As a result, the trajectory of s̃(τ) might be different

than sopt(τ). This approximation is made to avoid cumbersome computations.

The details of the algorithm are provided below.

The algorithm is initialized by finding τ̃0 large enough so that

1

|b|
h−1

(
|b|
τ̃0

)
b

lies in the interior of Ω. Set s̃(τ̃0) to be equal to the above expression. Set J̃ = ∅

and τ = τ̃0. This completes the initialization of the algorithm. Next the algorithm

goes through a loop as described below.

Suppose τ = τ̃r, and J̃ = J̃r denotes the set of active constraints for s̃(τ̃r).

Note that aTi
−→α (J̃r) = 0 for i ∈ J̃r, because α(J̃r) is the projection of b on the

54

space {s : AT
J̃r

s = 1}. Therefore, when τ is decreasing from τ̃r and s̃(τ) is moving

along −→α (J̃r), it is still the case that aTi s̃(τ) = 1 for i ∈ J̃r. Thus, constraints given

by J̃r continue to be active for s̃(τ).

Let L be the complement of J̃r; that is L = {1, . . . , n} \ J̃r. Let τ̃r+1 denote

the largest τ smaller than τ̃r such that the set of active constraints of

s̃(τ) = F (τ, J̃r)
−→α (J̃r) +

−→
β (J̃r) = s̃(τ̃r) +

(
F (τ, J̃r)− F (τ̃r, J̃r)

)−→α (J̃r) (3.38)

is different than J̃r. From the discussion above, τ̃r+1 is the largest τ less than

τ̃r so that for some i ∈ L, aTi s̃(τ) = 1, where s̃(τ) is given by equation (3.38).

Finding τ̃r+1 is problem specific and depends on function F (τ, J). However, for

many examples of H, τ̃r can be found, either analytically or numerically, very

efficiently. Set τ = τ̃r+1 and J̃ = J̃r+1, and repeat the above process.

In this way the sequence τ̃0 > τ̃1 > · · · is generated. In general this sequence

is different than the sequence (3.35), except at τ̃0 = τ0 and τ̃1 = τ1. Also note

that, at each step of the loop the rank of AT
J̃

strictly increases. Because of this, at

τ = τ̃j, for some j ≤ m, s̃(τ) reaches an extreme point of Ω. For τ < τ̃j, s̃(τ) stays

at the same extreme point, and the algorithm outputs the same result. Thus,

the algorithm goes through at most m loops. This feature makes this algorithm

to be very efficient (in particular when m � n) in comparison to other available

algorithms for optimizing problems of the form (3.14).

Also note that even though the first part of the algorithm outputs an approxi-

mate solution s̃(t) to constrained problem (3.14), using KKT conditions it is easy

to verify whether s̃(t) is indeed the optimal solution sopt(t) or not.

3.3.2 Second part

This subsection explains how sopt(t) obtained in the first part of the TCCS al-

gorithm is used to obtain an approximate solution to problem (3.5). Let yopt(t)

denote the solution to problem (3.5). As µ → ∞, the solution to problem (3.2),

55

y∗(t, µ), provides a good approximate for yopt(t). Hence, in view of Corollary

3.2.12, an approximation for yopt(t) using sopt(t) is found in the following way:

Let J denote the set of violations of sopt(t). Suppose ỹopt is a column vector

with 2n entries where n is the number of columns of A. Set those entries of ỹopt

whose index belong to J by

ỹopt(J) = Ã†Jb− t
h(|sopt|)
|sopt|

Ã†J(ÃT
J)†
−→
1 ,

and the other entries of ỹopt are set to zero. Now[
I | −I

]
ỹopt

provides a good approximation for yopt(t).

3.3.3 Application to compressed sensing

Observe that problem (3.5) reduces to Basis Pursuit problem (3.1) when t = 0.

Therefore, by what was mentioned in Section 3.1, when t = 0, the TCCS algorithm

is expected to output a sparse solution for Compressed Sensing problem (3.6).

Section 3.4 provides numerical evidence in support of this.

To summarize, the TCCS algorithm approaches the Compressed Sensing prob-

lem (3.6) in the following way. We try to find an approximate optimizer for

problem (3.1). To that end, we generate sequence τ0 > τ1 > · · · > τ` = 0 and

iteratively find approximate optimizers s̃(τi) to problem (3.5) with τi in place of t.

Finally, we use the result of Corollary 3.2.12 to find an approximate solution to

problem (3.5).

One might question the necessity of introducing parameter µ in the method-

ology used to find a solution to Basis Pursuit problem (3.1). Indeed, the value of

µ does not appear in the TCCS algorithm (i.e. in the second part of the TCCS

algorithm only makes the assumption that µ is sufficiently large). Nevertheless,

parameter µ was important in establishing Corollary 3.2.12 and identifying a good

56

approximate for yopt(t) in Subsection 3.3.2.

On the other hand, introducing the parameter t (and eventually setting it equal

to 0), enables us to use the Homotopy method to find an approximate solution to

the linear programming problem

argmax
s

〈b, s〉 subject to −−→1 ≤ AT s ≤ −→1 . (3.39)

3.4 Numerical Results

This section compares the performance of the TCCS algorithm applied to Com-

pressed Sensing problems with the LBSB algorithm [68] and OMP algorithm

[52, 40, 61]. It is important to note that the TCCS algorithm is developed to

solve the more general problem of (3.5) (i.e. not only the Basis Pursuit problem

(3.1), which corresponds to t = 0 in (3.5)); whereas, LBSB and OMP algorithm

can be used only for problems (3.1) and (3.6), respectively.

For the numerical experiments, entries of the matrix A are generated from

independent and identically distributed normal distributions. The “true signal”

yreal with a given sparsity level is also generated from independent and identically

distributed normal distributions. Vector b is obtained from yreal via b = Ayreal.

Define the sparsity level of vector yreal to be the percentage ratio of the number

of nonzero components of yreal with respect to the number of measurements (i.e.

m). That is,

sparsity level of yreal =
nonzero components of yreal

m
× 100%.

In each setting, 10 independent trials are ran and the average processing time and

the average relative error (i.e., |y − yreal|/|yreal|) of each method for the 10 trials

are reported.

57

3.4.1 TCCS versus LBSB

Here the performance of the TCCS algorithm and the LBSB algorithm are com-

pared. The LBSB algorithm is one of the fastest methods used for Compressed

Sensing problems and in [68], extensive numerical experiments comparing this

method with respect to other methods were done.

In each test, we generate a true signal yreal by first determining its support

(i.e. the nonzero entries) at random and then generate each entry of the support

using independent and identically distributed normal distributions. For the LBSB

method, we set α = 10, λ = 0.4 and the maximum number of iterations equal

to 2000. The TCCS algorithm applied to Compressed Sensing problem does not

require any parameter to be set.

Tables 3.1 and 3.2 show comparison of the LBSB algorithm and the TCCS

algorithm when sparsity level is 2% and 10%, respectively.

m n LBSB time LBSB error TCCS time TCCS error

200 10000 5.65 7.04e-03 0.13 1.07e-15

200 50000 56.71 1.21e-01 0.68 1.22e-15

200 100000 114.34 4.16e-01 1.55 9.03e-16

400 10000 11.22 1.66e-03 0.51 2.00e-15

400 50000 104.82 2.83e-02 2.65 1.53e-15

400 100000 229.97 1.11e-01 6.04 1.23e-15

Table 3.1: The comparison of the performance of the TCCS algorithm and the

LBSB algorithm. “Time” and “error”, respectively, refer to processing time (in

seconds) and relative error for each method. Here, sparsity level is 2% and each

row is the result of 10 independent trials.

For the numerical experiments that are presented in Tables 3.1 and 3.2, the

matrix A was chosen to be very narrow and wide, to highlight the advantage of

58

m n LBSB time LBSB error TCCS time TCCS error

200 10000 11.36 5.81e-02 2.22 2.62e-03

200 50000 56.72 3.59e-01 32.10 7.54e-01

200 100000 115.50 4.27e-01 71.05 3.49e-01

400 10000 22.23 3.80e-03 4.60 2.03e-15

400 50000 113.28 1.57e-01 83.21 4.77e-01

400 100000 230.65 3.62e-01 286.82 6.62e-01

Table 3.2: The comparison of the performance of the TCCS algorithm and the

LBSB algorithm. “Time” and “error” , respectively, refer to processing time (in

seconds) and relative error for each method. Here, sparsity level is 10% and each

row is the result of 10 independent trials.

the TCCS algorithm over the LBSB algorithm in this regime, both in processing

time and relative error of the solution. Remarkably, as shown in Table 3.1, when

sparsity level is low, the TCCS algorithm perfectly recovers the sparse solution in

all 10 independent trials.

In the next set of experiments, for different values of m and n, we compare

the performance of the LBSB algorithm and the TCCS algorithm over different

range of sparsity levels. The result are shown in Figures 3.1, 3.2 and 3.3.

As it can be seen from the figures, for low sparsity levels, the TCCS algorithm

is again both much faster and more accurate in recovering the solution than the

LBSB algorithm. Indeed, as observed earlier, for low sparsity levels, the TCCS

algorithm perfectly recovers the sparse solution in all independent trials. For

higher sparsity levels, the relative error of the TCCS algorithm and the LBSB

algorithm is comparable. At these sparsity levels, the TCCS algorithm performs

faster than the LBSB algorithm for very small ratios m/n, whereas, the converse

becomes true for higher ratios of m/n (i.e. compare the panels on the right in

Figure 3.2). It is also noteworthy that as the sparsity level increases, the TCCS

59

algorithm exhibits a sharp phase transition in the success rate of recovery of the

sparse solution.

0 20 40 60 80
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 2000

 LBSB
 TCCS

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 100, n= 2000

 LBSB
 TCCS

0 20 40 60 80
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 4000

 LBSB
 TCCS

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 100, n= 4000

 LBSB
 TCCS

0 20 40 60 80
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 8000

 LBSB
 TCCS

0 20 40 60 80
0

1

2

3

4

5

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 100, n= 8000

 LBSB
 TCCS

Figure 3.1: Performance comparison of the LBSB algorithm and the TCCS algo-

rithm in terms of processing time and relative error for different sparsity levels.

Here m = 100 and n = 2000, 4000, 8000. The panels on the left show semilog

plot of the relative error, while the right panels show plot of processing time (in

seconds). Each data point is the average of 10 independent trials.

60

0 20 40 60 80
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 200, n= 2000

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 200, n= 2000

0 20 40 60 80
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 200, n= 4000

0 20 40 60 80
0

1

2

3

4

5

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 200, n= 4000

0 20 40 60 80
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 200, n= 8000

0 20 40 60 80
0

2

4

6

8

10

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 200, n= 8000

 LBSB
 TCCS

 LBSB
 TCCS

 LBSB
 TCCS

 LBSB
 TCCS

 LBSB
 TCCS

 LBSB
 TCCS

Figure 3.2: Performance comparison of the LBSB algorithm and the TCCS algo-

rithm in terms of processing time and relative error for different sparsity levels.

Here m = 200 and n = 2000, 4000, 8000. The panels on the left show semilog

plot of the relative error, while the right panels show plot of processing time (in

seconds). Each data point is the average of 10 independent trials.

61

0 20 40 60 80
10

−15

10
−10

10
−5

10
0

10
5

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 400, n= 2000

 LBSB
 TCCS

0 20 40 60 80
0

1

2

3

4

5

6

7

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 400, n= 2000

 LBSB
 TCCS

0 20 40 60 80
10

−20

10
−15

10
−10

10
−5

10
0

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 400, n= 4000

 LBSB
 TCCS

0 20 40 60 80
0

2

4

6

8

10

12

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 400, n= 4000

 LBSB
 TCCS

0 20 40 60 80
10

−15

10
−10

10
−5

10
0

10
5

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 400, n= 8000

 LBSB
 TCCS

0 20 40 60 80
0

5

10

15

20

25

sparsity level (%)

 p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

 m= 400, n= 8000

 LBSB
 TCCS

Figure 3.3: Performance comparison of the LBSB algorithm and the TCCS algo-

rithm in terms of processing time and relative error for different sparsity levels.

Here m = 400 and n = 2000, 4000, 8000. The panels on the left show semilog

plot of the relative error, while the right panels show plot of processing time (in

seconds). Each data point is the average of 10 independent trials.

62

3.4.2 TCCS versus OMP

Here the difference between the TCCS algorithm and the OMP algorithm is inves-

tigated numerically. The OMP algorithm has been noted for its speed and ease

of implementation. Furthermore, [61] provides some theoretical and numerical

evidence for the reliability of the OMP algorithm.

It is important to note that the methodologies of these two algorithms are quite

different despite some superficial similarities in their pseudo-codes. The OMP

algorithm is a greedy based method that solves the Compressed Sensing problem

by iteratively increasing the support of y with components whose correlation to

the current residual is maximum. On the other hand, the TCCS algorithm uses

a Homotopy approach to trace the optimal solution of the dual problem.

We run two sets of experiments similar to the numerical experiments done

in [10]. Because both the TCCS and the OMP algorithms run very fast, only

the relative error of the two algorithms are reported. In the first experiment,

we generate the true signal yreal in the same fashion as in Subsection 3.4.1. The

results are shown in Figure 3.4.

Although the OMP algorithm outperforms the TCCS algorithm in Figure 3.4,

we will see that this is not the case in general. For the second set of experiments,

we generate the true signal yreal by first determining its support (i.e. the nonzero

entries) at random and then set each entry of the support to be +1 or −1 at

random. The results are shown in Figure 3.5. As it can be seen, the TCCS

algorithm outperforms the OMP algorithm in this example.

3.5 Conclusions

In this chapter we presented the TCCS algorithm for finding approximate solutions

to problem (3.5). In particular, by setting t = 0, the algorithm outputs a good

63

10 15 20 25 30 35 40
10

−20

10
−10

10
0

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 300

 OMP
 TCCS

10 15 20 25 30 35 40
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 600

 OMP
 TCCS

10 15 20 25 30 35 40
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 900

 OMP
 TCCS

Figure 3.4: Comparison of the relative error of the OMP algorithm and the TCCS

algorithm for different sparsity levels. Here the entries of the support of the true

signal are chosen to be independent and identically distributed random variables.

Each data point is the arithmetic average of 10 independent trials.

64

10 15 20 25 30 35 40
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 300

 OMP
 TCCS

10 15 20 25 30 35 40
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 600

 OMP
 TCCS

10 15 20 25 30 35 40
10

−20

10
−10

10
0

10
10

sparsity level (%)

 r
el

at
iv

e
er

ro
r

 m= 100, n= 900

 OMP
 TCCS

Figure 3.5: Comparison of the relative error of the OMP algorithm and the TCCS

algorithm for different sparsity levels. Here the entries of the support of the true

signal are chosen from +1 or −1 at random. Each data point is the arithmetic

average of 10 independent trials.

65

approximate for the solution to the Compressed Sensing problem (3.6). Numerical

results show that the algorithm perfectly recovers the solution to the Compressed

Sensing problem when the solution is relatively sparse with respect to the number

of measurements. For this regime of sparsity, the algorithm recovers the solution

extremely fast.

Another advantage of the TCCS algorithm is that it is parameter free ex-

cept a tolerance parameter that is due to numerical machine precision. In many

other optimization methods, one needs to introduce extra parameters whose value

greatly affect the performance of the algorithm.

We also observed a sharp phase transition in the success rate of recovery of

the solution of the Compressed Sensing problem by the algorithm as the sparsity

of the solution varies. This suggest a theoretical analysis should be conducted

relating to this phenomena.

66

CHAPTER 4

Theoretical Analysis of Compressed Modes

Spatial localization occurs naturally in many problems from physics and other

disciplines. A new methodology was developed in [50, 51] using sparsity techniques

to obtain localized functions that are approximate solutions to a class of problems

in mathematical physics that can be recast as variational optimization problems.

After introduction of L1 regularization in [50, 51], the variational formula-

tion of the Schrödinger equation of quantum mechanics, localized functions called

“compressed modes” (CMs) were constructed by solution of the resulting new

non-convex optimization problem. Numerical computation showed the CMs have

many desirable features; for example, the energy calculated using CMs approxi-

mates the ground state energy of the system. Moreover, there is no requirement

to cut off the resulting CMs “by hand”. In addition, the ideas of [50] were used

in [51] to generate a new set of spatially localized orthonormal functions, called

“compressed plane waves” (CPWs), with multi resolution capabilities adapted for

the Laplace operator.

Several analytic treatments of CMs and CPWs have been performed. In this

chapter we present the analysis that was done in [2] and [3]. In [69], CMs were

proved to form a complete basis set in their corresponding vector spaces, which is

necessary for use of CMs in numerical computation.

Use of the `1 norm as a constraint or penalty term to achieve sparsity has at-

tracted considerable attention in a variety of fields including compressed sensing

[24, 15], matrix completion [57], phase retrieval [14], etc. Recently, use of sparsity

67

techniques began in physical sciences (see for example [46]) and partial differen-

tial equations (see for example [58]). In all these examples sparsity means that in

the representation of a corresponding vector or function in terms of a well-chosen

set of modes (i.e. a basis or dictionary), most coefficients are zero. However, it

was proven in [8] and [9] that for certain elliptic and parabolic PDEs, insertion

of L1 terms into the quantity to be optimized would result in solutions having

compact support (i.e. which can be thought as spatial sparsity) for the solutions.

In [50, 51], L1 norm regularization is used to achieve spatial sparsity for varia-

tional problems in mathematics and physics. In more recent work, [12] presents

qualitative analysis of elliptic and parabolic PDEs with subgradient terms that

come from L1 regularization in the variational formulation of the problem.

In this chapter we present two main results are presented. First the consistency

results for compressed modes (CMs) are proven. In particular, we show that as

µ → ∞ the approximate energy calculated using CMs converges from above to

the actual energy of the system. This is done in Section 4.1. More importantly,

we show in Section 4.2 that under some necessary assumptions on the spectrum

of the Hamiltonian, as µ→∞, CMs converge to a unitary transformation of the

eigenfunctions in L2 norm. Finally, we verify a conjecture stated in [50].

The second main result of this chapter is to analytically prove the spatial lo-

calization property of CMs that was observed numerically in [50]. We show that

as the coefficient increases for the L1 regularization term in the variational for-

mulation of the Schrödinger equation, the volume of the support of CMs shrinks.

To be specific, let {ψi}Ni=1 denote the CMs, corresponding to number N and

regularization parameter µ, that solve the L1 regularization of the variational

formulation of the Schrödinger equation in Rd:

{ψ1, . . . , ψN} = argmin
ψ̃1,...,ψ̃N

N∑
i=1

(
1

µ
‖ψ̃i‖1 + 〈ψ̃i, Ĥψ̃i〉

)
s.t. 〈ψ̃j, ψ̃k〉 = δjk. (4.1)

Here, Ĥ = −1
2
∆ + V (x) is the Hamiltonian operator corresponding to potential

68

V (x), L1 norm is defined as ‖f‖1 =
∫

Ω
|f |dx, and 〈f, g〉 =

∫
Ω
f ∗gdx (Ω ⊂ Rd).

In this chapter, for the ease of exposition we assume that Ω = [0, L]d with

periodic boundary conditions. Other boundary conditions can be handled in a

similar way. For simplicity, we assume that ψi’s are real functions and equal to

zero at the boundary of Ω; generalization to complex-valued functions is straight-

forward. Furthermore, we assume that potential V (x) in the Hamiltonian Ĥ is

bounded above by a finite number; that is,

‖V ‖∞ := sup
Ω
|V (x)| <∞.

These assumptions, in particular, imply that the spectrum of the Hamiltonian Ĥ

is discrete and its eigenvalues grow to positive infinity. In section 4.4, we make

several remarks about the existence of minimizers for (4.1). Note that because

of the orthonormality condition, the space of feasible functions in (4.1) is not a

convex set and many convex optimization techniques cannot be applied here.

Denote the eigenfunctions of the Hamiltonian operator Ĥ by φ1, φ2, . . . , and

assume that they are ordered so that their corresponding eigenvalues obey λ1 ≤

λ2 ≤ Observe that {φi}Ni=1 are a solution to the optimization problem:

{φ1, . . . , φN} = argmin
φ̃1,...,φ̃N

N∑
i=1

〈φ̃i, Ĥφ̃i〉 s.t. 〈φ̃j, φ̃k〉 = δjk. (4.2)

As shown in [50], compressed modes have many desirable features. In par-

ticular, consider the N × N matrix 〈ΨT
N , ĤΨN〉 with the (j, k)-th entry defined

by 〈ψj, Ĥψk〉 and let (σ1, . . . , σN) denote its eigenvalues listed in non-decreasing

order. In [50], it was conjectured that as µ→∞, σi’s converge to λi’s. In Theo-

rem 4.2.5 we verify this conjecture. We also show that as µ → ∞, CMs {ψi}Ni=1

converge to a unitary transformation of eigenfunctions {φi}Ni=1 in the L2 norm. In

Theorem 4.4.1 we show that for sufficiently small µ,

|supp(ψi)| ≤ Cµ2d/(4+d) for i = 1, . . . , N,

69

where C is a constant. This result, in particular, verifies the observations in [50]

that the smaller µ, the more localized are the corresponding CMs.

The remainder of this chapter consists of the following: Section 4.1 shows that

the energy associated with CMs converges from above to the actual energy of

the system as µ → ∞. Section 4.2 contains the first main result of this chapter;

that is, as µ → ∞, {ψi}Ni=1 converge to a unitary transformation of {φi}Ni=1 and

eigenvalues (σ1, . . . , σN) converge to (λ1, . . . , λN). Section 4.3 provides an analytic

formula for the first compressed mode when V (x) = 0. Section 4.4 contains the

second main result of this chapter and establishes the asymptotic upper bound

on the volume of the support of compressed modes mentioned above. Section

4.5 includes several remarks on the CMs corresponding to different regularization

parameter µ and a conjecture.

4.1 Convergence of Energies

Define the energy associated with CMs {ψi}Ni=1 by,

E =
N∑
i=1

〈ψi, Ĥψi〉 = Tr(〈ΨT
N , ĤΨN〉) = σ1 + · · ·+ σN . (4.3)

This section shows that E converges to the ground state energy E0 =
∑N

j=1 λj as

µ→∞. Although, the result of this section can be readily deduced from Theorem

4.2.5, it is included here for its independent interest and simplicity of argument.

First observe that

E0 = λ1 + · · ·+ λN =
N∑
i=1

〈φi, Ĥφi〉 ≤
N∑
i=1

〈ψi, Ĥψi〉 = σ1 + · · ·+ σN = E, (4.4)

where (4.2) was used for the inequality and equation (4.3) was used for the last

equality. Next choose µ large enough such that

1

µ

N∑
i=1

‖φi‖1 < ε.

70

Then

E = σ1 + · · ·+ σN =
N∑
i=1

〈ψi, Ĥψi〉 ≤
1

µ

N∑
i=1

‖ψi‖1 +
N∑
i=1

〈ψi, Ĥψi〉

≤ 1

µ

N∑
i=1

‖φi‖1 +
N∑
i=1

〈φi, Ĥφi〉 < ε+ λ1 + · · ·+ λN = ε+ E0, (4.5)

where (4.3) was used for the first equality and (4.1) was used for the second

inequality. From equations (4.4) and (4.5) it follows that

E ↓ E0 as µ→∞.

4.2 Consistency Results for L1 Regularization

This section contains the first main result of this chapter. In Theorem 4.2.3,

we show that as µ → ∞, the solutions to the regularized optimization problem

(4.1) converge to a unitary transformation of the eigenfunctions in L2 norm. Fur-

thermore, in Theorem 4.2.5, we show that as µ → ∞, the eigenvalues of matrix

〈ΨT
N , ĤΨN〉 converges to the first N eigenvalues of the Hamiltonian Ĥ. This

provides an affirmative answer to the conjecture stated in [50].

First we establish the following lemma. There are several different proofs

known for this lemma. Here we present a proof that uses a so-called Cholesky

decomposition.

Lemma 4.2.1 Suppose that for i, j = 1, . . . , N

∞∑
k=1

a∗ikajk = δij. (4.6)

Then, for any k,
N∑
i=1

|aik|2 ≤ 1.

71

Proof: It suffices to show the result for k = 1 (i.e. by relabeling the indices, the

result would follow for other k’s). Let C be an N ×N matrix whose ij-th entry

is given by

Cij =
∞∑
l=2

a∗ilajl. (4.7)

By construction, C is hermitian. We claim that C is also positive semi-definite

matrix. Indeed, for any vector x = (x1, . . . , xN)T ,

x∗Cx =
N∑

i,j=1

x∗iCijxj =
N∑

i,j=1

x∗ixj

∞∑
l=2

a∗ilajl

=
∞∑
l=2

(
N∑
i=1

xiail

)∗(N∑
j=1

xiajl

)
=
∞∑
l=2

∣∣∣∣∣
N∑
i=1

xiail

∣∣∣∣∣
2

≥ 0.

Using a so-called Cholesky decomposition, there exists a lower diagonal matrix L

(i.e. not necessarily unique as C is semi-definite) such that C = L̄L̄†. Thus,

Cij =
N∑
m=1

L∗imLjm.

In particular, comparing with equation (4.7), one concludes that for i, j = 1 . . . , N ,

N∑
m=1

L∗imLjm =
∞∑
l=2

a∗ilajl

For i = 1, . . . , N , set Li0 := ai1 and ~Li = (Li0, Li1, . . . , LiN). Assumption (4.6)

and the above equality yield that

〈 ~Li, ~Lj〉 = δij for i, j = 1, . . . , N.

Note that {~Li}Ni=1 are (N + 1)-dimensional vectors. There exist vector ~L0 =

(L00, L01, . . . , L0N) such that {~Li}Ni=0 is an orthonormal basis in RN+1. Form

(N+1)×(N+1) matrix M whose ij-th entry Mij is equal to Lij for i, j = 0, . . . , N .

Observe that M is unitary as its rows are orthonormal. Hence the columns of M

are orthonormal as well. In particular,

1 =
N∑
i=0

|Mi0|2 =
N∑
i=0

|Li0|2 = |L00|2 +
N∑
i=1

|ai1|2,

72

and so
N∑
i=1

|ai1|2 = 1− |L00|2 ≤ 1.

This completes the lemma.

Lemma 4.2.2 Suppose λN < λN+1. For any ε > 0 there exist ε0 > 0 such that∣∣∣∣∣
N∑
i=1

〈gi, Ĥgi〉 −
N∑
i=1

〈φi, Ĥφi〉

∣∣∣∣∣ < ε0 with 〈gi, gj〉 = δi,j

implies that ‖gi − ϕi‖2 < ε, for i = 1 . . . , N , where ϕ1 . . . , ϕN is a unitary trans-

formation of φ1 . . . , φN .

Proof: Since {φi}∞i=1 form a set of basis in L2, for every i = 1 . . . , N :

gi =
∞∑
k=1

aikφk.

Moreover, the assumptions on the gi’s imply that

∞∑
k=1

a∗ikajk = δij. (4.8)

By spectral decomposition and using Dirac’s bra-ket notation,

Ĥ =
∞∑
l=1

λl|φl〉〈φl|.

Thus, for i = 1 . . . , N ,

〈gi, Ĥgi〉 = 〈gi,
∞∑
l=1

λl|φl〉〈φl|gi〉 =
∞∑
l=1

λl〈gi, φl〉〈φl, gi〉 =
∞∑
l=1

λl|ail|2.

Summing over i on both sides of the above equality yields that

N∑
i=1

〈gi, Ĥgi〉 =
N∑
i=1

∞∑
l=1

λl|ail|2 =
∞∑
l=1

λl

N∑
i=1

|ail|2 =
∞∑
l=1

λlbl,

where

bl :=
N∑
i=1

|ail|2.

73

Observe that bl’s satisfy the following properties:

0 ≤ bl ≤ 1 for l = 1, . . . , (4.9)

and
∞∑
l=1

bl = N. (4.10)

The first property is deduced from Lemma 4.2.1. To see the second property note

that
∞∑
l=1

bl =
∞∑
l=1

N∑
i=1

|ail|2 =
N∑
i=1

∞∑
l=1

|ail|2 =
N∑
i=1

1 = N.

Now observe that

N∑
i=1

〈gi, Ĥgi〉 −
N∑
i=1

〈φi, Ĥφi〉

=
∞∑
l=1

λlbl − (λ1 + · · ·+ λN)

≥(b1 − 1)λ1 + · · ·+ (bN − 1)λN + (
∞∑

l=N+1

bl)λN+1

=(b1 − 1)λ1 + · · ·+ (bN − 1)λN + (N − b1 − · · · − bN)λN+1

=(1− b1)(λN+1 − λ1) + · · ·+ (1− bN)(λN+1 − λN), (4.11)

where the nondecreasing ordering of λi’s was used in the third line, and (4.10)

was used in the fourth line. Now from (4.9) and nondecreasing ordering of λi’s,

each of the terms in summation (4.11) is positive. Hence∣∣∣∣∣
N∑
i=1

〈gi, Ĥgi〉 −
N∑
i=1

〈φi, Ĥφi〉

∣∣∣∣∣ ≥ (1− b1)(λN+1 − λ1) + · · ·+ (1− bN)(λN+1 − λN).

The assumption that λN+1 is strictly greater than λ1, . . . , λN yields that for every

ε1 > 0, there exist ε0 such that if the LHS of the above inequality is smaller than

ε0, then

1− bl < ε1 for l = 1, . . . , N.

Moreover, equation (4.10) implies that

74

∞∑
l=N+1

bl < Nε1 =⇒
∞∑

l=N+1

N∑
i=1

|ail|2 =
N∑
i=1

∞∑
l=N+1

|ail|2 < Nε1.

In particular for i = 1 . . . , N :

∞∑
l=N+1

|ail|2 < Nε1. (4.12)

Next we will show that N × N matrix {aik}Ni,k=1 is “almost” unitary in the

sense that

∣∣∣∣∣δij −
N∑
k=1

a∗ikajk

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=N+1

a∗ikajk

∣∣∣∣∣ ≤
(

∞∑
k=N+1

|aik|2
)1/2(∞∑

k=N+1

|ajk|2
)1/2

< (Nε1)1/2(Nε1)1/2 = Nε1,

where (4.8) was used for the first equality, Cauchy-Schwarz was used for the first

inequality, and (4.12) was used for the second inequality. One can orthonormalize

the rows of matrix {aik}Ni,k=1 using Gram-Schmidt process, to form a new unitary

matrix {a′ik}Ni,k=1. Indeed, because of the above inequality, for any ε2 > 0, one

may choose ε1 small enough such that

N∑
k=1

|aik − a′ik|2 < ε2 for every i = 1, . . . , N. (4.13)

For i = 1, . . . , N , set

ϕi =
N∑
k=1

a′ikφk.

Observe that

‖gi − ϕi‖2
2 =

N∑
k=1

|aik − a′ik|2 +
∞∑

k=N+1

|aik|2 < ε2 +Nε1,

where (4.13) and (4.12) were used for the inequality.

Hence, for any ε > 0, there exist ε1 and ε2 small enough such that ‖gi−ϕi‖2 < ε

for i = 1, . . . , N . The result follows.

Now, the main results of this section are presented:

75

Theorem 4.2.3 Assume λN+1 > λN . For every ε > 0, there exist µ0 such that

for µ > µ0, the solutions to the regularized optimization problem (4.1) satisfy

‖ψi − ϕi‖2 < ε for i = 1 . . . , N,

where ϕ1 . . . , ϕN is some unitary transformation of φ1 . . . , φN .

Proof: For given ε, choose ε0 as indicated by Lemma 4.2.2. Choose µ0 large

enough such that

1

µ0

N∑
i=1

‖φi‖1 < ε0. (4.14)

Let µ > µ0. Observe that

N∑
i=1

〈φi, Ĥφi〉 ≤
N∑
i=1

〈ψi, Ĥψi〉 ≤
1

µ

N∑
i=1

‖ψi‖1 +
N∑
i=1

〈ψi, Ĥψi〉

≤ 1

µ

N∑
i=1

‖φi‖1 +
N∑
i=1

〈φi, Ĥφi〉.

where (4.2) was used for the first inequality, and (4.1) was used for the last in-

equality. Hence, using (4.14), one conclude that

N∑
i=1

〈φi, Ĥφi〉 ≤
N∑
i=1

〈ψi, Ĥψi〉 ≤ ε0 +
N∑
i=1

〈φi, Ĥφi〉,

which implies that ∣∣∣∣∣
N∑
i=1

〈ψi, Ĥψi〉 −
N∑
i=1

〈φi, Ĥφi〉

∣∣∣∣∣ < ε0. (4.15)

Now applying Lemma 4.2.2, completes the proof.

Remark 4.2.4 The assumption λN+1 > λN is essential. Indeed, otherwise there

is a possibility that ψN converges to φN+1 in L2 norm and the result of Theo-

rem 4.2.3 would clearly not hold.

Theorem 4.2.5 Using the above notations, the eigenvalues (σ1, . . . , σN) of matrix

〈ΨT
N , ĤΨT

N〉 converge, as µ→∞, to the eigenvalues (λ1, . . . , λN) of the Hamilto-

nian Ĥ.

76

Proof: Using the same notation as before, let ϕi, for i = 1, . . . , N , be the unitary

transformation of the eigenfunctions φ1, . . . , φN as described by Theorem 4.2.3.

Let 〈ΦT
N , ĤΦN〉 be the N × N matrix with (j, k)-th entry equal to 〈ϕj, Ĥϕk〉.

The objective is to show that matrix 〈ΨT
N , ĤΨN〉 converges to matrix 〈ΦT

N , ĤΦN〉

entry-wise. This would complete the proof because matrix 〈ΦT
N , ĤΦN〉 has the

same eigenvalues (λ1, . . . , λN) as the Hamiltonian (i.e., functions {ϕi}Ni=1 are a

unitary transformation of the eigenfunctions {φi}Ni=1). To that end, it suffices to

show that

〈ψi, Ĥψj〉 → 〈ϕi, Ĥϕj〉 for i, j = 1, . . . , N.

Suppose

ϕi =
N∑
k=1

a′ikφk for i = 1, . . . , N,

and

ψi =
∞∑
k=1

aikφk for i = 1, . . . , N.

The result of Theorem 4.2.3 yields that

‖ψi − ϕi‖2
2 =

N∑
k=1

|aik − a′ik|2 +
∞∑

k=N+1

|aik|2 → 0, as µ→∞. (4.16)

This also implies that as µ→∞, for i = 1 . . . , N ,

aik → a′ik when 1 ≤ k ≤ N and aik → 0 when k > N. (4.17)

Since
∑N

i=1〈φi, Ĥφi〉 =
∑N

i=1〈ϕi, Ĥϕi〉, from the proof of Theorem 4.2.3 (i.e.

equation (4.15)), one can conclude that

N∑
i=1

〈ψi, Ĥψi〉 →
N∑
i=1

〈ϕi, Ĥϕi〉 as µ→∞.

Rewriting the above expression,

N∑
i=1

∞∑
k=1

λk|aik|2 →
N∑
i=1

N∑
k=1

λk|a′ik|2 as µ→∞.

77

Relationships (4.17) yield that for any finiteM > N ,
∑N

i=1

∑M
k=1 λk|aik|2 converges

to
∑N

i=1

∑N
k=1 λk|a′ik|2 as µ→∞. Hence,

N∑
i=1

∞∑
k=M

λk|aik|2 → 0 µ→∞. (4.18)

Now for i, j = 1, . . . , N , consider

〈ψi, Ĥψj〉 − 〈ϕi, Ĥϕj〉 =
∞∑
k=1

λka
∗
ikajk −

N∑
k=1

λka
′∗
ika
′
jk

=
N∑
k=1

λk(a
∗
ikajk − a′∗ika′jk) +

∞∑
k=N+1

λka
∗
ikajk (4.19)

The first summation in line (4.19) goes to zero as µ→∞, because of (4.17). If all

λk’s are negative (i.e. and therefore bounded, as they are arranged in nondecreas-

ing order), then a simple application of Cauchy-Schwarz and using (4.16), implies

that the second summation in line (4.19) also goes to zeros as µ→∞. Otherwise,

there exist finite M greater than N such that for k > M , λk is positive. Next

write the second summation in line (4.19) as

M∑
k=N+1

λka
∗
ikajk +

∞∑
k=M+1

λka
∗
ikajk.

Again the first summation in the above line goes to zero as µ → ∞ because of

(4.17). For the second summation in the above expression, note that by Cauchy-

Schwarz ∣∣∣∣∣
∞∑

k=M+1

λka
∗
ikajk

∣∣∣∣∣ ≤
(

∞∑
k=M+1

λk|aik|2
)1/2(∞∑

k=M+1

λk|ajk|2
)1/2

.

The reason that we use λk instead of |λk| on the RHS is due to the assumption

that λk’s are positive for k > M . Equation (4.18), in particular, yields that the

RHS of the above expression goes to zero. Thus, it is shown that the expression

on line (4.19) goes to 0 as µ→∞. The result follows.

Remark 4.2.6 Observe that Theorem 4.2.5 does not immediately follow from the

result of Theorem 4.2.3. This is due to the fact that the Hamiltonian Ĥ is not

generally a bounded operator on L2 functions.

78

4.3 First Compressed Mode with Zero Potential

This section provides an analytic formula for the first compressed modes, for

potential V (x) = 0. This formula was derived in [50, equation 9], under symmetry

and positivity assumptions which are proved here. The result is used later in the

proof of Theorem 4.4.1.

Let Ω = [0, L]d. Denote

‖f‖p =

(∫
Ω

|f |p dx

)1/p

,

and define functional J : L2(Ω)→ R+ by

J [f] :=
1

µ
‖f‖1 + 〈f, Ĥf〉.

By the first compressed mode ψ, we mean the minimizer of J [ψ] subject to the

constraint that ‖ψ‖2 = 1.

Proposition 4.3.1 For V (x) = 0, the first compressed mode ψ is symmetric, i.e.

ψ(x) = ψ(|x|), and can be taken to be nonnegative.

Proof: First we show that the first compressed mode can be taken to be non-

negative. Take the function ψ, which may have positive and negative values, and

replace it by |ψ|. Since this does not change the values of |ψ| and |∇ψ|, it does not

change the values of the L2 norm or of J . It follows that |ψ| is also a minimizer

of J .

Next we show that nonnegative ψ is symmetric. Let ψ∗ denote the “symmetric

decreasing rearrangement” of ψ (i.e. see for example [39]). By construction ψ∗ is

symmetric and it is well known that

‖ψ‖p = ‖ψ∗‖p for 1 ≤ p. (4.20)

Moreover, from so-called Pólya-Szegő inequality we conclude that

‖∇ψ∗‖2 ≤ ‖∇ψ‖2. (4.21)

79

The inequality sign in the above expression is strict unless ψ is symmetric. Equa-

tions (4.20) and (4.21) imply that ‖ψ∗‖2 = 1 and J [ψ∗] ≤ J [ψ]. Since ψ is the

minimizer of J , it must be the case that ψ is symmetric.

Next, using the fact that ψ is spherically symmetric, we find explicit solution

for the first compressed mode when V (x) = 0; that is, the minimizer of the

variational problem:

ψ1 = argmin
ψ

1

µ

∫
Ω

|ψ|dx− 1

2

∫
Ω

ψ∆ψdx s.t.

∫
Ω

ψ(x)2dx = 1. (4.22)

First consider d = 1. The Euler-Lagrange equation in 1D is

−∂2
xψ1 +

1

µ
sign(ψ1) = λψ1. (4.23)

Using the result of Proposition 4.3.1 and without loss of generality assume that

ψ1 is symmetric around x = L/2. Then, the solution of (4.22) is

ψ1 =


1

λµ
[1 + cos(

√
λ(x− L/2))] if |x− L/2| ≤ l,

0 if l ≤ |x− L/2| ≤ L,
(4.24)

where l = π/
√
λ and λ = (3π)2/5µ−4/5. Here ψ1 has compact support [L/2 −

l, L/2 + l] if µ is small enough satisfying l = π/
√
λ < L. Note that ψ1 = ∂xψ1 = 0

and ∂2
xψ1 has a jump of −µ−1 at the boundary x = L/2 + l of the support of ψ1,

which are all consistent with equation (4.23). From this simple 1D example, it

is clear that L1 regularization can naturally truncate solutions to the variational

problem given by equation (4.22). Moreover, we also observe that the smaller µ

will provide a smaller region of compact support.

The 1D solution (4.24) can be generalized to dimension d > 1, as

ψ1 =


1

λµ
(1− U−1

0 U(
√
λ|x− x0|)) if |x− x0| ≤ l,

0 if l ≤ |x− x0| ≤ L,
(4.25)

in which x0 is the center of the cube [0, L]d and U(y) = U(r = |y|) (for y ∈ Rd)

is the solution of ∆U = −U , i.e.,

r2∂2
rU + (d− 1)r∂rU + r2U = 0, (4.26)

80

and U0 = U(r0), l = r0/
√
λ, λ = µ−4/(d+4)U

2/(d+4)
1 . Here r0 is the smallest

(nonnegative) solution of ∂rU(r) = 0 and U1 =
∫
|y|<r0(1 − U−1

0 U(|y|))2 dy in

which y is in Rd. For d = 2, U(r) = J0(r) is the 0-th Bessel function of the first

kind, and for d = 3, U(r) = sinc(r) = sin(r)/r.

The following proposition follows directly from this formula:

Proposition 4.3.2 When potential V (x) = 0 for all x ∈ Ω and µ is sufficiently

small, the volume of the support of the first compressed mode ψ1 is proportional

to µ2d/(4+d), where the proportionality constant depends only on d. Moreover,∫
Ω

(
1

µ
|ψ1|+

1

2
|∇ψ1|2

)
dx = C1µ

−4/(4+d),

where C1 is some fixed constant depending on d.

Proof: From equation (4.25), observe that support of the first compressed mode

is a sphere of radius l. Since l is proportional to µ2/(4+d), the volume of the sphere

is proportional to µ2d/(4+d).

The second part of the proposition also follows from equation (4.25) by straight-

forward calculations.

4.4 Upper Bounds on the Volume of Support of Com-

pressed Modes

This section contains the second main result of this chapter. In Theorem 4.4.1, we

establish an asymptotic upper bound on the volume of the support of compressed

modes (CMs) in terms of regularization parameter µ. This proves that CMs are

spatially localized.

The first N compressed modes {ψi}Ni=1 are defined by (4.1). Using integration

81

by parts, we see that ψi’s solve the following constrained optimization problem

{ψ1, . . . , ψN} = argmin
ψ̃1,...,ψ̃N

N∑
i=1

∫
Ω

(
1

µ
|ψ̃i|+

1

2
|∇ψ̃i|2 + V (x)ψ̃i

2
)
dx

s.t.

∫
Ω

ψ̃jψ̃kdx = δjk. (4.27)

Because we are interested in solutions related to physics and engineering, we

assume that the above variational problem has solutions that are continuous in

Ω. In general, to ensure that a constrained variational problem has a minimizer,

the Lagrangian and the functions that define the constraints need to satisfy cer-

tain conditions. Typical conditions required to prove existence of minimizers are

coercivity condition and convexity of Lagrangian in terms of the differentials. It

is easy to see that the Lagrangian in variational problem (4.27) satisfies these two

conditions. Moreover, the functions that define the constraints in problem (4.27)

are well behaved and bounded above by quadratic functions. Full details on the

existence of minimizers to problem (4.27) can be found in standard textbooks on

variational calculus (see for example proof of theorem 1 in section 8.4.1 of [26] for

general outline of how the proof proceeds).

On the other hand, we do not make any claim on the uniqueness of solutions in

variational problem (4.27). In particular, if we eliminate the L1 term in problem

(4.27) (i.e. formally set µ = ∞), then any unitary transformation of solutions

{ψi}Ni=1 is also a minimizer to the variational problem.

Theorem 4.4.1 Using the above notation, there exist µ0 > 0, depending on val-

ues of L, N , and d, such that for µ < µ0 the corresponding compressed modes

{ψi}Ni=1 satisfy

|supp(ψi)| ≤ Cµ2d/(4+d) for i = 1, . . . , N.

Here, C is a constant whose value depends on N , d, and ‖V ‖∞.

82

Proof: The proof consist of four parts:

Step 1: Finding Euler-Lagrange equations

For any function u, let p(u) denote an element of subdifferential of |u|, that is

p(u) =


1 if u > 0

∈ [−1, 1] if u = 0

−1 if u < 0.

From the theory of variational calculus with constraints (i.e. see for example

[26, Chapter 8]) we know that the solutions of (4.27) are weak solutions of the

following system of nonlinear boundary value problem:

For i = 1, . . . , N ,

1

µ
p(ψi) + (2V (x)− 2λi)ψi −∆ψi −

∑
j 6=i

λijψj = 0 in Ω (4.28)

where constants λi and λij (with λij = λji) are Lagrange multipliers corresponding

to orthonormality constraints∫
Ω

ψ2
i = 1, and

∫
Ω

ψiψj = 0, for i, j = 1, . . . , N. (4.29)

Satisfying system of Euler-Lagrange equations (4.28) is a necessary but not

sufficient condition for solutions of (4.27).

Step 2: Upper bounds for λi, ‖ψi‖1, and ‖∇ψi‖2

For each i multiply both sides of equation (4.28) by ψi(x) and integrate over

domain Ω:∫
Ω

(
1

µ
p(ψi)ψi + (2V (x)− 2λi)ψ

2
i − (∆ψi)ψi −

∑
j 6=i

λijψjψi

)
dx = 0,

which, using orthonormality conditions (4.29) and integration by parts, implies

that
1

µ

∫
Ω

|ψi|dx + 2

∫
Ω

V (x)ψ2
i dx− 2λi +

∫
Ω

|∇ψi|2dx = 0.

83

Therefore,

λi =
1

2µ

∫
Ω

|ψi|dx +

∫
Ω

V (x)ψ2
i dx +

1

2

∫
Ω

|∇ψi|2dx. (4.30)

Next, let {fi}i=Ni=1 be the compressed modes when potential V (x) is zero every-

where; that is:

{f1, . . . , fN} = argmin
f̃1,...,f̃N

N∑
i=1

∫
Ω

(
1

µ
|f̃i|+

1

2
|∇f̃i|2)dx s.t.

∫
Ω

f̃j f̃kdx = δjk.

(4.31)

Observe that

N∑
i=1

∫
Ω

(
1

µ
|ψi|+

1

2
|∇ψi|2)dx−N‖V ‖∞ ≤

N∑
i=1

∫
Ω

(
1

µ
|ψi|+

1

2
|∇ψi|2 + V (x)ψ2

i)dx

≤
N∑
i=1

∫
Ω

(
1

µ
|fi|+

1

2
|∇fi|2 + V (x)f 2

i)dx

≤
N∑
i=1

∫
Ω

(
1

µ
|fi|+

1

2
|∇fi|2)dx +N‖V ‖∞,

(4.32)

where we used definition (4.27) in the second line. For the first and third line, we

used orthonormality of fj’s and ψj’s to conclude that for each j

|
∫

Ω

V (x)ψ2
j | ≤

∫
Ω

|V (x)|ψ2
j ≤ ‖V ‖∞ and |

∫
Ω

V (x)f 2
j | ≤

∫
Ω

|V (x)|f 2
j ≤ ‖V ‖∞.

(4.33)

Now from Proposition 4.3.2, we know that when potential V (x) is zero every-

where, the first compressed mode f has support whose volume is proportional to

µ2d/(4+d). It follows that for µ sufficiently small, N disjoint copies (i.e. translates)

of f can be placed in Ω, and these N functions are a solution for problem (4.31).

So Proposition 4.3.2 implies that for µ sufficiently small:

N∑
i=1

∫
Ω

(
1

µ
|fi|+

1

2
|∇fi|2)dx = C1Nµ

−4/(4+d),

for some fixed constant C1, depending on d. Using this in equation (4.32) and

84

rearranging, we have

N∑
i=1

∫
Ω

1

µ
|ψi|dx +

N∑
i=1

∫
Ω

1

2
|∇ψi|2dx ≤ C1Nµ

−4/(4+d) + 2N‖V ‖∞.

Because each of the summands in the left hand side of above inequality is positive,

there exist constant C2 (i.e. depending on d, N and ‖V ‖∞) such that∫
Ω

1

µ
|ψi|dx ≤ C2µ

−4/(4+d) and

∫
Ω

|∇ψi|2dx ≤ C2µ
−4/(4+d) for i = 1, . . . , N.

(4.34)

Moreover, substituting the above inequalities into (4.30) and using (4.33), it fol-

lows that for small enough µ,

λi ≤
C2

2
µ−4/(4+d) + ‖V ‖∞ +

C2

2
µ−4/(4+d) ≤ C3µ

−4/(4+d). (4.35)

Step 3: Upper bounds for λij’s

Fix i. For k 6= i multiply both sides of equation (4.28) by ψk(x) and integrate

over Ω:∫
Ω

(
1

µ
p(ψi)ψk + (2V (x)− 2λi)ψiψk − (∆ψi)ψk −

∑
j 6=i

λijψjψk

)
dx = 0,

which, using orthonormality conditions (4.29) and integration by parts, implies

that

1

µ

∫
Ω

p(ψi)ψkdx + 2

∫
Ω

V (x)ψiψkdx +

∫
Ω

(∇ψi) · (∇ψk)dx− λik = 0.

Therefore,

λik =
1

µ

∫
Ω

p(ψi)ψkdx + 2

∫
Ω

V (x)ψiψkdx +

∫
Ω

(∇ψi) · (∇ψk)dx. (4.36)

In view of (4.34),∣∣∣∣ 1µ
∫

Ω

p(ψi)ψkdx

∣∣∣∣ ≤ 1

µ

∫
Ω

|ψk|dx ≤ C2µ
−4/(4+d).

85

Also, note that by Cauchy-Schwarz and orthonormality of ψi and ψk,∣∣∣∣∫
Ω

V (x)ψiψkdx

∣∣∣∣ ≤ ‖V ‖∞ ∫
Ω

|ψi||ψk|dx

≤ ‖V ‖∞
(∫

Ω

ψ2
i dx

)1/2(∫
Ω

ψ2
kdx

)1/2

= ‖V ‖∞.

Finally, using Cauchy-Schwarz and equation (4.34),∫
Ω

(∇ψi) · (∇ψk)dx ≤
(∫

Ω

|∇ψi|2dx
)1/2(∫

Ω

|∇ψk|2dx
)1/2

≤ (C2µ
−4/(4+d))1/2(C2µ

−4/(4+d))1/2 = C2µ
−4/(4+d).

Substituting, the last three inequalities into equation (4.36), shows that for

small enough µ

λik ≤ C2µ
−4/(4+d) + 2‖V ‖∞ + C2µ

−4/(4+d) ≤ C4µ
−4/(4+d). (4.37)

Note that constant C4 depends on d, N , and ‖V ‖∞.

Step 4: Bounding the volume of the support of ψi’s

For each i multiply both sides of equation (4.28) by

sgn(ψi) =


1 if ψi > 0

0 if ψi = 0

−1 if ψi < 0

and integrate over domain Ω. It follows that

1

µ
|supp(ψi)|+

∫
Ω

(2V (x)− 2λi)|ψi|dx−
∫

Ω

sgn(ψi)∆ψidx

−
∑
j 6=i

λij

∫
Ω

ψjsgn(ψi)dx = 0. (4.38)

Define

Ω+ = {x ∈ Ω : ψi(x) > 0},

86

and

Ω− = {x ∈ Ω : ψi(x) < 0}.

According to Green’s formula∫
Ω+

∆ψidx =

∫
∂Ω+

∂ψi
∂ν

dS ≤ 0,

where ν is outward pointing unit normal vector along ∂Ω+. Since ψi is positive in

Ω+ and becomes zero on ∂Ω+ (i.e. recall that ψi is continuous), the RHS of above

expression is not positive. In order to apply Green’s theorem, we need ∂Ω+ to be

continuously differentiable. Nevertheless, if this is not the case, we approximate

function ψi by a sequence of functions for which the corresponding boundary is

C1, and we can still conclude the above inequality.

With a similar argument, we have that

∫
Ω−

∆ψidx ≥ 0.

Hence, ∫
Ω

sgn(ψ)∆ψidx =

∫
Ω+

∆ψidx−
∫

Ω−
∆ψidx ≤ 0.

Using the above inequality in (4.38) and rearranging, we conclude that

1

µ
|supp(ψi)|

≤
∫

Ω

(2λi − 2V (x))|ψi|dx +
∑
j 6=i

λij

∫
Ω

|ψj|dx

≤ (2λi + 2‖V ‖∞)

∫
Ω

|ψi|dx +
∑
j 6=i

λij

∫
Ω

|ψj|dx

≤ (2C3µ
−4/(4+d) + 2‖V ‖∞)(µC2µ

−4/(4+d)) + (N − 1)C4µ
−4/(4+d)(µC2µ

−4/(4+d)),

where the last line comes from equations (4.35), (4.37) and (4.34). Hence, for each

i = 1, . . . , N , when µ is sufficiently small

|supp(ψi)| ≤ Cµ2d/(4+d),

87

where C is a constant depending on N , d, and ‖V ‖∞. This completes the proof

of Theorem 4.4.1.

Remark 4.4.2 In view of Proposition 4.3.2, the asymptotic bound of Theorem

4.4.1 is tight for the case V (x) = 0.

Remark 4.4.3 Note that the upper bound estimate for the volume of the support

of compressed modes is independent of the value of L. The value of L becomes

important only in determining the value of µ0. Indeed, as L→∞, µ0 →∞.

4.5 Effect of Regularization Term

As noted earlier, the regularization parameter µ controls how spatial localization of

the corresponding compressed modes are. Indeed, in Section 4.4 we demonstrated

that the volume of the support of compressed modes is bounded above by a quan-

tity that depends on µ. It is of interest to establish relationships between different

sets of compressed modes corresponding to different values of regularization pa-

rameter µ. To be specific, let {ψ(1)
i }Ni=1 and {ψ(2)

i }Ni=1 be the CMs corresponding

to parameters µ1 and µ2, with µ1 < µ2. That is,

{ψ(1)
1 , . . . , ψ

(1)
N } = argmin

ψ̃1,...,ψ̃N

N∑
i=1

1

µ1

‖ψ̃i‖1 + 〈ψ̃i, Ĥψ̃i〉 s.t. 〈ψ̃j, ψ̃k〉 = δjk, (4.39)

and

{ψ(2)
1 , . . . , ψ

(2)
N } = argmin

ψ̃1,...,ψ̃N

N∑
i=1

1

µ2

‖ψ̃i‖1 + 〈ψ̃i, Ĥψ̃i〉 s.t. 〈ψ̃j, ψ̃k〉 = δjk, (4.40)

Proposition 4.5.1 Using the above notation,

N∑
i=1

‖ψ(1)
i ‖1 ≤

N∑
i=1

‖ψ(2)
i ‖1.

Proof: By way of contradiction, assume that

N∑
i=1

‖ψ(2)
i ‖1 <

N∑
i=1

‖ψ(1)
i ‖1.

88

Multiplying both sides by (1/µ1 − 1/µ2) > 0, gives

N∑
i=1

(
1

µ1

− 1

µ2

)‖ψ(2)
i ‖1 <

N∑
i=1

(
1

µ1

− 1

µ2

)‖ψ(1)
i ‖1. (4.41)

On the other hand, minimality property of (4.40) implies

N∑
i=1

1

µ2

‖ψ(2)
i ‖1 + 〈ψ(2)

i , Ĥψ
(2)
i 〉 ≤

N∑
i=1

1

µ2

‖ψ(1)
i ‖1 + 〈ψ(1)

i , Ĥψ
(1)
i 〉. (4.42)

Adding both sides of equations (4.41) and (4.42), yields

N∑
i=1

1

µ1

‖ψ(2)
i ‖1 + 〈ψ(2)

i , Ĥψ
(2)
i 〉 ≤

N∑
i=1

1

µ1

‖ψ(1)
i ‖1 + 〈ψ(1)

i , Ĥψ
(1)
i 〉.

This last equation, contradicts the minimality property of (4.39). The result

follows.

The above proposition shows that as µ decreases, the sum of the L1-norm

of the corresponding compressed modes decreases monotonically. We conjecture

that the sum of the volume of the support of compressed modes also decreases

monotonically as µ decreases:

Conjecture 4.5.2 Using the above notation,

N∑
i=1

|supp(ψ
(1)
i)| ≤

N∑
i=1

|supp(ψ
(2)
i)|.

4.6 Conclusions

This chapter presented two analytic treatments of compressed modes, which were

introduced in [50] as a way of finding spatially localized approximate solutions for

the Schrödinger operator.

First, we proved consistency results for compressed modes. It is shown that

under some necessary assumptions on the spectrum of the Hamiltonian, as the

regularization term in the non-convex optimization problem (4.1) vanishes, the

89

compressed modes converge to a unitary transformation of the eigenfunctions of

the Hamiltonian. We also verify a conjecture in [50].

Second, we established an asymptotic upper bound on the volume of the sup-

port of compressed modes. This proves that compressed modes are spatially

localized.

90

CHAPTER 5

Theory and Fast Algorithms for Shift

Orthogonal Functions

This chapter presents a theoretical analysis of a particular class of basis functions

called Shift Orthogonal Basis Functions. These basis functions are used to de-

velop a fast algorithm for projecting a given function to the set of shift orthogonal

functions (i.e. the set containing functions with unit L2 norm that are orthogo-

nal to their prescribed shifts). The algorithm can be parallelized easily and its

computational complexity is bounded by O(M log(M)), where M is the number

of coefficients used for storing the input.

Let Ω = [0, L1] × · · · × [0, Ld] be a bounded, periodic domain. Let w =

(w1, · · · , wd) ∈ Rd
+ be a basis of a d-dimensional lattice, and define

Γw = {jw := (j1w1, · · · , jdwd) | j = (j1, · · · , jd) ∈ Zd}. (5.1)

Note that to make the boundary of Ω periodic, we require that Li be divisible by

wi, for i = 1, . . . , d. Endow Ω with the usual inner product

〈f, g〉 =

∫
Ω

f ∗g dx.

For any function f(x) ∈ L2(Ω), we say f is shift orthogonal, if it satisfies shift

orthogonality constraints :∫
Ω

f(x)∗f(x− jw)dx = δj0 for all jw ∈ Γw. (5.2)

Shift orthogonality constraints arise naturally in many applications of science

and engineering. However, due to the numerical and theoretical challenges in

91

imposing the shift orthogonality constraints, these constraints have not received

much attention in the literature.

In this chapter we propose a very fast algorithm for finding a shift orthogonal

function that is closest in L2 norm to a given function (i.e. projection to the set of

shift orthogonal functions). Note that shift orthogonal functions constitute a set

and not a vector space. There are many potential applications for the algorithm

described in this chapter. As an example, in Section 5.4 we demonstrate how the

algorithm increases the speed in computing Compressed Plane Waves (CPWs)

described in [51]. Further applications of the algorithm will be investigated in

subsequent research projects.

In order to devise the algorithm we introduce the notion of Shift Orthogonal

Basis Functions (SOBFs) and develop some theory for them. For one dimensional

periodic domain [0, L1] we call a family of functions

{ξij(x)}i=∞,j=L1/w1−1
i=1,j=0 ,

with ξij(x) = ξi0(x− jw1), Shift Orthogonal Basis Functions (SOBFs) if they form

an orthonormal basis for space L2([0, L1]). We refer to superscript index i as the

depth index, and subscript index j as the shift index. For higher dimensional peri-

odic domains, a complete set of functions is called SOBFs if they are formed from

the tensor product of one dimensional SOBFs. There might be other analogous

functions that are not formed from tensor products, but they are not studied here.

Section 5.3 describes a concrete example of SOBFs with certain nice properties.

It turns out that SOBFs have been of interest to quantum mechanics and

signal analysis communities (i.e. although, the orthonormal basis considered in

these literatures are usually defined in domain Rd, instead of periodic bounded

domains). In [67, 59], a numerical example of SOBFs, called phase space Wannier

functions, are provided that are exponentially localized in time and frequency

domain and for which the matrix of the Laplacian operator is near-diagonal (i.e.

92

see [59, equations 2.1, 2.3 and 2.5]). Reference [22] provides a simple description

of certain SOBFs, called Wilson bases, whose Fourier transform have specific

bimodal form (see [22, equations 1.9a and 1.9b]). An explicit example of Wilson

basis with exponential decay in time and frequency domain is also constructed

in [22] using rapidly converging superpositions of Gaussians (i.e. however, the

Laplacian matrix is no longer near-diagonal for this basis). Other examples of

Wilson basis are presented in [37] and [1].

The remainder of this chapter consists of the following: Section 5.1 devel-

ops some theory regarding SOBFs that is used in devising the fast algorithm.

Section 5.2 contains the description of the fast algorithm and highlights some of

its important properties including its computational complexity. Section 5.3 de-

scribes a concrete example of SOBFs, which we call Shift Orthogonal Plane Waves

(SOPWs), that have certain nice properties. Section 5.4 gives an application of

the fast algorithm in generating CPWs. Section 5.5 presents some concluding re-

marks. Appendices C, D and E contain proofs for properties of SOPWs mentioned

in Section 5.3.

5.1 Shift Orthogonal Basis Functions (SOBFs)

This section develops some theory for SOBFs in multidimensional domains. The

objective in this section is to develop methods that are specialized to shift orthog-

onality and not to develop new tools for tensor analysis. In particular, Lemma

5.1.2 provides a useful characterization of shift orthogonal functions. For the ease

of exposition, the concepts are illustrated for 2D domain. The results to other

dimensions can be extended in the trivial way.

By scaling, it is assumed without loss of generality that Ω = [0, L1]×[0, L2] and

the length of the shift in each coordinate is unit length (i.e. L1 and L2 are replaced

by L1/w1 and L2/w2, respectively). Because SOBFs in 1D form an orthonormal

93

basis, tensor product can be used to form an orthonormal basis for 2D. That is,

any function f ∈ L2(Ω) can be expressed by

f(x1, x2) =
∞∑

i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

ai1,i2j1,j2
ξi1j1(x1)ξi2j2(x2). (5.3)

Remark 5.1.1 In what follows i1 and i2 and their primes (i.e. i′1, i′′2, etc.)

take value from 1, 2, Indices j1, s1 and their primes take value from the

set {0, . . . , L1 − 1}. Indices j2 and s2 and their primes take value from the set

{0, 1, . . . , L2−1}. Also addition and subtraction for indices j1, s1 and their primes

are performed modulo L1. Similarly, addition and subtraction for indices j2, s2

and their primes are performed modulo L2.

Note that

f(x1 − s1, x2 − s2) =
∞∑

i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

ai1,i2j1,j2
ξi1j1(x1 − s1)ξi2j2(x2 − s2)

=
∞∑

i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

ai1,i2j1,j2
ξi1j1+s1

(x1)ξi2j2+s2
(x2)

=
∞∑

i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

ai1,i2j1−s1,j2−s2ξ
i1
j1

(x1)ξi2j2(x2). (5.4)

Also, suppose

g(x1, x2) =
∞∑

i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

bi1,i2j1,j2
ξi1j1(x1)ξi2j2(x2).

Because SOBFs in 2D form an orthonormal set,∫
g(x1, x2)∗f(x1 − s1, x2 − s2) dx =

∞∑
i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

bi1,i2j1,j2

∗
ai1,i2j1−s1,j2−s2 . (5.5)

We use a specific multi-index notation

(i1, i2; j1, j2)i1=∞,i2=∞,j1=L1−1,j2=L2−1
i1=1,i2=1,j1=0,j2=0 ,

to refer to the entries of an infinite dimensional vector. To be rigorous, there is a

(non-unique) one-to-one and onto mapping

ρ : N× N× {0, . . . , L1 − 1} × {0, . . . , L2 − 1} → N.

94

Indeed, by (i1, i2; j1, j2), we mean ρ((i1, i2; j1, j2)); however, to avoid cumbersome

notation, we just use (i1, i2; j1, j2) to refer to the positive integer instead. As it

will be seen shortly, i1 and j1 are related to depth index and shift index for the

first coordinate, respectively. Similarly, i2 and j2 are related to the depth index

and shift index for the second coordinate, respectively. We also use multi-index

notation

(s1, s2)s1=L1−1,s2=L2−1
s1=0,s2=0 ,

to refer to the entries of a vector of length L1L2. Again, to be rigorous, there is

a (non-unique) one-to-one and onto mapping

ρ̃ : {0, . . . , L1 − 1} × {0, . . . , L2 − 1} → {1, 2, . . . , L1L2}.

Indeed, by (s1, s2), we mean ρ̃((s1, s2)); however, to avoid cumbersome notation,

we just use (s1, s2) to refer to the elements of {1, . . . , L1L2}.

In view of (5.3), a function f can be represented in SOBFs basis using infinite

dimensional vector

SOBF(f)(i1, i2; j1, j2) := ai1,i2j1,j2
. (5.6)

Also for any infinite dimensional vector a ∈ CN, define

ISOBF(a) :=
∞∑

i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

a(i1, i2; j1, j2)ξi1j1(x1)ξi2j2(x2). (5.7)

For any infinite dimensional vector v and all pairs (s1, s2), define transforma-

tion S(s1, s2) in the following way:

ṽ = S(s1, s2)v if and only if ṽ(i1, i2; j1, j2) = v(i1, i2; j1 − s1, j2 − s2).

Note that from (5.4),

SOBF(f(x1 − s1, x2 − s2)) = S(s1, s2)SOBF(f(x1, x2)).

In view of (5.5), for s1, s
′
1 = 0, . . . , L1 − 1 and s2, s

′
2 = 0, . . . , L2 − 1:

〈g(x1−s1, x2−s2), f(x1−s′1, x2−s′2)〉 = 〈S(s1, s2)SOBF(g), S(s′1, s
′
2)SOBF(f)〉.

(5.8)

95

Define Set of Shift Orthogonal as follows:

SSO = {v ∈ CN : 〈v, S(s1, s2)v〉 = δ0s1δ0s2 for all s1 and s2}

= {v ∈ CN : 〈S(s′1, s
′
2)v, S(s1, s2)v〉 = δs′1s1δs′2s2 for all s1, s′1, s2 and s′2}.

Observe that SSO is only a set and not a subspace. Moreover, equation (5.8)

implies that f(x1, x2) is shift orthogonal if and only if SOBF(f) ∈ SSO (i.e. see

Lemma 5.1.2).

Define B-transform to be operator B : CN → CN defined by

B(v)(i1, i2; j1, j2) =
∑
`1,`2

e
i2π(

j1
L1
,
j2
L2

)·(`1,`2)
v(i1, i2; `1, `2). (5.9)

The intuition for B-transform is that for every fixed i1 and i2, if v(i1, i2; : , :)

and B(v)(i1, i2; : , :) are thought as L1 × L2 matrices then

B(v)(i1, i2; : , :) = L1L2F−1
2D(v(i1, i2; : , :),

where F−1
2D is the 2D discrete inverse Fourier transform. The inverse of B-transform,

B−1 : CN → CN, is

B−1(v)(i1, i2; j1, j2) =
1

L1L2

∑
`1,`2

e
−i2π(

j1
L1
,
j2
L2

)·(`1,`2)
v(i1, i2; `1, `2).

Similar to the above, if v(i1, i2; : , :) and B−1(v)(i1, i2; : , :) are thought

as L1 × L2 matrices then B−1-transform can be written as

B−1(v)(i1, i2; : , :) =
1

L1L2

F2D(v(i1, i2; : , :)),

where F2D is the 2D discrete Fourier transform.

The importance of B-transform appears in the following two lemmas:

Lemma 5.1.2 For given function f , the followings are equivalent:

1. f is shift orthogonal.

96

2. SOBF(f) ∈ SSO.

3. for all (j1, j2) ∈ {0, . . . , L1 − 1} × {0, . . . , L2 − 1},

‖B(SOBF(f))(: , : ; j1, j2)‖2 = 1.

Lemma 5.1.3 For given functions f and g, the followings are equivalent:

1. for all s1, s
′
1 = 0, . . . , L1 − 1 and s2, s

′
2 = 0, . . . , L2 − 1,

〈g(x1 − s1, x2 − s2), f(x1 − s′1, x2 − s′2)〉 = 0.

2. for all s1 = 0, . . . , L1 − 1 and s2 = 0, . . . , L2 − 1,

〈SOBF(g), S(s1, s2)SOBF(f)〉 = 0.

3. for all j1 = 0, . . . , L1 − 1 and j2 = 0, . . . , L2 − 1,〈
B(SOBF(g))(: , : ; j1, j2),B(SOBF(f))(: , : ; j1, j2)

〉
= 0.

In order to prove the above two lemmas, we need to introduce some more notations

and concepts. We use multi-index notation to define matrices in the following way:

Identify entries of matrix A by A(·|·), where the index to the left of “|” determines

the row number of the entry and the index to the right of “|” determines the

column number of the entry. Let W be the L1L2 × L1L2 matrix defined by

W (s1, s2|j1, j2) =
1√
L1L2

e
−i2π(

s1
L1
,
s2
L2

)·(j1,j2)
.

Let W∞ to be infinite dimensional square matrix defined by

W∞(i1, i2; s1, s2|i′1, i′2; j1, j2) =
1√
L1L2

e
−i2π(

s1
L1
,
s2
L2

)·(j1,j2)
δi1i′1δi2i′2 .

Finally, for any infinite dimensional vector v, let circ(v) be the L1L2 × N matrix

defined by

circ(v)(s1, s2|i1, i2; j1, j2) = (S(s1, s2)v)(i1, i2; j1, j2) = v(i1, i2; j1 − s1, j2 − s2).

97

Note that W and W∞ are unitary matrices (i.e. although the latter is infinite

dimensional and by unitary we mean that W∞W
†
∞ is infinite dimensional diagonal

matrix whose diagonal entries are one). To see this, observe that for example,

(W∞W
†
∞)(i1, i2; s1, s2|i′1, i′2; s′1, s

′
2)

=
∑
i′′1 ,i
′′
2

∑
s′′1 ,s

′′
2

W∞(i1, i2; s1, s2|i′′1, i′′2; s′′1, s
′′
2)W †

∞(i′′1, i
′′
2; s′′1, s

′′
2|i′1, i′2; s′1, s

′
2)

=
∑
i′′1 ,i
′′
2

∑
s′′1 ,s

′′
2

W∞(i1, i2; s1, s2|i′′1, i′′2; s′′1, s
′′
2)W∞(i′1, i

′
2; s′1, s

′
2|i′′1, i′′2; s′′1, s

′′
2)

=
∑
i′′1 ,i
′′
2

∑
s′′1 ,s

′′
2

1√
L1L2

e
−i2π(

s1
L1
,
s2
L2

)·(s′′1 ,s′′2)
δi1i′′1 δi2i′′2

1√
L1L2

e
i2π(

s′1
L1
,
s′2
L2

)·(s′′1 ,s′′2)
δi′1i′′1 δi′2i′′2

=
∑
i′′1

δi1i′′1 δi′1i′′1

∑
i′′2

δi2i′′2 δi′2i′′2

∑
s′′1 ,s

′′
2

1

L1L2

e
i2π(

s′1−s1
L1

,
s′2−s2
L2

)·(s′′1 ,s′′2)

=δi1i′1δi2i′2δs1s′1δs2s′2 .

Another important property thatW andW∞ have is that if circ(v) is multiplied

on left by W and on right by W †
∞, then

(W circ(v)W †
∞)(s1, s2|i1, i2; j1, j2) = δs1j1δs2j2B(v)(i1, i2; j1, j2). (5.10)

To see the above, note that

(W circ(v)W †
∞)(s1, s2|i1, i2; j1, j2)

=
∑
j′1,j
′
2

∑
i′1,i
′
2,s
′
1,s
′
2

W (s1, s2|j′1, j′2)circ(v)(j′1, j
′
2|i′1, i′2; s′1, s

′
2)W †

∞(i′1, i
′
2; s′1, s

′
2|i1, i2; j1, j2)

=
∑
j′1,j
′
2

∑
i′1,i
′
2

∑
s′1,s
′
2

e
−i2π(

s1
L1
,
s2
L2

)·(j′1,j′2)

√
L1L2

v(i′1, i
′
2; s′1 − j′1, s′2 − j′2)

e
i2π(

j1
L1
,
j2
L2

)·(s′1,s′2)

√
L1L2

δi1i′1δi2i′2

=
∑
j′1,j
′
2

∑
`1,`2

e
−i2π(

s1
L1
,
s2
L2

)·(j′1,j′2)

√
L1L2

v(i1, i2; `1, `2)
e
i2π(

j1
L1
,
j2
L2

)·(`1+j′1,`2+j′2)

√
L1L2

=
∑
j′1,j
′
2

1

L1L2

e
i2π(

j1−s1
L1

,
j2−s2
L2

)·(j′1,j′2)
∑
`1,`2

v(i1, i2; `1, `2)e
i2π(

j1
L1
,
j2
L2

)·(`1,`2)

=δs1j1δs2j2B(v)(i1, i2; j1, j2),

98

where (5.9) was used for the last equality. Equality (5.10) is very significant: it

shows how circ(v) can be turned into a “pseudo-diagonal” matrix using unitary

matrices W and W∞. Equation (5.10) is used extensively, in the remainder of this

section.

Finally, for any two infinite dimensional vectors a and b:

(circ(b)circ(a)†)(s1, s2|j1, j2) = 〈S(s1, s2)b, S(j1, j2)a〉. (5.11)

To do this, observe that

(circ(b)circ(a)†)(s1, s2|j1, j2)

=
∑

i1,i2,j′1,j
′
2

circ(b)(s1, s2|i1, i2; j′1, j
′
2)circ(a)†(i1, i2; j′1, j

′
2|j1, j2)

=
∑

i1,i2,j′1,j
′
2

circ(b)(s1, s2|i1, i2; j′1, j
′
2)circ(a)(j1, j2|i1, i2; j′1, j

′
2)

=
∑

i1,i2,j′1,j
′
2

(S(s1, s2)b)(i1, i2; j′1, j
′
2)(S(j1, j2)a)(i1, i2; j′1, j

′
2)

=〈S(s1, s2)b, S(j1, j2)a〉.

Now we are ready to prove Lemmas 5.1.2 and 5.1.3.

Proof of Lemma 5.1.2: The equivalence of 1 and 2 follows easily from (5.8)

(i.e. with g = f) and the definition of SSO. It remains to prove the equivalence

between 2 and 3:

Set v = SOBF(f). Equation (5.11) (i.e., with a = b = v) implies that

v ∈ SSO if and only if (circ(v)circ(v)†)(s1, s2|j1, j2) = δs1j1δs2j2 for all s1, j1, s2

and j2 (i.e. matrix circ(v)circ(v)† is the L1L2 × L1L2 identity matrix).

Next let

V = W circ(v)W †
∞.

Compute V V † in two ways: On one hand, because W∞ is unitary

V V † = W circ(v)W †
∞W∞circ(v)†W † = W circ(v)circ(v)†W †. (5.12)

99

On the other hand, (5.10) yields that

V V †(s1, s2|j1, j2)

=
∑

i1,i2,j′1,j
′
2

V (s1, s2|i1, i2; j′1, j
′
2)V †(i1, i2; j′1, j

′
2|j1, j2)

=
∑

i1,i2,j′1,j
′
2

V (s1, s2|i1, i2; j′1, j
′
2)V (j1, j2|i1, i2; j′1, j

′
2)

=
∑

i1,i2,j′1,j
′
2

B(v)(i1, i2; j′1, j
′
2)δs1j′1δs2j′2B(v)(i1, i2; j′1, j

′
2)δj1j′1δj2j′2

=
∑
i1,i2

|B(v)(i1, i2; j1, j2)|2δs1j1δs2j2

=‖B(v)(: , : ; j1, j2)‖2
2 δs1j1δs2j2 . (5.13)

Now if circ(v)circ(v)† is the identity matrix (i.e. v ∈ SSO), then from (5.12) and

W being unitary, one concludes that V V † is the identity matrix. Hence, by (5.13),

it must be the case that

‖B(v)(: , : ; j1, j2)‖2 = 1,

for all (j1, j2) ∈ {0, . . . , L1 − 1} × {0, . . . , L2 − 1}.

Conversely, if the above holds, then by (5.13), V V † is the identity matrix.

Therefore, because W is a unitary matrix, W †V V †W would be the identity matrix

as well. Equation (5.12), yields that

W †V V †W = circ(v)circ(v)†.

Hence, circ(v)circ(v)† is the identity matrix, which implies v ∈ SSO.

Proof of Lemma 5.1.3: The equivalence of 1 and 2 follows easily from (5.8)

and the fact that

〈SOBF(g), S(s1, s2)SOBF(f)〉 = 0 for all s1 and s2,

is equivalent to

〈S(s1, s2)SOBF(g), S(s′1, s
′
2)SOBF(f)〉 = 0 for all s1, s′1, s2 and s′2. (5.14)

100

It remains to show that (5.14) is equivalent to 3 in Lemma 5.1.3. Let b =

SOBF(g) and a = SOBF(f). Equation (5.11), shows that (5.14) is equivalent to

(circ(b)circ(a)†)(s1, s2|j1, j2) = 0 for all s1, j1, s2 and j2 (i.e. matrix circ(b)circ(a)†

is the L1L2 × L1L2 zero matrix).

Next let

B = W circ(b)W †
∞ and A = W circ(a)W †

∞.

Compute BA† in two ways: On one hand, because W∞ is unitary

BA† = W circ(b)W †
∞W∞circ(a)†W † = W circ(b)circ(a)†W †. (5.15)

On the other hand, (5.10) yields that

BA†(s1, s2|j1, j2)

=
∑

i1,i2,j′1,j
′
2

B(s1, s2|i1, i2; j′1, j
′
2)A†(i1, i2; j′1, j

′
2|j1, j2)

=
∑

i1,i2,j′1,j
′
2

B(s1, s2|i1, i2; j′1, j
′
2)A(j1, j2|i1, i2; j′1, j

′
2)

=
∑

i1,i2,j′1,j
′
2

B(b)(i1, i2; j′1, j
′
2)δs1j′1δs2j′2B(a)(i1, i2; j′1, j

′
2)δj1j′1δj2j′2

=
∑
i1,i2

B(b)(i1, i2; j1, j2)B(a)(i1, i2; j1, j2)δs1j1δs2j2

=〈B(b)(: , : ; j1, j2),B(a)(: , : ; j1, j2)〉 δs1j1δs2j2 . (5.16)

Now if circ(b)circ(a)† is the zero matrix, then (5.15) implies that BA† is the

zero matrix. Hence, by (5.16), it must be the case that

〈B(b)(: , : ; j1, j2),B(a)(: , : ; j1, j2)〉 = 0,

for all (j1, j2) ∈ {0, . . . , L1− 1}× {0, . . . , L2− 1}; which shows 3 in Lemma 5.1.3.

Conversely, if 3 holds, then by (5.16), BA† is the zero matrix. Therefore,

W †BA†W would also be the zero matrix. Equation (5.15) yields that

W †BA†W = circ(b)circ(a)†.

101

Hence, circ(b)circ(a)† is the zero matrix, which implies (5.14).

For any function g ∈ L2(Ω), let Πg denote the projection of g into the set of

shift orthogonal functions; that is,

Πg := argmin
f
‖g − f‖2 subject to f being shift orthogonal.

Indeed using SOBFs basis,

Πg = ISOBF(ProjSSO(SOBF(g))),

where for any b ∈ CN,

ProjSSO(b) := argmin
v
‖b− v‖2 subject to v ∈ SSO.

Observe that in the above two definitions the minimum arguments are not neces-

sarily unique, and Πg and ProjSSO(b) are sets.

Define operator Θ : CN → CN by

Θ(v)(:, :, j1, j2) =


~e if v(:, :, j1, j2) = ~0

v(:,:,j1,j2)
‖v(: , : ,j1,j2)‖2 otherwise,

where ~e is a fixed infinite dimensional real vector with unit L2 norm.

Lemma 5.1.4 For any b ∈ CN,

B−1(Θ(B(b))) ∈ ProjSSO(b).

Proof: Suppose v ∈ SSO and set

p = B(b) and q = B(v).

Note that,

‖b− v‖2
2 =

1

L1L2

‖circ(b)− circ(v)‖2
F =

1

L1L2

‖W circ(b)W †
∞ −W circ(v)W †

∞‖2
F

=
1

L1L2

‖B(b)− B(v)‖2
2 =

1

L1L2

‖p− q‖2
2,

102

where equalities similar to (5.10) were used for the second last equality. Now min-

imizing ‖p−q‖2 amounts to solving L1L2 subproblems: for every j1 = 0, . . . , L1−1

and j2 = 0, . . . , L2 − 1, solve

argmin
∑
i1,i2

|p(i1, i2; j1, j2)− q(i1, i2; j1, j2)|2 subject to
∑
i1,i2

|q(i1, i2; j1, j2)|2 = 1.

(5.17)

The constraints in the above subproblems are due to v ∈ SSO and equivalence of

2 and 3 in Lemma 5.1.2. The solutions to the above subproblems are exactly
q(:, :; j1, j2) = p(:, :; j1, j2)/‖p(:, :; j1, j2)‖2 if ‖p(:, :; j1, j2)‖2 6= 0

any infinite dimensional complex vector with unit L2 norm if ‖p(:, :; j1, j2)‖2 = 0,

that is, projection of p(:, :; j1, j2) into an infinite dimensional ball of radius 1. In

particular, set q = Θ(p) (i.e. choose a fixed real valued vector in the second case

above), in which case, v = B−1(Θ(p)) would be an element of ProjSSO(b).

Remark 5.1.5 Theorem 2.2 in paper [18] and definition of operator Θ, yields

that if an infinite dimensional vector b is real valued, then B−1(Θ(B(b))) is also

real valued. This is why in the case v(:, :, j1, j2) = ~0, we assign to operator Θ the

fixed infinite dimensional vector ~e; which is real valued and has unit L2 norm.

Indeed, (as it is apparent in the proof of Lemma 5.1.4) had we defined operator

Θ to output all infinite dimensional (complex) vector of unit L2 norm in the case

v(:, :, j1, j2) = ~0, then B−1(Θ(B(b))) would have been a set equal to ProjSSO(b);

however, some elements of B−1(Θ(B(b))) would have been complex valued.

5.2 Fast Algorithm for Projection to the Set of Shift Or-

thogonal Functions

For computational purposes, only a finite number of SOBFs basis are used to

represent a function. In this section, assume that for the first coordinate all

103

SOBFs basis whose depth index is smaller or equal to N1 and for the second

coordinate all SOBFs basis whose depth index is smaller or equal to N2 are used

to denote functions in L2(Ω). That is,

g(x1, x2) =
∞∑

i1=1,i2=1

L1−1,L2−2∑
j1=0,j2=0

bi1,i2j1,j2
ξi1j1(x1)ξi2j2(x2) ≈

N1,N2∑
i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

bi1,i2j1,j2
ξi1j1(x1)ξi2j2(x2).

The analysis done in Section 5.1 can be adapted for this situation by simple

modification. In particular, index i1 (and i′1) takes value from 1, . . . , N1 instead

of 1, 2, . . . and index i2 (and i′2) takes value from 1, . . . , N2 instead of 1, 2,

The adapted definition for set SSO with finite depth indices is

SSO(N1N2) = {v ∈ CN1N2L1L2 : 〈v, S(s1, s2)v〉 = δ0s1δ0s2 for all s1 and s2}.

As noted earlier, an important question that arises in optimization problems

that involve shift orthogonality constraints is to find Πg for a given function g; that

is, find a shift orthogonal function f that minimizes ‖g−f‖2. When functions are

expressed in terms of tensor product of one dimensional SOBFs basis (i.e., with

corresponding depth indices smaller or equal to N1 and N2), then the question is

equivalent to: given ~b ∈ CN1N2L1L2 , solve

ProjSSO(N1N2)(~b) = argmin ‖~b− ~v‖2 subject to ~v ∈ SSO(N1N2). (5.18)

Result of Lemma 5.1.4 in Section 5.1 implies that the solution to problem

(5.18) can be obtained using the procedure in Algorithm 1.

104

Algorithm 1: Projection to SSO(N1N2)

Input: ~b

Output: ~v = ProjSSO(N1N2)(~b)

1 for i1 = 1, . . . , N1 and i2 = 1, . . . , N2 do

2 p(i1, i2; : , :) = L1L2F−1
2D(b(i1, i2; : , :)) ; // p = B(b).

3 for j1 = 0, . . . , L1 − 1 and j2 = 0, . . . , L2 − 1 do

4 if ‖p(:, :; j1, j2)‖2 6= 0 then

5 q(:, :; j1, j2) = p(:, :; j1, j2)/‖p(:, :; j1, j2)‖2 ; // q = B(v).

6 else

7 q(:, :; j1, j2) = ~e1 ; // ~e1 is the first canonical basis of

RN1N2.

8 for i1 = 1, . . . , N1 and i2 = 1, . . . , N2 do

9 v(i1, i2; : , :) = 1
L1L2
F2D(q(i1, i2; : , :)) ; // v = B−1(q).

Then, projection of g to the set of shift orthogonal functions is

Πg = ISOBF(ProjSSO(N1N2)(SOBF(g))).

All the results that were developed in Section 5.1 for dimension 2 can also

be easily adapted for domains with other dimensions. For example suppose Ω =

[0, L1] × [0, L2] × [0, L3] (i.e. using appropriate scaling, it is assumed that the

length of the shift along each coordinate is 1), and let

g(x1, x2, x3) ≈
N1,N2,N3∑

i1=1,i2=1,i3=1

L1−1,L2−1,L3−1∑
j1=0,j2=0,j3=0

bi1,i2,i3j1,j2,j3
ξi1j1(x1)ξi2j2(x2)ξi3j3(x3).

Three dimensional version of Algorithm 1 is:

105

Algorithm 2: Projection to SSO(N1N2N3)

Input: ~b

Output: ~v = ProjSSO(N1N2N3)(~b)

1 for i1 = 1, . . . , N1, i2 = 1, . . . , N2 and i3 = 1, . . . , N3 do

2 p(i1, i2, i3; : , : , :) = L1L2L3F−1
3D(b(i1, i2, i3; : , : , :)) ;

// p = B(b).

3 for j1 = 0, . . . , L1 − 1, j2 = 0, . . . , L2 − 1 and j3 = 0, . . . , L3 − 1 do

4 if ‖p(:, :, :; j1, j2, j3)‖2 6= 0 then

5 q(:, :, :; j1, j2, j3) = p(:, :, :; j1, j2, j3)/‖p(:, :, :; j1, j2, j3)‖2 ;

// q = B(v).

6 else

7 q(:, :, :; j1, j2, j3) = ~e1 ; // ~e1 is the first canonical basis of

RN1N2N3.

8 for i1 = 1, . . . , N1, i2 = 1, . . . , N2 and i3 = 1, . . . , N3 do

9 v(i1, i2, i3; : , : , :) = 1
L1L2L3

F3D(q(i1, i2, i3; : , : , :)) ;

// v = B−1(q).

Finally, the one dimensional version of Algorithm 1 for domain Ω = [0, L] (i.e.

again using appropriate scaling, it is assumed that the length of the shift is 1) and

g(x) ≈
N∑
i=1

L−1∑
j=0

bijξ
i
j(x),

is the following:

106

Algorithm 3: Projection to SSO(N)

Input: ~b

Output: ~v = ProjSSO(N)(~b)

1 for i = 1, . . . , N do

2 p(i; :) = LF−1
1D(b(i; :)) ; // p = B(b).

3 for j = 0, . . . , L− 1 do

4 if ‖p(: ; j)‖2 6= 0 then

5 q(: ; j) = p(: ; j)/‖p(: ; j)‖2 ; // q = B(v).

6 else

7 q(: ; j) = ~e1 ; // ~e1 is the first canonical basis of RN.

8 for i = 1, . . . , N do

9 v(i; :) = 1
L
F1D(q(i; :)) ; // v = B−1(q).

Figure 5.1 shows projection of a constant, an absolute value, a Gaussian, and

a sine function on the set of shift orthogonal functions using Algorithm 3.

5.2.1 Computational complexity and important features of the algo-

rithm

This sections describes the computational complexity of Algorithm 1 and high-

lights some of the important properties of this algorithm. The results stay the

same for domains with dimensions other than d = 2.

Let M = L1L2N1N2 be the size of input vector ~b; which indicates the number

of coefficients used to represent the given function. Algorithm 1 consists of three

“for” loops. Each iteration in the first and the last “for” loop can be computed

using O(L1L2 log(L1L2)) operations via inverse Fast Fourier Transform and Fast

Fourier Transform, respectively. Each iteration in the second “loop” can be done

107

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.1: Application of Algorithm 3 to find Πg (dashed line), projection of

function g (solid line) to the set of shift orthogonal functions. In these examples,

function g is constant, absolute value, Gaussian, and sine function with unit L2

norm. In these computations, SOPWs defined in Section 5.3 are used as the set

of SOBFs basis. Here, L = 20, w = 1 (the length of the shifts) and N = 6; that

is we are using total of 120 SOPWs to represent functions.

using O(N1N2). Therefore, Algorithm 1 can be performed using

N1N2O(L1L2 log(L1L2)) + L1L2O(N1N2) +N1N2O(L1L2 log(L1L2))

operations, which leads to computational complexity of

O(M log(L1L2)) < O(M log(M)).

Furthermore, note that each of the “for” loops in Algorithms 1 can be done

in parallel. This enhances the speed of the algorithm even further and makes it

suitable for inputs with large dimensions.

108

Another nice property of Algorithm 1 is that for real valued input vector ~b,

it outputs a real valued vector ProjSSO(N1N2)(~b) (i.e. recall Remark 5.1.5). The

importance of this property is that if function g and SOBFs {ξi1j1(x1)ξi2j2(x2)} are

real valued then SOBF(g) would be a real valued vector, and therefore using

Algorithm 1, the projected Πg would also be real valued.

5.3 Optimal SOBFs: Shift Orthogonal Plane Waves

This section provides an example of real valued SOBFs with certain nice properties

called Shift Orthogonal Plane Waves (SOPWs). As it will be seen shortly, SOPWs

are suitable for numerical computation because there exists an exact prescription

of them in terms of Fourier basis. Therefore, functions can be expanded in terms

of SOPWs very efficiently using FFT and its inverse.

Consider 1D domain Ω = [0, L] with periodic boundary and by scaling (i.e.

replacing L by L/w) assume that w = 1. Furthermore, suppose that L is even.

This assumption is made so that the formulas provided in this section are easier

to express. Nevertheless, the assumption that L is even is not very restrictive as

the parity of L is not significant in many applications.

Recall that functions

φn(x) =
1√
L
ei2πnx/L for n ∈ Z, (5.19)

as well as

{ 1√
L
,

2√
2L

cos(2πnx/L),
2√
2L

sin(2πnx/L)}∞n=1 (5.20)

form orthonormal bases for L2(Ω). Denote the L-th roots of unity by

ωj = ei2πj/L for j = 0, . . . , L− 1.

Shift Orthogonal Plane Waves (SOPWs) are denoted by

{θij(x)}i=∞,j=L−1
i=1,j=0 ,

109

and defined in the following way: set

θ1
j (x) =

1√
L

∑
|n|<L

2

ω−nj φn(x) +
1√
2L

∑
|n|=L

2

ω−nj φn(x) (5.21)

θkj (x) =
1√
L

∑
(k−1)L

2
<|n|< kL

2

(sgn(n)i)k−1ω−nj φn(x)+

+
1√
2L

∑
|n|= (k−1)L

2
, kL

2

(sgn(n)i)k−1ω−nj φn(x) (5.22)

Figure 5.2 plots SOPWs given by equations (5.21) and (5.22) with depth index

ranging from 1 to 6 and shift index equal to L/2 for L = 20.

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

Figure 5.2: From top to bottom, the first 6 SOPWs given by equations (5.21) and

(5.22) with distinct depth index and shift index equal to L/2 for L = 20.

110

Using the expression

1

L

k+L−1∑
n=k

ωnj = δj0, (5.23)

and after some calculations one can verify that for n ≥ 1,

φ0(x) =
1√
L

L−1∑
j=0

θ1
j (x), (5.24)

φn(x) =
(−sgn(n)i)k−1

√
L

L−1∑
j=0

ωnj θ
k
j (x) for

(k − 1)L

2
< |n| < kL

2
, (5.25)

φn(x) =
(−sgn(n)i)k−1

√
2L

(
L−1∑
j=0

ωnj θ
k
j (x)− sgn(n)i

L−1∑
j=0

ωnj θ
k+1
j (x)

)
for |n| = kL

2
.

(5.26)

First note that θij(x) = θi0(x−j). Moreover, it is straightforward using identity

(5.23) to verify that {θij}
i=∞,j=L−1
i=1,j=0 form an orthonormal set. Finally, {θij}

i=∞,j=L−1
i=1,j=0

is complete in L2(Ω) because of relations (5.24), (5.25), (5.26) and completeness

of {φn}∞n=−∞. Hence, the set of SOPWs defined by (5.21) and (5.22) is an example

of SOBFs.

Equations (5.21) and (5.22) can be re-written to represent SOPWs {θij}
i=∞,j=L−1
i=1,j=0

in terms of (5.20):

θ1j (x) =
1

L
+

L/2−1∑
n=1

2

L
cos(

2πn(x− j)
L

) +

√
2

L
cos(

2π(L/2)(x− j)
L

),

for k even,

θkj (x) =
2

L

∑
(k−1)L

2 <n< kL
2

(−1)
k
2 sin(

2πn(x− j)
L

) +

√
2

L

∑
n=

(k−1)L
2 , kL

2

(−1)
k
2 sin(

2πn(x− j)
L

),

for k odd (and k > 1),

θkj (x) =
2

L

∑
(k−1)L

2 <n< kL
2

(−1)
k−1
2 cos(

2πn(x− j)
L

) +

√
2

L

∑
n=

(k−1)L
2 , kL

2

(−1)
k−1
2 cos(

2πn(x− j)
L

),

and in closed form:

θ1j (x) =
1

L

sin(2π(L−12)(x− j)/L)

sin(π(x− j)/L)
+

√
2

L
cos(

2π(L/2)(x− j)
L

),

111

for k even,

θkj (x) =
2

L
(−1)

k
2 sin

(
2π(kL2 −

L
4)(x− j)
L

)[
sin(π(L2 − 1)(x− j)/L)

sin(π(x− j)/L)
+
√

2 cos(
π(x− j)

2
)

]
,

for k odd (and k > 1),

θkj (x) =
2

L
(−1)

k−1
2 cos

(
2π(kL2 −

L
4)(x− j)
L

)[
sin(π(L2 − 1)(x− j)/L)

sin(π(x− j)/L)
+
√

2 cos(
π(x− j)

2
)

]
.

Equations (5.21), (5.22), (5.24), (5.25), and (5.26) suggest that FFT can be

used to switch between Fourier basis and SOPWs efficiently and easily. This

is important for computational purposes as it provides an efficient method to

represent functions in terms of SOPWs.

Another important property of the SOPWs is that θij are the solutions to a

specific variational problem. This is shown in Appendix C. The final important

property of θij is that for any i and j

∂xxθ
i
j ∈ span{θik}k=L−1

k=0 .

This can be seen by direct computation (see Appendix E) or using Euler-Lagrange

equations for the variational problem (see Appendix D).

A disadvantage that SOPWs have, in comparison to Fourier basis (5.19), is

that SOPWs are not eigenfunctions of the derivative operator. Nevertheless, it is

shown in Appendix E that for any i and j,

∂xθ
i
j ∈ span{θi−1

k , θik, θ
i+1
k }

L−1
k=0 .

5.4 Application to Solving CPWs

This section outlines how the projection algorithm described in Section 5.2 is used

to compute Compressed Plain Waves (CPWs) (i.e., see [51]). The shift orthog-

onality constraints in the construction of CPWs makes their computation chal-

112

lenging and numerically inefficient. However, applying the projection algorithm

circumvents these difficulties.

Basic compressed plane waves {ψn}∞n=1 are defined by:

ψ1(x) = argmin
ψ

1

µ

∫
Ω

|ψ(x)| dx +

∫
Ω

ψ(x)Ĥ0ψ(x) dx

s.t.

∫
Ω

ψ(x)ψ(x− jw) dx = δj0, j ∈ Zd, (5.27)

where Ĥ0 = −1
2
∆. The higher modes can be recursively defined as:

ψn+1(x) = argmin
ψ

1

µ

∫
Ω

|ψ(x)| dx +

∫
Ω

ψ(x)Ĥ0ψ(x) dx

s.t.


∫

Ω

ψ(x)ψ(x− jw) dx = δj0, j ∈ Zd∫
Ω

ψ(x)ψi(x− jw) dx = 0, i = 1, · · · , n.
(5.28)

To simplify our discussion, we only consider Ω = [0, L1] × [0, L2], in 2D with

periodic boundary conditions; the algorithms below can be straightforwardly ex-

tended to other dimensions. We use SOPWs given by equations (5.21) and (5.22)

as the SOBFs used in Section 5.2. In particular, we expand the given function g

in terms of SOPWs:

g(x1, x2) =

N1,N2∑
i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

bi1,i2j1,j2
θi1j1(x1)θi2j2(x2).

Operators SOPW and ISOPW are defined in the similar way to definitions (5.6)

and (5.7):

SOPW(g)(i1, i2; j1, j2) := bi1,i2j1,j2
,

and

ISOPW(b) :=

N1,N2∑
i1,i2=1

L1−1,L2−1∑
j1=0,j2=0

bi1,i2j1,j2
θi1j1(x1)θi2j2(x2).

Other examples of SOBFs could also be used . For this application, SOPWs

were chosen mainly due to the efficiency in calculating the result of operators

SOPW and ISOPW from Fourier coefficient (i.e. recall from Section 5.3 that

113

FFT and its inverse provide an efficient procedure to switch between representa-

tion of a function in Fourier basis φn’s and its representation in SOPWs θij’s).

By introducing an auxiliary variable u = ψ, v = ψ, the constrained optimiza-

tion problem is equivalent to the following problem:

ψ1 = argmin
ψ,u

1

µ

∫
|u(x)| dx +

∫
ψĤ0ψ dx

s.t. u = ψ, v = ψ &

∫
v(x)v(x− jw) dx = δj0, j ∈ Z2, (5.29)

which can be solved by an algorithm based on the Bregman iteration (i.e. see

[48, 71, 33]).

Algorithm 4: Solving the first CPW using the projection algorithm

1 Initialize u0 = v0 = ψ1,0, D0 = B0 = 0.

2 while “not converged” do

3 ψ1,k = argmin
ψ

∫
ψĤ0ψ dx +

λ

2

∫
(ψ − uk−1 +Dk−1)2 dx +

r

2

∫
(ψ −

vk−1 +Bk−1)2 dx;

4 vk = argmin
v

r

2

∫
(ψ1,k − v +Bk−1)2 dx, s.t.∫

v(x)v(x− jw) dx = δj0, j ∈ Z2;

5 uk = argmin
u

1

µ

∫
|u| dx +

λ

2

∫
(ψ1,k − u+Dk−1)2 dx;

6 Dk = Dk−1 + ψ1,k − uk;

7 Bk = Bk−1 + ψ1,k − vk.

All the above sub-optmization problems can be efficiently solved as follows:

(2Ĥ0 + λ+ r)ψ1,k = λ(uk−1 −Dk−1) + r(vk−1 −Bk−1),

vk = ISOPW(ProjSSO(N1N2)(SOPW(ψ1,k +Bk−1))),

uk = sgn(ψ1,k +Dk−1) max(0, |ψ1,k +Dk−1| − 1

λµ
).

Similarly, ψn+1 is obtained by solving the optimization problem (5.28) effi-

ciently. Suppose that the first n levels Ψn = {ψ1, · · · , ψn} are already constructed

114

and let am = SOPW(ψm),m = 1, · · · , n. In this case, the goal is to find vk sat-

isfying

vk = argmin
v

∫
(ψn+1,k − v +Bk−1)2 dx,

s.t.


∫
v(x)v(x− jw) dx = δj0, j ∈ Z2∫
v(x)ψm(x− jw) dx = 0, m = 1, · · · , n.

Define

S(Ψn) = span{S(s1, s2)am}s1=L1−1,s2=L2−1,m=n
s1=0,s2=0,m=1 .

Using the SOPWs basis, the above problem is equivalent to solving the following

problem in SOPWs frequency space:

ProjSSO(N1N2)∩S(Ψn)⊥(b) := argmin ‖b− v‖2 s.t. v ∈ SSO(N1N2) ∩ S(Ψn)⊥.

(5.30)

In 5.30, the vector b is given, and the objective is to find vector v closest to b that

is shift orthogonal and perpendicular to a1 to an.

Lemmas 5.1.2 and 5.1.3 show that in order to solve problem (5.30), for each j1

and j2 one needs to find vector zj1,j2 that is closest to B(b)(:, :; j1, j2), perpendicular

to B(am)(:, :; j1, j2) for m = 1, . . . , n, and lies on the unit sphere. Note that by

Lemmas 5.1.2 and 5.1.3, {B(am)(:, :; j1, j2)}m=n
m=1 form an orthonormal set of vectors

for each j1 and j2, because elements of Ψn are constructed such that they are

shift orthogonal and orthogonal to shift span of each other. Hence, zj1,j2 can be

computed in two steps:

• zj1,j2 = B(b)(:, :; j1, j2) −
∑n

m=1〈B(am)(:, :; j1, j2),B(b)(:, :; j1, j2)〉B(am)(:, :

; j1, j2),

• zj1,j2 = zj1,j2/||zj1,j2||2 (if ‖zj1,j2‖2 6= 0).

In summary:

115

Algorithm 5: Projection to SSO(N1N2) ∩ S(Ψn)⊥

Input: b, a1, . . . , an

Output: v = ProjSSO(N1N2)∩S(Ψn)⊥(b)

1 for i1 = 1, . . . , N1 and i2 = 1, . . . , N2 do

2 B(b)(i1, i2; : , :) = L1L2F−1
2D(b(i1, i2; : , :))

3 for j1 = 0, . . . , L1 − 1 and j2 = 0, . . . , L2 − 1 do

4 zj1,j2 = B(b)(:, :; j1, j2)−
∑n

m=1〈B(am)(:, :; j1, j2),B(b)(:, :; j1, j2)〉B(am)(:

, :; j1, j2) if ‖zj1,j2‖2 6= 0 then

5 B(v)(:, :; j1, j2) = zj1,j2/‖zj1,j2‖2

6 else

7 B(v)(:, :; j1, j2)=a unit real vector orthogonal to

{B(a)(:, :; j1, j2)}m=n
m=1 .

8 for i1 = 1, . . . , N1 and i2 = 1, . . . , N2 do

9 v(i1, i2; : , :) = 1
L1L2
F2D(B(v)(i1, i2; : , :))

Therefore, the following algorithm is used to solve for ψn+1:

Algorithm 6: Solving the n+1-th BCPW using the projection algorithm

1 Initialize u0 = v0 = ψn+1,0, D0 = B0 = 0.

2 while “not converged” do

3 ψn+1,k solves (2Ĥ0 + λ+ r)ψn+1,k = λ(uk−1 −Dk−1) + r(vk−1 −Bk−1);

4 vk = ISOPW(ProjSSO(N1N2)∩S(Ψn)⊥(SOPW(ψn+1,k +Bk−1)));

5 uk = sgn(ψ1,k +Dk−1) max(0, |ψn+1,k +Dk−1| − 1

λµ
);

6 Dk = Dk−1 + ψn+1,k − uk;

7 Bk = Bk−1 + ψn+1,k − vk.

Figure 5.3 plots the first four BCPWs in 1D using the proposed algorithms.

These results are consistent with the results in [51]. Table 5.1, highlights the

116

computational speed gained by using the new procedure outlined in this section.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1
 µ = 50 BCPW−1, using SOPW

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1
 µ = 50 BCPW−2, using SOPW

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1
 µ = 50 BCPW−3, using SOPW

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1
 µ = 50 BCPW−4, using SOPW

Figure 5.3: The first 4 one-dimensional BCPWs obtained by using Algorithms

4–6.

of

points

Algorithm proposed in [51] The new procedure

ψ1 ψ2 ψ3 ψ4 total ψ1 ψ2 ψ3 ψ4 total

500 23.05 29.39 21.40 9.42 83.26 0.30 1.47 0.44 0.28 2.49

1000 53.11 116.30 81.28 29.99 280.68 0.71 3.48 1.23 0.66 6.08

Table 5.1: CPU time consumption (seconds) for computing the first 4 one-dimen-

sional Basic CPWs using SOPWs and FFT with the same accuracy. For these

computations, µ = 50, L = 100, and w = 5.

5.5 Conclusions

This chapter presented a theoretical analysis of Shift Orthogonal Basis Functions

(SOBFs). An example of SOBFs that has several nice properties, called Shift

Orthogonal Plane Waves (SOPWs), was given.

We also provided a fast algorithm for finding a closest shift orthogonal function

to a given function. The algorithm can be easily implemented using FFT and

has computational complexity bounded by M log(M), where M is the number

117

of coefficients used to store the input function. The algorithm described here is

very useful for problems with shift orthogonality constraints. As an example, the

algorithm is applied to computation of Compressed Plain Waves (CPWs).

118

APPENDIX A

Duality Formulation

Here, it is shown that the Lagrangian dual of (3.10) and (3.11) is of the form

(3.12). These results are well known; they are included here for completeness.

Consider the following optimization problem that is of the form (3.10):

min
y
‖y‖1 +

1

2µ
‖y‖2

2 +
1

2t
‖Ay − b‖2

2. (A.1)

Note that the above problem is equivalent to

min
y,z
‖y‖1 +

1

2µ
‖y‖2

2 +
1

2t
‖z‖2

2 s.t. Ay − b = z. (A.2)

The Lagrangian associated with problem (A.2) is

L(y, z; s) = ‖y‖1 +
1

2µ
‖y‖2

2 +
1

2t
‖z‖2

2 − sT (Ay − b− z).

To find the dual formulation, we fix s and compute

d(s) = min
y,z
L(y, z; s). (A.3)

Note that when we fix s, L(y, z; s) becomes a separable expression coordinate-wise.

The corresponding minimization problem for the i-th coordinate is

min
yi,zi
|yi|+

1

2µ
y2
i +

1

2t
z2
i − riyi + sizi,

where r = sTA. The above problem reduces to two easy one-dimensional mini-

mization problems

min
yi

(
|yi|+

1

2µ
y2
i − riyi

)
=
−µ
2

shrink(ri)
2 and min

zi

(
1

2t
z2
i + sizi

)
=
−t
2
s2
i ,

119

with optimal solutions:

y∗i = µ · shrink(ri) and z∗i = −tsi.

Hence,

d(s) = sT b− µ

2
‖shrink(AT s)‖2

2 −
t

2
‖s‖2

2,

which is of the form (3.12) with H(x) = x2/2.

Next consider the following optimization problem that is of the form (3.11):

min
y
‖y‖1 +

1

2µ
‖y‖2

2 −
√
t2 − |Ay − b|2. (A.4)

Note that the above problem is equivalent to

min
y,z
‖y‖1 +

1

2µ
‖y‖2

2 −
√
t2 − ‖z‖2

2 s.t. Ay − b = z. (A.5)

The Lagrangian associated with problem (A.2) is

L(y, z; s) = ‖y‖1 +
1

2µ
‖y‖2

2 −
√
t2 − ‖z‖2

2 − sT (Ay − b− z).

To find the dual formulation, we fix s and compute

d(s) = min
y,z
L(y, z; s). (A.6)

Note that when we fix s, L(y, z; s) becomes separable expressions in terms of y

and z. Therefore, it suffices to solve the following separate subproblem:

min
y

(
‖y‖1 +

1

2µ
‖y‖2

2 − (sTA)y

)
, (A.7)

min
z

(
−
√
t2 − ‖z‖2

2 + sT z

)
s.t. ‖z‖ ≤ t. (A.8)

The solution to subproblem (A.7) is y∗ = µ · shrink(AT s). To solve subproblem

(A.8), we take its gradient and set it equal to zero:

z0√
t2 − z2

0

+ s = 0.

120

Rearranging gives,

z0 = −s
√
t2 − ‖z0‖2

2.

Taking Euclidean norm from both side and simplifying yields that

|z0‖2
2 =

t2‖s‖2
2

1 + ‖s‖2
2

.

Substituting back into the above equation, implies that

z0 =
−ts√

1 + ‖s‖2
2

.

On the other hand, the minimum value of the objective function (A.8) on the

boundary ‖z‖2 = t is −t‖s‖2, which is achieved at z = −st/‖s‖2. Since the value

of the objective function in (A.8) at point z0 is equal to −t
√
‖s‖2

2 + 1, which is

smaller than the minimum value achieve at the boundary, we conclude that the

solution to problem (A.8) is indeed:

z∗ =
−ts√

1 + ‖s‖2
2

.

Hence,

d(s) = sT b− µ

2
‖shrink(AT s)‖2

2 − t
√
‖s‖2

2 + 1,

which is of the form (3.12) with H(x) =
√

1 + x2.

121

APPENDIX B

Pseudo-code for the TCCS Algorithm

Here, we provide a pseudo-code for the TCCS algorithm when H(|s|) = |s|2/2 and

t ≥ 0, Algorithm 7, and for t = 0, Algorithm 8. Indeed, Algorithm 8 is an easy

adaptation of Algorithm 7. The output of Algorithms 7 and 8 yields approximate

solution to the LASSO problem (3.9) and the Compressed Sensing problem (3.6),

respectively.

Some remarks regarding the implementation of the pseudo-codes are in order.

In each iteration of the algorithms we need to compute α, which is the projection

of b on the space {u : ATJu =
−→
1 }. There are several ways to do this. One way is to

use formula b− ÃJ(ÃTJ ÃJ)†ÃTJ b and find the pseudo-inverse via the SVD decom-

position. Another way is to use a QR decomposition to compute the least square

solution. For example, we can use the expression α = b − AJ((ATJAJ)\(ATJ b)) in

Matlab for this purpose (i.e. Note that ATJAJ is a square matrix, and therefore,

backslash operator in Matlab yields the least square solution).

Also observe that in the pseudo-codes, we introduced a tolerance parameter ε.

Due to numerical machine precision, we need to use lines

‖α‖∞ < ε and J = {i : |aTi s− 1| < ε},

in place of lines

α == 0 and J = {i : aTi s == 1}.

The pseudo-codes provided here are meant to clarify the ideas and they do not

necessarily implement the TCCS algorithm in the most efficient way.

122

Algorithm 7: The TCCS algorithm when H(|s|) = |s|2/2 and t ≥ 0. The output

yopt of this pseudo-code yields approximate solution to problem (3.9). Also, sopt is the

approximate solution to (3.4). Note that ε is not a real parameter of the algorithm, it is

rather a tolerance parameter that is due numerical machine precision.

Input: A, t, b, and ε.

1 First part: Ã = [A | −A]

2 Choose τ0 large enough so that ÃT (b/τ0) ≤ 1.

3 J = ∅, s = b/τ0

4 while r = 0, . . . do

5 α = projection of b on the space {u : ATJ u =
−→
1 }.

6 if ‖α‖∞ < ε then

// s has reached an extreme point of polytope at τr and will not move thereafter.

7 sopt = s

8 break

9 end

10 L = {1, . . . , n} \ Jr
11 v = (

−→
1 − ÃTLs)./ÃTLα // entry-wise division.

12 k = minimum positive entry of v.

// k is the smallest positive number such that aTi (s+ kα) = 1 for some i ∈ L.

13 Find τr+1 such that 1
τr+1
− 1

τr
= k.

14 if τr+1 < t then

15 k̃ = 1
t −

1
τr

16 sopt = s+ k̃α

17 break

18 end

19 s = s+ kα

20 J = {i : |aTi s− 1| < ε}

21 end

22 Second part: ỹopt = ~0

23 ỹopt(J) = Ã†Jb− tÃ
†
J(ÃTJ)†

−→
1 // set entries of ỹopt that belong to J.

24 yopt = [I | − I]ỹopt

25 return yopt

123

Algorithm 8: The TCCS Algorithm for Compressed Sensing problems. This algorithm

is an adaptation of Algorithm 7 when t = 0. The output of this pseudo-code yields

approximate solution to problem (3.6). Also, sopt is the approximate solution to (3.39).

Note that ε is not a real parameter of the algorithm, it is rather a tolerance parameter

that is due numerical machine precision.

Input: A, b, and ε.

1 First part: Ã = [A | −A]

2 Choose τ0 large enough so that ÃT (b/τ0) ≤ 1.

3 J = ∅, s = b/τ0

4 while r = 0, . . . do

5 α = projection of b on the space {u : ATJ u =
−→
1 }.

6 if ‖α‖∞ < ε then

// s has reached an extreme point of polytope at τr and will not move thereafter.

7 sopt = s

8 break

9 end

10 L = {1, . . . , n} \ Jr
11 v = (

−→
1 − ÃTLs)./ÃTLα // entry-wise division.

12 k = minimum positive entry of v.

// k is the smallest positive number such that aTi (s+ kα) = 1 for some i ∈ L.

13 Find τr+1 such that 1
τr+1
− 1

τr
= k.

14 s = s+ kα

15 J = {i : |aTi s− 1| < ε}

16 end

17 Second part: ỹopt = ~0

18 ỹopt(J) = Ã†Jb // set entries of ỹopt that belong to J.

19 yopt = [I | − I]ỹopt

20 return yopt

124

APPENDIX C

Variational Origin of SOPWs

Here, it is shown that in 1D, if there is no L1 term in the definition of CPWs

(i.e. µ = ∞) then they are essentially the same as SOPWs given by (5.21) and

(5.22). Let Ω = [0, L] (where L is even) and by scaling assume that w = 1. For

any function ψ define

J∞(ψ) :=

∫
Ω

ψĤ0ψ dx. (C.1)

As before, Ĥ0 = −1
2
∂xx. It is clear that Ĥ0 has eigenfunctions φn(x) = 1√

L
ei2πnx/L

with corresponding eigenvalue λn = 2(πn/L)2, n = 0,±1,±2, Note that Basic

CPWs {θi}i=∞i=1 when there is no L1 term (i.e. µ =∞) are defined in the following

way:

ψ1 = argmin
ψ
J∞(ψ) s.t.

∫
ψ(x)ψ(x− j)dx = δj0 for j = 1, . . . , L− 1,

ψk = argmin
ψ
J∞(ψ) s.t.


∫
ψ(x)ψ(x− j)dx = δj0,∫
ψ(x)ψi(x− j)dx = 0 for i = 1, . . . , k − 1.

(C.2)

The main result of this section is the following theorem, which implies {ψi}i=∞i=1

are indeed SOPWs {θi}i=∞i=1 :

Theorem C.0.1 One set of solutions to problem (C.2) are

θ1(x) =
1√
L

∑
|n|<L

2

φn(x) +
1√
2L

∑
|n|=L

2

φn(x),

125

and, for k > 1

θk(x) =
1√
L

∑
(k−1)L

2
<|n|< kL

2

(sgn(n)i)k−1φn(x) +
1√
2L

∑
|n|= (k−1)L

2
, kL

2

(sgn(n)i)k−1φn(x)

Proof: Since φn’s form complete set, for any function θ(x) ∈ L2 we can write

θ(x) =
∞∑

n=−∞

a(n)φn(x). (C.3)

Consequently,

J∞(θ) =
∞∑

n=−∞

|a(n)|2λn =
∞∑
n=1

(|a(n)|2 + |a(−n)|2)λn, (C.4)

and shift orthogonality constraints yield that

δj0 =

∫
θ∗(x)θ(x− j)dx =

∞∑
n=−∞

|a(n)|2e−i2πjn/L =

= |a(0)|2 +
∞∑
n=1

(|a(n)|2 + |a(−n)|2) cos(2πjn/L)

− i
∞∑
n=1

(|a(n)|2 − |a(−n)|2) sin(2πjn/L). (C.5)

Therefore, for θ(x) to be feasible (i.e satisfy shift orthogonality constraints), it

must be the case that |a(n)| = |a(−n)| for all n ≥ 1. Note that changing the

phase value of a(n) and a(−n) does not change the value of the objective function

(C.4). Thus, the phase factor of a(n) and a(−n) can be chosen in such a way that

a(−n) = a∗(n), for n = 1, 2, (C.6)

The above conditions guarantee that θ(x) is real valued. Hence, there always exist

a real valued minimizers for variational problem (C.2). In view of (C.6), equations

(C.4) and (C.5) can be re-written: objective function becomes

J∞(θ) = 2
∞∑
n=1

|a(n)|2λn, (C.7)

126

and shift orthogonality constraints yield that for j = 0, 1, . . . , L− 1,

δj0 = |a(0)|2 + 2
∞∑
n=1

|a(n)|2 cos(2πjn/L). (C.8)

Lets first find θ1. To that end, the goal is to find {a(n)}∞n=0 that minimizes (C.7)

and satisfies (C.8) for j = 0, . . . , L− 1. Set
c(0) = |a(0)|2

c(n) = 2|a(n)|2 for n = 1, 2,

(C.9)

Let M be the L × L matrix whose (j, n)-th entry is cos(2πjn/L) for j, n =

0, . . . , L − 1. Let A be the infinite dimensional matrix whose (j, n)-th entry is

cos(2πjn/L) for j = 0, . . . , L− 1 and n ∈ {0} ∪ N. Because

cos(2πjn/L) = cos(2πjn′/L) if n = n′ (mod L),

matrix A is formed by concatenating infinitely many copies of M side by side,

that is

A = [M |M | · · ·].

Therefore, to find θ1, one needs to solve the following optimization problem:

argmin
c

λT c s.t. Ac = b, c ≥ 0, (C.10)

where

λT = [λ0, λ1, · · ·], cT = [c(0), c(1), · · ·], and bT = [1, 0, · · · , 0︸ ︷︷ ︸
L−1

].

Observe that matrix M is not invertible. However, it can be partitioned in

the following way: Let ~1 = M(:, 1), ML = M(:, 2 : L/2 − 1), ~e = M(:, L/2) and

MR = M(:, L/2 + 1 : L− 1). Then

A = [~1|ML|~e|MR|~1|ML|~e|MR| · · ·].

The strategy is to guess the solution to problem (C.10) and then verify (i.e.

using the dual formulation of (C.10)) that it is indeed the optimal solution. For

this purpose we first prove the following three lemmas:

127

Lemma C.0.2 The L× (L/2− 1) matrices [~1|ML|~e] and [~e|MR|~1] have full rank.

Proof: First observe that matrix [~e|MR|~1] is formed from matrix [~1|ML|~e] if the

columns are arranged in the opposite order. Thus it suffices to only show [~1|ML|~e]

has full rank. For contrary assume the opposite that [~1|ML|~e] is not full rank,

then there exist nontrivial set of constants {kn}n=L/2
n=0 such that

L/2∑
n=0

kn cos(2πjn/L) = 0 for j = 0, . . . , L− 1.

The above system of equations implies that

L−1∑
n=0

k′ne
−i2πjn/L = 0 for j = 0, . . . , L− 1, (C.11)

where

k′n =


kn for n = 0 and L/2,

kn/2 for 0 < n < L/2,

kL−n/2 for L/2 < n ≤ L− 1.

However, system of equations (C.11) implies that the columns of the L×L Discrete

Fourier Transform matrix are linearly dependent; which contradicts invertibility

of the DFT matrix.

Lemma C.0.3 For k ≥ 1 and j = 0, . . . , L− 1:

1

L
cos(πj(k − 1)) +

2

L

∑
(k−1)L

2
<n< kL

2

cos(2πjn/L) +
1

L
cos(πjk) = δj0.

128

Proof: If j = 0 the result is clear. For j = 1, . . . , L− 1:

1

L
cos(πj(k − 1)) +

2

L

∑
(k−1)L

2 <n< kL
2

cos(2πjn/L) +
1

L
cos(πjk) =

=
1

L
cos(πj(k − 1)) +

2

L

∑
(k−1)L

2 <n< kL
2

1

2
[cos(2πjn/L) + cos(2πj(kL− n)/L)] +

1

L
cos(πjk) =

=
1

L

∑
(k−1)L

2 ≤n< (k+1)L
2

cos(2πjn/L) =
1

L
Re


(k+1)L/2−1∑
n=(k−1)L/2

ei2πjn/L

 =

=
1

L
Re

{
eiπj(k−1)(

1− ei2πjL/L

1− ei2πj/L
)

}
= 0.

The result follows.

Lemma C.0.4 Assume that there exist vector y ∈ RL and infinite dimensional

vector s such that

ATy + s = λ, s ≥ 0.

If c is feasible for problem (C.10), then

λT c ≥ yT b.

Furtheremore, if additionally s and c satisfy complementary slackness property

sT c = 0, then c is the solution to problem (C.10).

Proof: Observe that for any feasible c in problem (C.10),

λT c = (ATy + s)T c = yTAc+ sT c = yT b+ sT c ≥ yT b,

where the last inequality is from nonnegativity of s and c. Hence, the minimum

value of the objective function in problem (C.10) is yT b. Moreover, the minimum

is achieved if c is feasible and satisfies sT c = 0.

Now returning to optimization problem (C.10), set

cT = [
1

L
,

2

L
, . . . ,

2

L︸ ︷︷ ︸
L/2−1

,
1

L
, 0, 0, . . .],

129

and find y that satisfies

[~1|ML|~e]Ty = [λ0, . . . , λL/2]T .

Such y exist because by Lemma C.0.2 matrix [~1|ML|~e] is full rank. Finally, set

s = λ− ATy.

Lemma C.0.3 implies that c is feasible for problem (C.10). Moreover, it is straight-

forward to verify that

sT = [0, . . . , 0︸ ︷︷ ︸
L/2+1

,λL
2

+1 − λL
2
−1, λL

2
+2 − λL

2
−2, . . . , λL − λ0, λL+1 − λ1, . . .

. . . , λ 3L
2

+1 − λL
2
−1, λ 3L

2
+2 − λL

2
−2, . . . , λ2L − λ0, λ2L+1 − λ1, . . .] ≥ 0.

Thus, by Lemma C.0.4, c is the solution of problem (C.10). Hence, in view of

(C.9), 
|a(n)| = 1/

√
L for n = ±1, . . . ,±(L

2
− 1),

|a(±L
2
)| = 1/

√
2L

|a(n)| = 0 otherwise.

Note that any phase values for a(n) as long as (C.6) holds is acceptable. If all the

phase factors are set to equal to 1, then

θ1(x) =
1√
L

∑
|n|<L

2

φn(x) +
1√
2L

∑
|n|=L

2

φn(x).

Next, find θ2. For j = 0, . . . , L− 1, define

θ1
j (x) := θ1(x− j).

Observe that from relationships (5.24) and (5.25) (i.e. with k = 1),

{φn}n=L/2−1
n=−L/2+1 ⊂ span{θ1

j}
j=L−1
j=0 .

130

In particular, orthogonality to previous CPWs constraints in problem (C.2), imply

that if θ2 is expanded in the form (C.3), it is necessary (but not sufficient) that

a(0) = · · · = a(±(L
2
− 1)) = 0. Let θ∗ be the solution of problem

min
θ
J∞(θ) s.t.

∫
θ(x)θ(x− j)dx = δj0, (C.12)

with an additional constraint that if θ∗ is expanded in the form (C.3), then a(n) =

0 for |n| < L/2. Using the same arguments as before, one concludes that to find a

candidate for θ∗ it is required to solve an optimization problem similar to (C.10);

however, this time

λT = [λL
2
, λL

2
+1, · · ·], cT = [c(

L

2
), c(

L

2
+ 1), · · ·], and M = [~e|MR|~1|ML].

Repeating the same line of logic as before, the optimal solution is still

cT = [
1

L
,

2

L
, . . . ,

2

L︸ ︷︷ ︸
L/2−1

,
1

L
, 0, 0, . . .].

Hence, for θ∗,


|a(±L

2
)| = |a(±L)| = 1/

√
2L

|a(n)| = 1/
√
L for n = ±(L

2
+ 1), . . . ,±(L− 1),

|a(n)| = 0 otherwise.

Now observe that θ∗ is not necessarily the same as θ2, as θ2 satisfies stricter

constraints (i.e. orthogonality to {θ1
j}
j=L−1
j=0) than θ∗. Nevertheless, there is a

particular choice of phases for a(n)’s for which

θ∗(x) =
1√
L

∑
L
2
<|n|<L

(sgn(n)i)φn(x) +
1√
2L

∑
|n|=L

2
,L

(sgn(n)i)φn(x).

It is easy to verify that the above function is indeed orthogonal to set {θ1
j}
j=L−1
j=0 .

Therefore,

θ2(x) =
1√
L

∑
L
2
<|n|<L

(sgn(n)i)φn(x) +
1√
2L

∑
|n|=L

2
,L

(sgn(n)i)φn(x).

131

Continue the above procedure to find the subsequent BCPWs: for example if

θ3 is expanded in the form (C.3), it is necessary (but not sufficient) that a(n) = 0,

for |n| < L. For from relationships (5.24), (5.25) (i.e. with k = 1, 2) and (5.26)

(i.e. with k = 1):

{φn}n=L−1
n=−(L−1) ⊂ span{θ1

j , θ
2
j}
j=L−1
j=0 ,

and from the orthogonality to previous CPWs constraints in problem (C.2).

Let θ∗ be the solution of problem (C.12) with an additional constraint that if

it is expanded in the form (C.3), then a(n) = 0 for |n| < L. We conclude that for

θ∗, 
|a(±L)| = |a(±3L

2
)| = 1/

√
2L

|a(n)| = 1/
√
L for n = ±(L+ 1), . . . ,±(3L

2
− 1),

|a(n)| = 0 otherwise.

Note that θ∗ is already orthogonal to the space spanned by all shifts of function

θ1. To make θ∗ orthogonal to the space spanned by all shifts of function θ2 (and

therefore, derive a formula for θ3), a particular choice of phase factors for a(n)’s

are chosen. Consequently,

θ3(x) =
1√
L

∑
L<|n|< 3L

2

(−1)φn(x) +
1√
2L

∑
|n|=L, 3L

2

(−1)φn(x).

132

APPENDIX D

Laplacian of the SOPWs

Here, it is shown that for any set of solutions to the variational problem (C.2):

∂xxθ
k
j ∈ span{θk` }`=L−1

`=0 ,

where θkj (x) := θk(x− j). Observe that it suffices to show that

∂xxθ
k ∈ span{θk` }`=L−1

`=0 .

From the theory of variational calculus with constraints (i.e. see for example

[26, Chapter 8]) at the k-th step (i.e. when θij for i = 1, . . . , k − 1 are already

determined), if θk is the solution to the variational problem (C.2), then it is the

weak solution of the Euler-Lagrange equation

∆θk =
k∑
i=1

L−1∑
j=0

λijθ
i
j, (D.1)

where constants λij are the Lagrange multipliers corresponding to the orthonor-

mality constraints:∫
θk(x)θkj (x) dx = δj0 and

∫
θk(x)θij(x) dx = 0 for i = 1, . . . , k − 1.

It remains to show that λij = 0 for all i < k. Fix n < k and ` ∈ {0, . . . , L − 1}.

Multiply both sides of (D.1) by θn` , integrate over the domain [0, L], and use

orthonormality of {θij}
i=k,j=L−1
i=1,j=0 and integration by parts to conclude that

λn` =

∫
∆θk(x)θn` (x) dx =

∫
θk(x)∆θn` (x) dx =

∫
θkL−`(x)∆θn(x) dx. (D.2)

133

Next, observe that θn must satisfy a similar equation to (D.1); that is,

∆θn =
n∑
i=1

L−1∑
j=0

γijθ
i
j.

From definition of θk in (C.2) and because n < k, one concludes that θkL−` is

orthogonal to {θij}
i=n,j=L−1
i=1,j=0 . Therefore, multiplying the above equation by θkL−`

and integrating over the domain, yields that∫
θkL−`∆θ

n(x) dx = 0.

The above equation and equation (D.2) imply that λn` = 0 as was to be shown.

134

APPENDIX E

First and Second Derivative of SOPWs

Here, formulas for the first and second derivatives of SOPWs, defined by (5.21)

and (5.22), are presented. These results are important in determining the matrix

elements of the derivative and the Laplacian operator when SOPWs basis are

used.

The first derivative of of SOPWs are given by the following theorem:

Theorem E.0.5 (First Derivatives) For k = 1, 2, . . . and ` = 0, . . . , L− 1,

∂xθ
k
` =

π

L

[
−(k − 1)

∑
j

(−1)(k−1)(j−`)θk−1
j +

∑
j

a(j − `)θkj + k
∑
j

(−1)k(j−`)θk+1
j

]
,

where

a(j − `) =


0 if j − ` = 0,

(−1)k(2k − 1) cot(π(j − `)/L) if j − ` is odd,

cot(π(j − `)/L) otherwise,

and dummy variable j takes its values values from {0, 1, . . . , L− 1}.

The second derivative of SOPWs are given by the following theorem:

Theorem E.0.6 (Second Derivatives) For k = 1, 2, . . . and ` = 0, . . . , L− 1,

∂xxθ
k
` =
−π2

L2

∑
j

b(j − `)θkj

135

where

b(j − `) =


(k2 − k + 1/3)L2 + 2/3 if j − ` = 0,

(−1)k(4k − 2) csc2(π(j − `)/L) if j − ` is odd,

2 csc2(π(j − `)/L) otherwise,

and dummy variable j takes its values from {0, 1, . . . , L− 1}.

Recall that ωj = ei2πj/L. The following lemma is essential in the proof of the

above theorems:

Lemma E.0.7 For positive integer k, even L and j = 0, . . . , L− 1:

∑
(k−1)L

2
<|n|< kL

2

nωnj =


0 if j = 0,

−i
2
L(−1)k(2k − 1) cot(πj/L) if j is odd,

−i
2
L cot(πj/L) otherwise,

and

∑
(k−1)L

2
<|n|< kL

2

n2ωnj =


1
12

(L− 2)L[(3k2 − 3k + 1)L− 1] if j = 0,

L
2
(−1)k(2k − 1) csc2(πj/L)− (−1)k(2k − 1)L

2

4
if j is odd,

L
2

csc2(πj/L)− (k2 + (k − 1)2)L
2

4
otherwise,

Proof: It is easy to verify the case j = 0, so we assume j 6= 0. Let

c(x) =
∑

(k−1)L
2

<n< kL
2

cos(nx).

Then∑
(k−1)L

2 <|n|< kL
2

nωnj =
∑

(k−1)L
2 <n< kL

2

n(ωnj − ω̄nj) = 2i
∑

(k−1)L
2 <n< kL

2

n sin(
2πnj

L
) = (−2i)c′(

2πj

L
),

and∑
(k−1)L

2 <|n|< kL
2

n2ωnj =
∑

(k−1)L
2 <n< kL

2

n2(ωnj + ω̄nj) = 2
∑

(k−1)L
2 <n< kL

2

n2 cos(
2πnj

L
) = (−2)c′′(

2πj

L
).

136

It is well known (i.e. for example see [36, page 290]) that

c(x) =
sin((L

2
− 1)x/2)

sin(x/2)
cos

(
(2k − 1)

4
Lx

)
.

The rest of the proof follows from straightforward but tedious calculations: one

finds close formulas for c′(x) and c′′(x), substitutes x = 2πj/L and simplifies. In

particular, Table E.1 is helpful in simplifying.

j mod 4 cos
(
πj(2k−1)

2

)
sin
(
πj(2k−1)

2

)
cos
(
πj(L/2−1)

L

)
sin
(
πj(L/2−1)

L

)
0 1 0 cos(πj/L) − sin(πj/L)

1 0 (−1)k+1 sin(πj/L) cos(πj/L)

2 −1 0 − cos(πj/L) sin(πj/L)

3 0 (−1)k − sin(πj/L) − cos(πj/L)

Table E.1: Trigonometry identities for integers k, j and even positive number L.

The proof of Theorems E.0.5 and E.0.6 are very similar. The idea of the proof

is simple: write SOPWs basis in terms of Fourier basis using formulas (5.21) and

(5.22), take appropriate number of derivatives, and then use formulas (5.25) and

(5.26) to write back the result in terms of the SOPWs basis.

Proof of Theorem E.0.5: First observe that because θk` (x) = θk0(x − `), it

suffices to find ∂xθ
k
0 and then by shifting, the corresponding formulas for SOPWs

with other shift indices follow easily. Now using formulas (5.21) and (5.22),

∂xθ
k
0

=
1√
L

∑
(k−1)L

2
<|n|< kL

2

(sgn(n)i)k−1∂xφn +
1√
2L

∑
|n|= (k−1)L

2
, kL

2

(sgn(n)i)k−1∂xφn

=
1√
L

∑
(k−1)L

2
<|n|< kL

2

(sgn(n)i)k−1(
i2πn

L
)φn +

1√
2L

∑
|n|= (k−1)L

2
, kL

2

(sgn(n)i)k−1(
i2πn

L
)φn.

(E.1)

137

Now from equations (5.25) and using Lemma E.0.7,

1√
L

∑
(k−1)L

2
<|n|< kL

2

(sgn(n)i)k−1(
i2πn

L
)φn

=
1√
L

∑
(k−1)L

2
<|n|< kL

2

(sgn(n)i)k−1(
i2πn

L
)
(−sgn(n)i)k−1

√
L

L−1∑
j=0

ωnj θ
k
i

=
i2π

L2

L−1∑
j=0

 ∑
(k−1)L

2
<|n|< kL

2

nωnj

 θkj =
π

L

L−1∑
j=0

a(j)θkj , (E.2)

where

a(j) =


0 if j = 0,

(−1)k(2k − 1) cot(πj/L) if j is odd,

cot(πj/L) otherwise.

On the other hand, equation (5.26) implies that for |n| = kL
2

,

φn(x) =
(−sgn(n)i)k−1

√
2L

(
L−1∑
j=0

(−1)kjθkj (x)− sgn(n)i
L−1∑
j=0

(−1)kjθk+1
j (x)

)
. (E.3)

Therefore,

1√
2L

∑
|n|= kL

2

(sgn(n)i)k−1(
i2πn

L
)φn

=
1

2L
(
i2π

L
)
∑
|n|= kL

2

(
n
L−1∑
j=0

(−1)kjθkj − |n|i
L−1∑
j=0

(−1)kjθk+1
j

)

=
π

L
k
L−1∑
j=0

(−1)kjθk+1
j . (E.4)

Again, equation (5.26) implies that for |n| = (k−1)L
2

,

φn(x) =
(−sgn(n)i)k−2

√
2L

(
L−1∑
j=0

(−1)(k−1)jθk−1
j (x)− sgn(n)i

L−1∑
j=0

(−1)(k−1)jθkj (x)

)
.

(E.5)

138

Therefore,

1√
2L

∑
|n|= (k−1)L

2

(sgn(n)i)k−1(
i2πn

L
)φn

=
1

2L
(
i2π

L
)

∑
|n|= (k−1)L

2

(
|n|i

L−1∑
j=0

(−1)(k−1)jθk−1
j + n

L−1∑
j=0

(−1)(k−1)jθkj

)

=− π

L
(k − 1)

L−1∑
j=0

(−1)(k−1)jθk−1
j . (E.6)

Substituting (E.2), (E.4) and (E.6) into equation (E.1) yields that

∂xθ
k
0 =

π

L

[
−(k − 1)

L−1∑
j=0

(−1)(k−1)jθk−1
j +

L−1∑
j=0

a(j)θkj + k
L−1∑
j=0

(−1)kjθk+1
j

]
.

This completest the proof.

Proof of Theorem E.0.6: Again observe that because θk` (x) = θk0(x− `), it

suffices to find ∂xxθ
k
0 and then by shifting, the corresponding formulas for SOPWs

with other shift indices follow easily. Now using formulas (5.21) and (5.22),

∂xxθ
k
0

=
1√
L

∑
(k−1)L

2 <|n|< kL
2

(sgn(n)i)k−1∂xxφn +
1√
2L

∑
|n|= (k−1)L

2 , kL
2

(sgn(n)i)k−1∂xxφn

=
1√
L

∑
(k−1)L

2 <|n|< kL
2

(sgn(n)i)k−1(
−4π2n2

L2
)φn +

1√
2L

∑
|n|= (k−1)L

2 , kL
2

(sgn(n)i)k−1(
−4π2n2

L2
)φn.

(E.7)

Now from equations (5.25) and using Lemma E.0.7,

1√
L

∑
(k−1)L

2
<|n|< kL

2

(sgn(n)i)k−1(
−4π2n2

L2
)φn

=
1√
L

∑
(k−1)L

2
<|n|< kL

2

(sgn(n)i)k−1(
−4π2n2

L2
)
(−sgn(n)i)k−1

√
L

L−1∑
j=0

ωnj θ
k
i

=
−4π2

L3

L−1∑
j=0

 ∑
(k−1)L

2
<|n|< kL

2

n2ωnj

 θkj

=
−π2

L2

L−1∑
j=0

b̃(j)θkj , (E.8)

139

where

b̃(j) =


(L− 2)[(3k2 − 3k + 1)L− 1]/3 if j = 0,

(−1)k(4k − 2) csc2(πj/L)− (−1)k(2k − 1)L if j is odd,

2 csc2(πj/L)− (k2 + (k − 1)2)L otherwise.

On the other hand, from (E.3),

1√
2L

∑
|n|= kL

2

(sgn(n)i)k−1(
−4π2n2

L2
)φn

=
1

2L
(
−4π2

L2
)
∑
|n|= kL

2

(
n2

L−1∑
j=0

(−1)kjθkj − n2sgn(n)i
L−1∑
j=0

(−1)kjθk+1
j

)

=
−π2

L2
k2L

L−1∑
j=0

(−1)kjθkj . (E.9)

Also from (E.5),

1√
2L

∑
|n|= (k−1)L

2

(sgn(n)i)k−1(
−4π2n2

L2
)φn

=
1

2L
(
−4π2

L2
)

∑
|n|= (k−1)L

2

(
n2sgn(n)i

L−1∑
j=0

(−1)(k−1)jθk−1
j + n2

L−1∑
j=0

(−1)(k−1)jθkj

)

=
−π2

L2
(k − 1)2L

L−1∑
j=0

(−1)(k−1)jθkj . (E.10)

Substituting (E.8), (E.9) and (E.10) into equation (E.7) and simplifying yields

that

∂xxθ
k
0 =
−π2

L2

L−1∑
j=0

b(j)θkj .

This completest the proof.

140

References

[1] P. Auscher, Remarks on the local Fourier bases, In J.J. Benedetto and M.
Frazier (eds.), Wavelets: Mathematics and Applications, CRC Press, Boca
Raton, (1994), pp. 203–218.

[2] F. Barekat, On the consistency of compressed modes for variational prob-
lems, arXiv preprint, arXiv:1310.4552, 2013.

[3] F. Barekat, R. Caflisch, and S. Osher, On the Support of Compressed Modes,
UCLA CAM Reports:14–14, 2014.

[4] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA
J. Numer. Anal., 8 (1988), pp. 141–148.

[5] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas
Flows, Claredon, Oxford, 1994.

[6] A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte
Carlo simulation of Ising spin systems, J. Comp. Phys., 17 (1975), pp. 10–
18.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed op-
timization and statistical learning via the alternating direction method of
multipliers, Foundations and Trends in Machine Learning, 3 (2011), pp.
1–122.

[8] H. Brezis, Solutions with compact support of variational inequalities, dedi-
cated to the memory of I.G. Petrovski, Uspekhi Mat. Nauk, 29 (1974), pp.
103–108.

[9] H. Brezis and A. Friedman, Estimates on the support of solutions of parabolic
variational inequalities, Ill. J. Math., 20 (1976), pp. 82–97.

[10] M. Burger, M. Moller, M. Benning, and S. Osher, An adaptive inverse
scale space method for compressed sensing, Mathematics of Computation,
82 (2013), pp. 269–299.

[11] R.E. Caflisch, Monte Carlo and Quasi-Monte Carlo Methods, Acta Numer-
ica (1998), pp. 1–49.

[12] R.E. Caflisch, S.J. Osher, H. Schaeffer, and G. Tran, PDEs with Compressed
Solutions, arXiv preprint, arXiv:1311.5850

[13] E.J. Candes and T. Tao, Decoding by linear programming, IEEE Transac-
tions on Information Theory, 51 (2005), pp. 4203–4215.

141

[14] E.J. Candès, Y.C. Eldar, T. Strohmer, and V. Voroninski, Phase retrieval
via matrix completion, SIAM Journal on Imaging Sciences, 6 (2013), pp.
199–225.

[15] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information, IEEE
Transactions on Information Theory, 52 (2006), pp.489–509.

[16] Y. Cao, H. Li, L.R. Petzold, Efficient formulation of the stochastic simula-
tion algorithm for chemically reacting systems, J. Chem. Phys., 121 (2004),
pp. 4059–4067.

[17] S. Chen and D. Donoho, Basis Pursuit, Conference on Signals, Systems and
Computers. 1 (1994), pp. 41–44.

[18] M.T. Chu, R.J. Plemmons, Real-valued, low rank, circulant approximation,
SIAM J. Matrix Anal. Appl., 24 (2003), pp. 645–659.

[19] S. Chen, D. Donoho, and M. Saunders, Atomic decomposition by basis pur-
suit, SIAM Rev., 43 (2001), pp. 129–159.

[20] J. Darbon, On convex finite-dimensional variational methods in imaging
sciences and Hamilton-Jacobi equations, UCLA CAM report:13-59, 2013.

[21] J. Darbon and S. Osher, Initial Value Problems for Hamilton-Jacobi equa-
tions and Sparsity for Linear Systems via `1 related optimization, preprint,
2013.

[22] I. Daubechies, S. Jaffard, J.L. Journe, A simple Wilson orthonormal basis
with exponential decay, SIAM J. Math. Anal., 22 (1991), pp. 554–572.

[23] I. Deak, An Economical Method for Random Number Generation and a
Normal Generator, Computing 27 (1981), pp. 113–121.

[24] D.L. Donoho, Compressed sensing, IEEE Transactions on Information The-
ory, 52 (2006), pp. 1289–1306.

[25] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least Angle Regression,
Annals of Statistics, 32 (2004), pp. 407–499.

[26] L.C. Evans, Partial Differential Equations, American Mathematical Society,
1998.

[27] M.P. Friedlander and P. Tseng, Exact Regularization of Convex Problems,
SIAM J. Optim, 18 (2007), pp. 1326–1350 .

[28] M.A. Gibson and J. Bruck, Exact stochastic simulation of chemical systems
with many species and many channel, J. Phys. Chem., 105 (2000), pp. 1876–
1889.

142

[29] W. R. Gilks, N. G. Best, and K. K. C. Tan, Adaptive rejection Metropolis
sampling, Applied Statistics, 44 (1995), pp. 455–472.

[30] W. R. Gilks and P. Wild, Adaptive rejection sampling for Gibbs sampling,
Applied Statistics, 41 (1992), pp. 337–348.

[31] D.T. Gillespie, Stochastic Simulation of Chemical Kinetics, Annu. Rev.
Phys. Chem., 58 (2007), pp. 35–55.

[32] D.T. Gillespie, A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976),
pp. 403–434.

[33] T. Goldstein and S. Osher. The split Bregman method for `1-regularized
problems, SIAM Journal on Imaging Sciences, 2 (2009), pp. 323–343.

[34] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins, 1966.

[35] M.R. Hestenes, Multiplier and gradient methods, Journal of Optimization
Theory and Applications, 4 (1969), pp. 303–320.

[36] H.S. Hall and S.R. Knight, Elementary Trigonometry, MacMillan and Co.,
Ltd., 1952.

[37] E. Laeng, Une base orthonormale de L2(R) dont les éléments sont bien
localisés dans l’espace de phase et leurs supports adaptés à toute partition
symétrique de l’espace des fréquences, C. R. Acad. Sci. Paris, 311 (1990),
pp. 677–680.

[38] M.J. Lai and W. Yin, Augmented `1 and Nuclear-Norm Models with a Glob-
ally Linearly Convergent Algorithm, SIAM J. Imaging Sciences, 6 (2013),
pp. 1059–1091.

[39] E.H. Lieb and M. Loss, Analysis. AMS Graduate Studies in Mathematics,
Vol. 14, 2001.

[40] S.G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionar-
ies, IEEE Transactions on Signal Processing, 12 (1993), pp. 3397–3415.

[41] G. Marsaglia, W.W. Tsang, and J. Wang, Fast Generation of Discrete Ran-
dom Variables, Journal of Statistical Software, 11 (2004), pp. 1–11.

[42] G. Marsaglia and W. W. Tsang, A fast, easily implemented method for
sampling from decreasing or symmetric unimodal density functions, SIAM
Journ. Scient. and Statis. Computing, 5 (1984), pp. 349–359.

[43] G. Marsaglia, Xorshift RNGs, Journal of Statistical Software, 8 (2003), pp.
1–6.

143

[44] N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier
functions for composite energy bands, Physical Review B, 56 (1997), pp.
12847–12865.

[45] J.M. McCollum, G.D. Peterson, C.D. Cox, M.L. Simpson, and N.F. Sam-
atova, The sorting direct method for stochastic simulation of biochemical
systems with varying reaction execution behavior, Comput. Bio. Chem., 30
(2006), pp. 39–49.

[46] L.J. Nelson, G. Hart, F. Zhou, and V. Ozoliņš, Compressive sensing as a
paradigm for building physics models, Physical Review B, 87 (2013), pp.
1–12.

[47] Y. E. Nesterov, A method of solving a convex programming problem with
convergence rate O(1/k2), Soviet Math. Dokl. v27 (1983), pp. 372–376.

[48] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative reg-
ularization method for total variation-based image restoration, Multiscale
Model. Simul., 4 (2005), pp.460–489.

[49] J.T. Oxenius, Kinetic Theory of Particles and Photons, Springer-Verlag,
Berlin, 1986.

[50] V. Ozoliņš, Rongjie Lai, R.E. Caflisch, and S.J. Osher, Compressed Modes
for Variational Problems in Mathematics and Physics, Proceedings of the
National Academy of Sciences, 110 (2013), pp. 18368–18373.

[51] V. Ozoliņš, Rongjie Lai, R.E. Caflisch, and S.J. Osher, Compressed plane
waves–compactly supported multiresolution basis for the Laplace operator,
Proceedings of the National Academy of Sciences, 111 (2014), pp. 1691–
1696.

[52] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, Orthogonal Matching Pur-
suit: Recursive Function Approximation with Applications to Wavelet De-
composition, Proceedings of the 27 th Annual Asilomar Conference on Sig-
nals, Systems, and Computers, (1993), pp. 40–44.

[53] M.J.D. Powell edited by R. Fletcher, A method for nonlinear constraints in
minimization problems, in Optimization, (1969), pp. 283–298.

[54] R. Ramaswamy, N. Gonzalez-Segredo, and I.F. Sbalzarini, A new class of
highly efficient exact stochastic simulation algorithms for chemical reaction
networks, J. Chem. Phys., 130 (2009), pp.1–13 .

[55] R. Ramaswamy and I.F. Sbalzarini, A partial-propensity variant of the
composition-rejection stochastic simulation algorithm for chemical reaction
networks, J. Chem. Phys., 132 (2010), pp. 1–6.

144

[56] R. Ramaswamy and I.F. Sbalzarini, A partial-propensity formulation of the
stochastic simulation algorithm for chemical reaction networks with delays,
J. Chem. Phys., 134 (2011), pp. 1–8.

[57] B. Recht, M. Fazel, and P. Parrilo, Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization, SIAM Review, 52
(2010), pp. 471–501.

[58] H. Schaeffer, R. Caflisch, C.D. Hauck, and S. Osher, Sparse dynamics for
partial differential equations, Proceedings of the National Academy of Sci-
ences, 110 (2013), pp. 6634–6639.

[59] D.J. Sullivan, J.J. Rehr, J.W. Wilkins, K.G. Wilson, Phase space Wan-
nier functions in electronic structure calculations, Research Report, Cornell
University, 1987.

[60] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Roy. Stat.
Soc. B (Method.), 58 (1996), pp. 267–288.

[61] J.A. Tropp and A.C. Gilbert, Signal recovery from random measurements
via orthogonal matching pursuit, IEEE Transactions on Information Theory,
53 (2007), pp. 4655–4666.

[62] M.D. Vose, A Linear Algorithm For Generating Random Numbers With a
Given Distribution, IEEE Transaction and Software Engineering, 17 (1991),
pp. 972–975.

[63] A.J. Walker, An efficient method for generating discrete random variables
with general distributions, ACM TOMS, 3 (1977), 253–256.

[64] G. H. Wannier, The structure of electronic excitation levels in insulating
crystals, Physical Review, 52 (1937), pp. 0191–0197.

[65] L.T. Watson, Theory of globally convergent probability-one homotopies for
nonlinear programming, SIAM J. Optim., 11 (2000), pp. 761–780.

[66] L.T. Watson and R.T. Haftka, Modern homotopy methods in optimization,
Comput. Methods Appl. Mech. Engrg., 74 (1989), pp. 289–304.

[67] K.G. Wilson, Generalized Wannier functions, preprint, Cornell University,
1987.

[68] Y. Yang, M. Moller, and S. Osher, A dual split Bregman method for fast `1

minimization, Mathematics of computation, 82 (2013), pp. 2061-2085.

[69] K. Yin and S.J. Osher, On the completeness of the compressed modes in the
eigenspace, UCLA CAM Reports:13–62, 2013.

145

[70] W. Yin, Analysis and Generalizations of the Linearized Bregman Method,
SIAM J. on Imaging Sciences, 3 (2010), pp. 856–877.

[71] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms
for l1-minimization with applications to compressed sensing, SIAM Journal
on Imaging Sciences, 1 (2008), pp. 143–168.

[72] Y.B. Zeldovich and Y.P. Raizer, Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena, Dover, Mineola, NY, 2002.

146

