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Abstract. With the recent advent of superresolution imaging method-
ologies, various deconvolution algorithms have been applied to fluores-
cence microscopy images to enhance the image resolution, including non-
blind approaches requiring elaborate experiments to precisely measure
the optical point spread function (PSF), and blind approaches which
estimate PSF from the image itself. Recently, the superresolution opti-
cal fluctuation imaging (SOFI) has been developed and provided a fast
estimation of PSF which can be directly used in some post-processing
non-blind or prior-guided blind deconvolution algorithms. In this paper,
we propose a novel regularization based image deconvolution approach,
which combines the shearlet transform and total generalized variation
(TGV) to further enhance the SOFI results. This method could presum-
ably be useful for other diffraction-limited and superresolution imaging
modalities. Since the quality of the estimated PSF by SOFI may vary,
we propose both a non-blind deconvolution version and a prior-guided
blind deconvolution version. We tested the performance of our deconvo-
lution algorithms on simulated images with microtubule-like structures.
Our approach is efficient in representing directional thin structures, e.g.,
the microtubules, and it preserves high order image smoothness. Due
to these attributes it outperforms other state-of-the-art deconvolution
methods for this class of morphologies.

Keywords: image deconvolution, SOFI, point spread function, shearlet
transform, total generalized variation

1 Introduction

Deconvolution of fluorescence microscopy images, as a major post-processing
step for visualizing sub-cellular structures at higher resolution has attracted
attention in the image processing community. The fluorescence microscope pro-
duces blurred images due to the diffraction of light, imperfections in the optical
system (including non-ideal PSF), dim signals, photobleaching, and large aut-
ofluoresence background. To address some of these issues, two categories of image
deconvolution techniques have been developed: physical (optical) techniques that
reduce the out-of-focus light, e.g., the confocal microscope, and computational
techniques that utilize mathematical algorithms to improve image quality. The
deconvolution performance can be improved by accounting for the measured,
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non-ideal PSF. Although the PSF can in principle be accurately measured, it
requires specialized equipment which slows down the work-flow and throughput.

Recently, the SOFI methodology [1] has been developed to enhance image
resolution and contrast. As a by-product, it yields a fast and convenient estima-
tion of PSF. The estimated PSF could be used for further image enhancement by
non-blind or semiblind deconvolution. As a challenging ill-posed inverse problem,
various methods have been proposed for image deconvolution, including Wiener
filter [2], Richardson-Lucy algorithm [3, 4] based on the assumption that pixel
intensity obeys the Poisson distribution, TV and nonlocal TV based approaches
[5, 6], and multiscale transform based algorithms [7–10]. However, most of these
algorithms suffer from losing distinctive directional features and/or creating ar-
tifacts in dealing with complicated microbiological images. Inspired by the ca-
pability of the shearlet transform in differentiating orientational features and
TGV in preserving high order smoothness [11, 12], we propose a shearlet-TGV
image deconvolution method in two versions: non-blind and PSF prior-guided.
In contrast to building Wiener-type filters based on the shearlet transform in
[9], the proposed method uses fixed parameters for all iterations and achieves
fast convergence. To reduce the artifacts along fine features while preserving the
layout of different line-shape fibers in the microscopy images of cells, the shearlet
based regularization is imposed on the underlying image. By virtue of the PSF
estimation in the SOFI methodology, a quadratic penalty involving an estimated
PSF by SOFI and a regularization of PSF can be added to the non-blind de-
convolution model to further assist image restoration. In addition, the proposed
model is solved by an algorithm based on the alternating direction method of
multipliers (ADMM, also known as split Bregman [13]), which guarantees the
implementation efficiency with respect to the resultant image quality. A variety
of numerical experiments show that our proposed algorithm has outstanding per-
formance over some state-of-the-art methods in preserving the fine structures,
especially the junctions of two curved lines.

The rest of the paper is organized as follows. In Section 2, we describe in
detail the proposed shearlet-TGV based image deconvolution method in a non-
blind version and one with PSF prior guidance. Performance comparisons with
other popular deconvolution methods on synthetic data are presented in Section
3. In the end, we summarize the paper in Section 4.

2 Proposed Algorithm

Let u : Ω → R be the image of interest, where Ω is an open and bounded Lip-
schitz set in R2. The observed image v : Ω → R satisfies v = h ∗ u + n, where
h is a PSF and n is a Gaussian noise. In practice, the noise n may be either
spatially variant or of unknown type. For simplicity, we assume that the noise
n is homogeneous with variance σ2. Given a known PSF h and the observed
blurry image v, we consider the following minimization problem to restore the
underlying image u

min
u

µ

2
‖h ∗ u− v‖22 + Φ(u), (1)



Shearlet-TGV Based Fluorescence Microscopy Image Deconvolution 3

where Φ(u) is a regularization term, e.g., a TV seminorm
∫
Ω
|∇u| and a Besov

norm involving certain multiscale transformation. We call (1) non-blind image
deconvolution model. If the PSF is unknown, then the regularization with respect
to the PSF h has to be taken into consideration and (3) turns into a blind image
deconvolution model:

min
u,h

µ

2
‖h ∗ u− v‖22 + Φ(u) + Ψ(h) (2)

where Ψ(h) is a regularization term to preserve some geometric properties of
h. Since the PSF h corresponds to a point source in the fluorescence imaging
system, we set Ψ(h) = ‖∇h‖22 to ensure the smoothness of h. In case of non-
Gaussian noise as n, the L2-norm in the data fidelity term can be replaced by a
more robust L1-norm.

2.1 Shearlet-TGV non-blind image deconvolution

Considering the sensitive orientation detection of shearlets [14] and preservation
of high order image smoothness by TGV [15], we propose the shearlet-TGV
nonblind image deconvolution model

min
u

µ

2
‖h ∗ u− v‖22 + λ ‖SH(u)‖1 + TGV2

α(u), (3)

where SH(u) represents the shearlet transform of u. The second order TGV with
weight α = (α0, α1) of u is defined as

TGV2
α(u) = sup

{∫
Ω

udiv2w dx
∣∣∣w ∈ C2

c (Ω,S2×2), ‖w‖∞ ≤ α0, ‖divw‖∞ ≤ α1

}
where S2×2 is the space of second order 2× 2 symmetric matrices. By reformu-
lating TGV as a minimizer in the discrete setting , the above model becomes

min
u,p

β

2
‖h ∗ u− v‖22 + λ ‖SH(u)‖1 + α1 ‖∇u− p‖1 + α0 ‖E(p)‖1 . (4)

where E is an operator defined in [15]. After applying the ADMM method, we get
Algorithm 1. Similar to the algorithm in [12], the x-, y- and z-subproblems have
closed-form solutions by using the generalized shrinkage operator. Rather than
representing the convolution operator as a Toeplitz matrix, we obtain a closed-
form solution for the least-squares (u, p)-subproblem by efficiently applying the
fast Fourier transform.

2.2 Prior-guided shearlet based blind image deconvolution

SOFI provides a preprocessed deconvolved image and an estimated PSF h0(x),
which can be treated as an approximation with high-accuracy to the actual PSF
but with imperfections, i.e., the radius of a point source is enlarged or reduced.



4 Jing Qin, Xiyu Yi, Shimon Weiss, and Stanley Osher

Algorithm 1 Shearlet-TGV non-blind image deconvolution algorithm

1. Choose parameters µ1, µ2, µ3, β, λ, γ, α1, α2, initialize x̃0, ỹ0, z̃0, u, p.
2. For n = 0, 1, 2, . . ., run the following computations

xn+1 = argmin
x
‖x‖1 +

µ1

2
‖x− SH(un)− x̃n‖22 ,

yn+1 = argmin
y
‖y‖1 +

µ2

2
‖y − (Dun − pn)− ỹn‖22 ,

zn+1 = argmin
z
‖z‖1 +

µ3

2
‖z − E(pn)− z̃n‖22 ,

(un+1, pn+1) = argmin
u,p

β

2
‖h ∗ u− v‖22 +

λµ1

2

∥∥xn+1 − SH(u)− x̃n
∥∥2

2

+
α1µ2

2

∥∥yn+1 − (Du− p)− ỹn
∥∥2

2
+
α0µ3

2
‖z − E(pn)− z̃n‖22 ,

x̃n+1 = x̃n + γ(SH(un+1)− xn+1)

ỹn+1 = ỹn + γ(Dun+1 − pn+1 − yn+1),

z̃n+1 = z̃n + γ(E(pn+1)− zn+1).

If the stopping criterion is satisfied, it stops.

By taking into account of machine noise, we propose the shearlet based blind
image deconvolution with the prior knowledge of PSF:

min
u,h

λ ‖SH(u)‖1 + TGV2
α(u) +

ν

2
‖h− h0‖22 +

η

2
‖∇h‖22 s.t. ‖h ∗ u− v‖2 ≤ σ.

(5)
To solve the constrained minimization problem (5), we apply ADMM and get

un+1 = argmin
u

β

2
‖hn ∗ u− v + tn‖22 + λ ‖SH(u)‖1 + TGV2

α(u)

hn+1 = argmin
h

ν

2
‖h− h0‖22 +

η

2
‖∇h‖22 +

β

2

∥∥h ∗ un+1 − v + tn
∥∥2
2

tn+1 = tn + γ(v − hn+1 ∗ un+1).

(6)

Note that the u-subproblem can be solved by applying Algorithm 1. Moreover,
to solve the h-subproblem, we first pad h with zeros such that h is of the same
matrix size as u and then apply the fast Fourier transform and get a closed-form
solution

h = F−1
(

νF(h0) + βF(un+1)∗ ⊗F(v − tn)

ν + η
∑2
i=1 F(Di)∗ ⊗F(Di) + βF(u)∗ ⊗F(u)

)
,

where Di are difference operators along x-direction and y-direction, and ⊗ is
entry-wise matrix multiplication. To make the parameter tuning easier, the pa-
rameter β in the h-subproblem can be different from that in the u-subproblem.
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3 Numerical Experiments

In this section, we present experimental results to show the performance of
our approach on two synthetic images of size 200× 200 simulating the Tubulin
structures within a biological cell, and a PSF of size 100 × 100. All results are
compared in terms of the increase in signal to noise ratio (ISNR) [16], which is
defined as

ISNR = 10 log10

N(v)

N(u)
, N(u) = min

a,b,δx,δy
‖au(·+ δx, ·+ δy) + b− u0‖22

where the restored image u is obtained from the degraded blurry image v, u0
is the ground truth and u(· + δx, · + δy) represents the image u shifted by δx
and δy in the horizontal and vertical directions respectively. By taking the spa-
tial alignment and intensity scaling, this measure is more useful for compar-
ing different deconvolution algorithms. To make comparison fair, we choose
the optimal result for each method after parameter tuning. We fix µ1 = 100,
µ2 = µ3 = 0.01, α1 = 10, α2 = 0.001 for all experiments, set γ as 0.1 for the
first set of experiments and 1 for the second set, and choose optimal ν, λ from
the set {0.1, 1, 10, 100} for different noise levels and imperfection types of PSF.

In the first experiment, we generated curved lines from a random walk model
which simulates microtubules-like structures in a cell. The ground truth u con-
sists of multiple overlapping curved lines with randomly distributed emitters of
line density 1.05 emitters per nanometer, cross-section marking uncertainty is 20
nm; the pixel size is 160 nm; h is simulated as a Gaussian PSF with the diffraction
limit of 625 nm red laser. We test the data under three scenarios: 1) Gaussian
noise with σ = 3 and perfect PSF, i.e., v = h∗u0+n and n ∼ N (0, 9); 2) no noise
and imperfect PSF with wider spatial support, i.e., v = h ∗ u0 and input PSF
h̃ = h0.6; 3) Gaussian noise with σ = 3 and imperfect PSF, i.e., v = h ∗ u0 + n
and input PSF h̃ = h0.6. The imperfection of PSF is to simulate the estima-
tion error of PSF in the SOFI system. We compare the proposed method with
other competitive methods: Richardson-Lucy’s method, statistical blind decon-
volution method [17], i.e., “deconvblind” function in MATLAB, nonlocal TV [6]
and framelet based deconvolution [10]. In addition, we test the recent algorithm
proposed in [18], which fails to return an enhanced image due to the challenging
dynamic range of the testing image. From the plots of ISNR versus the iteration
number in Fig. 1 for each scenario, one can see that Richardson-Lucy’s method
is unstable but obtains a fairly good result, and our method shows the stable
outstanding performance.

For the purpose of illustration, we show the results obtained under the most
challenging scenario 3) in Fig. 2. The thin structures and junction parts are
preserved due to the directional sensitivity of shearlets. In the meanwhile, the
ringing artifacts along the geometric features are suppressed in our result from
the contribution of TGV. In fact, the framelet based method has intensive arti-
facts at the scenario 3) which is implied by the ISNR plot. In order to show the
robustness of the proposed model, we tested various noise levels σ = 4, 6 and
imperfect PSFs h̃ = hk with k = 0.6, 0.8, 1, 1.2, 1.4 in Table 1. It shows that our
method consistently performs better than all other methods in terms of ISNR.
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Fig. 1. From left to right: ISNR comparisons for blurry images with 1) Gaussian noise
2) imperfect PSF 3) Gaussian noise and imperfect PSF. The vertical axis represents
ISNR.

Fig. 2. Deconvolution of a blurry image with noise and imperfect PSF. From left to
right: input blurry image, “deconvblind” (ISNR=0.90), nonlocal TV (ISNR=0.94),
Richardson-Lucy (ISNR=1.06), proposed result (ISNR=1.60), and the ground truth.

σ = 4 σ = 6

k 0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 1.4

Proposed 1.48 2.76 2.88 2.23 1.96 1.48 2.13 2.03 1.67 1.46

Richardson-Lucy 1.08 1.69 2.15 2.02 1.79 1.01 1.47 1.64 1.56 1.43

Framelet 1.14 1.67 1.71 1.62 1.51 0.91 1.19 1.23 1.19 1.14

deconvblind 0.81 0.92 1.02 1.07 1.10 0.67 0.78 0.85 0.89 0.91

Nonlocal TV 0.74 0.85 0.92 0.69 0.59 0.62 0.62 0.61 0.57 0.53

Table 1. Comparison of ISNRs for each method using images with various noise levels
and imperfect PSFs. The input PSF satisfies h̃ = hk where h is the exact PSF.
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In the second experiment, we tested the random circles which mimic the pits
on the cell membrane. Aside from the difference of the pattern, the simulated
data was generated in the same manner with that for the first experiment. We
show the results by testing the blurry image with Gaussian noise σ = 6 and
k = 0.6 for PSF h̃ in Fig. 3. It is clear that two adjacent circles are separated in
our result with minimal artifacts along the structure. However, they are merged
in the result by using the Richardson-Lucy’s method. In this case, nonlocal
TV suffers from the ringing artifacts along the boundaries. Similar to the first
experiment, the framelet result has huge artifacts and thereby has the lowest
ISNR score among all results.

Fig. 3. Deconvolution of a blurry image with noise and imperfect PSF. From left to
right: input blurry image, nonlocal TV (ISNR=0.91), “deconvblind” (ISNR=1.19),
Richardson-Lucy (ISNR=2.96), the proposed result (ISNR=3.68), and the ground
truth.

4 Conclusions

A novel regularization based image deconvolution model for fluorescence mi-
croscopy images has been proposed in the paper. To preserve the various di-
rectional structures of the image, the shearlet transform as a multiscale repre-
sentation system with high accuracy is employed in the model. Addressing the
dynamic range and various smoothness orders, TGV serves as a regularization
term to reduce the noise and staircase effects. The proposed model is solved
efficiently by applying ADMM, and thereby fast convergence is guaranteed. Nu-
merical results show that our proposed approach is particularly advantageous for
deblurring fluorescence microscopy images in terms of ISNR and visual quality
compared to other state-of-the-art methods.
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