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Abstract. The authors of [13]| proposed sparse Fourier domain approximation of solutions to
multiscale PDE problems by soft thresholding. We show here that the method enjoys a number of
desirable numerical and analytic properties, including convergence for linear PDE and a modified
equation resulting from the sparse approximation. We also extend the method to solve elliptic
equations and introduce sparse approximation of differential operators in the Fourier domain. The
effectiveness of the method is demonstrated on homogenization examples, where its complexity is
dependent only on the sparsity of the problem and constant in many cases.
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1 Introduction Partial differential equations with multiple length scales are
fundamental to modeling various physical problems including composite materials,
wave propagation in inhomogeneous media, crystalline solids, and flows with high
Reynolds number (fluid mechanics). Typically, these problems involve a wide range
of scales, with each scale corresponding to a level of physical processes. However,
in some cases, the problem is scale separable, in the sense that the mathematical
representation of the dynamics involve one fine scale and one course scale. Even in
this case, accurate numerical methods for solving these PDE can be computationally
expensive since resolving both the coarse and fine scales simultaneously requires a
spatial resolution dominated by the fine scale.

Over the past decades, various approaches have been taken to overcome this diffi-
culty. In some cases, it is possible to derive an asymptotic approximation for the effect
of small scales on the solution [11]. When this is not possible, many other techniques
have been proposed. A multiscale finite elements method can be used to solve linear
elliptic homogenization equations (see [8]), and has found many applications to other
multiscale problems. The equation-free methods use accurate small scale and short
time solvers to capture fine scale behavior and use them to govern the related course
scale behavior [9]. The heterogeneous multiscale method [14] is a general numerical
approache which also uses the scale separation of the problem to generate solvers on
the micro and macroscopic levels. In [10], a projection based approach is used to con-
struct an adaptive multiscale algorithm for elliptic homogenization equations. And
more recently, a sparse transform method [5] exploits the scale separability of linear
homogenization problems to construct a fast direct solver. The body of literature on
multiscale models is large, and we only mention some of the popular methods. For
more detail on general numerical methods for multiscale problems see [29, 14] and the
citations therein.

In this work, we will focus our attention on linear partial differential equations
with multiscale behavior either in the medium or in a source term. Following the work
of [13], which used an L' optimization method to compress the Fourier coefficients of
the solution, we build efficient solvers for periodic multiscale problems. In particular,
we will use the sparse Fourier structure of solutions to construct numerical methods
which solve the problem directly, without the separating the micro and macro scales
explicitly.

L' optimization and its related models are at the center of many problems in the
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fields of imaging science and data analysis, see for example [2, 17, 18, 16]. Due
to the connection with sparse models for compressive sensing, recent works have
introduced L' techniques for numerical partial differential equations. For example,
in [13] L' regularized least squares was used to sparsely approximate the Fourier
coefficients in multiscale dynamic PDE (and in this work we expand that approach).
In [23, 24, 25], eigenfunctions with compact support were constructed to efficiently
solve problems in quantum mechanics. Also, in [26] an L' nonlinear least squares
model was used to sparsely recover coeflicients of a second order ODE which are
related to constructing intrinsic mode functions. In [27], low-rank libraries are used to
sparsely approximate solutions to dynamical systems and thereby identify bifurcation
regimes. Some theoretical results are provided in [21] for PDE with L!-terms, related
to some of these models. For more detailed analytic results, see [28, 1, 30] which laid
the theoretical groundwork for these equations.

In this paper, we continue the work of [13] to leverage the sparsity of solutions in
order to design an efficient numerical scheme. However, we also impose sparsity of the
update operator to improve the complexity while retaining a similar level of accuracy.
We show some theoretical results for the sparse spectral scheme and sparse operator-
sparse solution spectral scheme. In particular, we provide error bounds between the
solution and the sparse approximation as well as complexity bounds on the algorithm.
Also, we continue to make connections between L' based methods and multiscale
problems through a denoising interpretation of the homogenization expansion of the
solution.

The outline of this work is as follows. In Section 2, we recall the explicit scheme
from [13] and in 3 propose an implicit version as well as a sparse operator approxi-
mation. Theoretical results are provided in Section 4. A discussion on well-posedness
is given in Section 5 and a denoising interpretation of the method is given in Section
6. In Section 7, some algorithmic analysis is provided. The algorithm is tested on
numerical examples in Section 8, with concluding remarks given in Section 9.

1.1 Notation

e a — (or A for anisotropic problems) the medium inhomogeneity. @’ is the
sparse approximation of a.

e 1 — the shrink size variable. y’ is the corresponding variable for sparse oper-
ator approximation.

e Lk — the Fourier space variable, with positive and negative frequencies.

e () — either a general numerical scheme or the matrix corresponding to a one-
step linear numerical scheme.

e [ —an elliptic operator. L is the operator when applied in the Fourier domain
and Ly, is its discretization. [:;L is the sparse approximation.

2 Preliminary We will consider linear multiscale problems where the solu-
tions are sparse in the Fourier domain [5, 13]. For example, consider the parabolic
problem:

out 0
(2.1) ot o (a(x/e)

ou’
ox

u®(z,0) = uj(z), a(z/e) oscillatory.

) =0 on [0,27] periodic

Figure 2.1 shows the solution in physical and Fourier space. This phenomenon is
common in multiscale PDE: distinct length scales manifest strikingly as sparsity in
the frequency domain.
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Fig. 2.1: Left: Solution of (2.1) with Fourier-sparse initial data in physical space.
The small rectangle shows the axis limits of the zoomed in plot to the right. Right:
Zoomed in, showing fine scale oscillations. Bottom: solutions in Fourier space (the
y-axis for all Fourier space plots is on a log;, scale). Of the N = 2048 Fourier
coefficients, only 153 have magnitude larger than 10710,

To compute solutions which are truly sparse in the frequency domain (and not just
approximately sparse with many noisy small magnitude coefficients), it was proposed
in [13] to solve an £!-regularized least squares problem to obtain a sparse approxima-
tion of @ (the Fourier transform of u). We summarize the method here.

Given numerical iterates 4™, ..., 4" % and a numerical update scheme of the form
~n+1 _ N ~An—
u - Q (u yr u q)?

the scheme is modified by defining the auxiliary variable v = Q(a",...,u" %) and
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solving
. . 1 .
(2.2) 4"t = argmin pfw|; + §||w — 0|13,
w
where the ¢! norm for complex arguments w is ||w||; = Y, |w;|, where | - | denotes

magnitude. Note that the ¢! norm is taken in the Fourier domain and not physical
space.
For a one-step linear updating scheme, equation (2.2) can be written as

A _ 1 i
" = argmin pllwl; + §||w - Qi3
w

where @ is the matrix which advances the discretized solution forward in time. L'
regularized least squares is amenable to a number of efficient solution methods, e.g.
[19]. The problem can also be generalized to any basis or overcomplete dictionary,
but we restrict our attention to Fourier modes. In fact, due to the orthogonality of
the Fourier modes, equation (2.2) decouples and the minimizer can be given exactly:

4" = shrink (9, p) := max(|d| — p, 0) |1A)| .
v
For a concrete example, the forward Euler method applied to 2% = 2 [a(z/¢) %]

has the form:

A"t =a" v dtikax (ika™)

where k is the wave number and * represents convolution. This becomes:
4" = shrink (4" + dtikax (ika"), u)

in the sparse spectral form. By exploiting sparsity in the frequency domain, the
proposed method can rely on sparse data structures to allow for high resolution with
faster numerical simulations.

3 Proposed Methods In this section, we will discuss two new extensions of
the sparse spectral method, namely an implicit version and a sparse operator/sparse
solution version. Each come with their own advantages, which we will analyze in
subsequent sections.

3.1 Implicit Variation For many classes of problems at high spatial resolu-
tion, explicit schemes are impractical due to the severe time step restriction required
for stability. We can construct an implicit scheme for the problems we are considering,
which avoids these restrictions at the expense solving a more complex L' problem at
each time step.

Consider the general linear parabolic equation u; + Lu = f with schemes of the
form

Qu"tt = 0" + dtf.
The simplest implicit version is backward Euler:

(I + dtLy)am™ = o™ + dtfy,
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where L denotes the representation of L in the Fourier basis, Ly, denotes the discretized
version of this operator with respect to a grid size h > 0, and fh denotes the Fourier
transform of f sampled at the corresponding grid points.

For a scheme of this form, the analogue of equation (2.2) is

N : 1 ~n £
. @+ = argmin gl + 5 1Qu - (8 + dif,)

which does not have a simple explicit representation. In addition, the optimality
condition for Equation (3.1) requires inverting the matrix Q7@ which will often be
badly conditioned.

When L is a uniformly elliptic operator, the eigenvalues of Q = I + dtL, are
positive and so we can instead consider the sparse scheme defined by

1 .
(3.2) 4" = argmin pljw|; + §wTQw —wT (@™ + dtfy).

Similarly for time-independent problems, i.e. Lu = f, the corresponding energy

is
1 o o
@ = argmin pllw|; + inLhw —wt .
w

Note that when p = 0, this is the standard variational principle for elliptic operators.
We will see that solving the implicit schemes with the L' term directly is often too
slow to be practical. The reason is that directly applying this variational principle to
find the solution does not use the fact that the solution is sparse in order to speed up
computations. However, in Section 7.1 we will show that it is possible to construct an

efficient algorithm for approximately solving the resulting optimality condition arising
from equation (3.2).

3.2 Sparse Operator Approximation For uniformly elliptic linear opera-
tors, for example of the form

Lu = —div(a(z,z/€)Vu),
the standard spectral discretization
Lyt =kax (ka)

requires a convolution at each iteration, which can be costly even when # is sparse.
However, because the diffusion coefficient a is scale separated, we can define a sparse
approximation of Lj; by

Lt =ka' = (ka)
where @’ is a sparse approximation of a. We can choose a@’ to solve
N . / 1 ~ 112
a’ = argmin p/'[|wlly + S[|w — afl3
w 2

which again results in a closed form solution given by the soft thresholding a’' =
shrink(a, p’). An alternative is

. 1 .
@' = argmin g/ ||lwlo + = ||lw — a3
w 2
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where the L ‘norm’ || - || counts the number of nonzero entries. In this case, the
solution is given by hard thresholding a— setting all coefficients smaller in magnitude
than some threshold equal to zero.

Soft thresholding is contractive and benefits from many desirable smoothing prop-
erties which make it preferable for the sparse approximation of the solution, which
will be discussed below in Section 6. For a sparse approximation of the operator, the
benefits of a particular choice of thresholding are less clear and therefore we consider
both.

4 Theoretical Remarks The compressive spectral method, or sparse scheme,
inherits many appealing properties of the underlying numerical method it approxi-
mates. In general, it is at least as stable as the original scheme and retains the order
of accuracy.

4.1 Contraction and Linear Convergence The following two theorems
show that the explicit and implicit numerical schemes are contractive. This result
is similar to those found in [1].

THEOREM 4.1. For the explicit scheme generating time steps by

4" = shrink((I — dtLp,)a™ + dtf, p),

if ||T = dtLp||op < 1 then the iterations are contractive: i.e. |Ju™' —u™||y < |[u™ —
uh— 1 | |2 .

Here || - ||op denotes the ¢2 operator norm, or largest singular value.

THEOREM 4.2. For the implicit scheme, if Ly, is positive semidefinite, then the
iterations are contractive, ||u" Tt —u"||y < |[u™ — w72, for all dt > 0.

The proofs of these two theorems are similar, and reside in the appendix.

The method is also convergent. In particular, for the correct scaling of 1, we have
the following theorem.

THEOREM 4.3 (Linear Convergence, Explicit Scheme). Let S denote a linear
spectral numerical update scheme, generating time steps as

artt =Q(ar, ... anh),
and let S, denote the spectrally sparse scheme, which generates time steps as
A . ~ ~ 7k
uZH = shrink(Q(dy, ..., a4, "), ).

Then if S is consistent and stable (and hence converges), and if u = O(dt'*°) for
some § > 0, then the compressive scheme S, converges. If p = O(dt?) with p at least
the order of the local truncation error of S, then the order of convergence of S is not
impacted.

For the implicit scheme, the analogous theorem is the following.

THEOREM 4.4 (Linear Convergence, Implicit Scheme). Let S denote an implicit
linear spectral numerical update scheme for the PDE u; + Lu = f on a domain §2
discretized with N grid points, generating time steps as

(I + dtLy)a"™ ™ = a™ + dtfy,

and let S, denote the spectrally sparse scheme, which generates time steps according
to (3.2):

. 1 7 AT f
4" = argmin pllwl); + in(I + dtLp)w — wT(uH +dtfy).
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Then if S is consistent and stable (and hence converges), and if u = O(dt'*%) for
some § > 0, then the spectrally sparse scheme S,, converges. If p = O(dtP) with p at
least the order of the local truncation error of S, then the order of convergence of S
in L? is not altered.

The proofs can be found in the Appendix.

4.2 Sparse Operator Approximation: Implicit Solver We now consider
the error incurred by the sparse operator approximation proposed in Section 3.2.
The continuum case is discussed in detail, and the proof for the case of discretized
operators is completely analogous.

The usual discretization in Fourier space of a general, anisotropic, divergence form
elliptic operator

Lu = —div(A(z)Vu) + b(z) - Vu + c¢(z)u

results in a matrix (corresponding to convolution) which is dense. However, it is still
approximately sparse when the coeflicients A and b are. Approximating A and b by
A’ and b’ which are truly sparse in Fourier space yields an operator which is far more
efficient to store and to work with, but incurs some error. Theorem 4.5 quantifies this
error.

THEOREM 4.5. Let u; and ug be solutions to

(41&) —d1v(A1Vu1) + bl . Vu1 +ciu; = f
(41b) —le(AQVUQ) + b2 . VUQ + coug = f

on a domain Q C R% with periodic boundary conditions and the constraint

/u1:/u2:0.
Q Q

wT Ayw > )\||w||27

Require also that

1
C; — *div(bi) Z 0
2
fori=1,2. Then
o = wallr < OX(amaxl| (A1) - (Aa)isl+
¢ max 1(b1); — (b)ill + C2llér — é2||1> £l

where C = C(Q) is the constant from Poincare’s inequality [7], and the Fourier series
of the matrices and vectors A; and b; are taken entry-wise.

This form, in terms of H(Al)z] — (Ag)inl, H(bl)z — (b2)i||17 and Hé] - ég”l is par-
ticularly useful because the coefficients will be approximated in Fourier space. The
reader familiar with energy estimates for elliptic equations will see that the require-
ments of the theorem are not the most general possible, and the proof can be modified
to handle other cases individually when different estimates are desired.
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Proof. Subtracting the first equation of (4.1) from the second, then adding and
subtracting A;Vus, by Vus, and cius gives

—div(A1Vw) — le[(Al — AQ)VUQ] + b1 -Vw + (bl - bz)V’UQ +crw + (Cl - CQ)UQ = O,

and after multiplying by w and integrating by parts, we glean

1
)\/ Vw|?dz < | Vw? A Vw + <C1 - 2div(b1)> w? dx
Q Q

< AL = Azllopl| Vuz|l2][ Vwllz + (b1 = balool|[ Vuz|l2][w(l2 + - ..

ller = ealloo[luzll2]w]l2-

Using Poincare’s inequality and ||A; — As|op < d|| A1 — Asl|cos
)\/ [Vwl|? dz < (d]| A1 = Az]loe + Cllb1 — ba[loo + C?[ler — e2loo ) [[Vu|2[[ V]|
Q

and thus
(4.2) [Vwlly < A7H(d][ A1 — Azl + Cl[b1 = ballse + CPler — e2]loo) [Vuiz]l2-

Similarly multiplying the equation for us by us, integrating by parts, and applying
Poincare’s inequality yields

Va2 < OX7[fll2-
Substituting this into (4.2) and using Poincare’s Inequality again, we get
lur = uzll g < CAT?(d[| A1 — Aslos + Cllb1 = b2lloo + C?ller — e2l) [ f2-
The form stated in the theorem follows after

14]lso = max [|Aij oo < max || Ay
i, i,j

and the analogous inequality with b. ]

In practice memory is not a concern due to the convolutional structure of the
matrix Ly, representing an elliptic operator in Fourier space, but the sparse structure
of the operator dramatically reduces computation complexity (Section 7.2).

4.3 Sparse Operator Approximation: Explicit Solver The discrete ana-
logue of Theorem 4.5 covers numerical schemes with implicit time steps, each of which
require solving an elliptic problem with a sparsely approximated operator. Effectively,
it allows us to estimate

1Q7" = P Hlop
where P is a sparse matrix approximating that of the discretized full elliptic operator
Q, and || - ||op refers to the L? matrix operator norm, or largest singular value. On
the other hand, for explicit schemes, we are concerned about
1Q = Pllop

which we will consider directly.
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THEOREM 4.6. Let L be the elliptic operator defined
Lv = —div(aVv)
and let Q be its Fourier discretization
Qu=kayp* (k)

where k denotes the vector of Fourier mode frequencies and ap, is the discretized do-
main inhomogeneity coefficient in the elliptic operator. Analogously, let

Pu=kaj, * (k).
Then
1Q = Pllop < K*|jan — aj |11

where K is the highest frequency on the grid.

In the case of a square grid [1,..., N]%, K = N/2. The result may be dismaying
at first glance because it appears that the approximation error ||a;, — bAh||1 must be
decreased faster than O(1/N?) just to remain stable. However, this type of bound is
natural, since the operators’ norms themselves are

1Pllop ~ [|Qllop = O(K?).

The large operator norm is normalized by the stability condition dt = O(dz?), so one
can think of these bounds in the update sense as:

(I = dtQ) — (I — dtP)||op < || — a1

Proof. The result is a simple consequence of Young’s inequality: |[[f * g[l2 <
17 Nllgll2- We have

1Q — Pllop = Sup 1(Q — P)ill
= [|k(an — ap) = (k)2
< ||k(an — ap)[l1]1kall2
< K?lan — a1
|
The proof clearly generalizes to hyperbolic operators of the form Qi = a * (ik 1) as

well.
For an example, recall the forward Euler discretization of a parabolic PDE:

4"t = (I — dtLy)a",

over a time interval [0,T]. If ||a, — a}|l1 = J, approximating ) by P incurs an
additional local truncation error of magnitude §K?dt at each time step. As the grid
is refined, the CFL condition requires that K?dt stay approximately constant, so that
the approximation error per step remains approximately constant.
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5 The Modified Equation Prespective Using the variational principle for
the explicit scheme applied to the parabolic equation yields the following first order
optimality condition:

0"t — (1 —dtLy)a"™ — dtf, + pd||a™ |y,

which is equivalent to

0e “nﬂdit_“" +Lpa — fu + %ananﬂnl.
Taking pu = ddt and formally sending dt and h to zero leads to
(5.1) Gy + La— f € —60)|d)1,
or
(5.2) Gy + La = f — op(a)

where p(1) denotes the particular element of the subdifferential so that the differential
inclusion (5.1) is an equality. The sparse scheme applied to hyperbolic and elliptic
problems yields analogous modified equations. We consider this to be the modified
equation in the sense that the numerical scheme is directly solving this problem. The
subgradient contribution is a vanishing ‘compression’ term which may be interpreted
as a force which pushes the solution u toward the nearest (in the L' proximal sense)
union of low dimensional subspaces spanned by the Fourier basis.

Well-posedness for the modified equation is guaranteed via the theory of differen-
tial inclusions on Banach spaces (e.g. [1, 4]). The theorem below summarizes these
results in the current context.

THEOREM 5.1 (Well-posedness). Let u(t) satisfy the differential inclusion

duu(t) € —A(u(t)) — 60||a(t)||

with w(0) in the domain of the monotone (single-valued) operator A. Then for all
§ > 0, there exists a unique solution u(t) defined for all t > 0 which is the solution to

Fpu(t) = —A(u(t)) — op(a(t))

for some p € 9||a4(t)]||L:.

Lastly, we mention that if we want to directly compare the error between the
solutions of the original and modified equations, the error grows linearly in time (at
worst).

THEOREM 5.2. Let u be the solution to

u+ Lu=f
and let us solve
(iis): + Lis — f € 50||as]1.
Then
[lu(t, ) = us(t, )]z < 20t.

The proof is direct and can be found in the Appendix. Similar results are easily
proved for the elliptic and hyperbolic cases using only that ||p(4)]|c < 1 and standard
energy estimates; this approach also provides a simple alternate proof.
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6 Denoising Perspective Soft thresholding also appears in early methods for
signal denoising using wavelets [6]. We refer the reader to that work for full details,
and list here only the analogues of its major results in the current context.

Consider the following denoising problem: we wish to recover a signal f € R™
from noisy observations d = f 4+ w, ||w||1 < p, by soft-thresholding DFT coefficients
by w. This approach enjoys the following properties:

e (Smoothing) The recovered signal f, satisfies ||fu||ge < [|fl|g+ for any
Sobolev norm || - || g+=. In particular, |f;t(k)| < |f(k)| for all frequencies k.
e (Near optimality) f, is near-minimax:

sup  sup ||fu — fll <4inf sup  sup ||f(d) - flIz
171152k < Tl <p 7 1l <€ ol <n

where f (d) is any other estimator of f.
The smoothing property guarantees that the recovered signal is ‘noise-free’; the near
optimality property guarantees that for worst-case signals of bounded Sobolev norm
and noise of bounded ¢! norm, the result recovered by soft thresholding is nearly the
‘optimal’ (see [6]).
Next, consider the solution u¢ to the standard parabolic multiscale problem

ou® 0 ou® o . .
5% " Om (a(m,x/e) 8x) =0 on [0,27] periodic, u(z,0) = ui(x).

The theory of asymptotic homogenization (e.g. [11]) can be used to show that at time
point t", the exact solution u¢ satisfies

us(x, t") = ug(x, t") + eus (z, 2 /€, t") + € R(x, t")

with |R(z,t)| < C. This expansion is valid as long as we assume that the equation is
taken on a periodic domain and a(z) is as smooth as we like. For a numerical solution,
the asymptotic expansion can be easily modified to include truncation error 7°*+! as
follows: if we let v™*! denote the numerical solution at time ¢"*!, then

V" = g (2, t") + ey (v, 2 /e, t"HY) + ER(w, 1Y) — 7L

This form allows us to draw a connection between the denoising and homoge-
nization problems: for an appropriate threshold choice p, the compressive spectral
method denoises v" ! as

" = g (z, 1) + euy (v, 26, 47T + ER(x, ) — 7

signal noise

and attempts to recover the first terms in the asymptotic expansion. These interpre-
tation is valid between any two time steps, but may not hold globally.

7 Efficient Implementation In this section, we describe important details
pertaining to the numerical method and algorithm considerations. Using a concrete
example, we show that a favorable complexity can be achieved.

7.1 The Proximal-Galerkin Algorithm The implicit scheme described
above requires fast minimization of the energy (3.2), and differs from many cases
where L' regularization is added because the problem, e.g. compressed sensing [2],
TV minimization [12], or basis pursuit [3], is ill-posed without it. For the multiscale
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PDE problem, this is not the case since an appropriately discretized version of (3.2)
will be well-posed and can be solved by inverting a linear system

Qu=f

where @ is a positive-definite (and even sparse, in physical rather than Fourier space)
matrix. If the elliptic operator is discretized appropriately, fast and extensively stud-
ied preconditioned conjugate gradient solvers are available. So, to be competitive,
the compressive implicit scheme must leverage sparsity of the solution @ to perform
the (approximate) linear inversion Qi = f quickly. For this purpose, we propose the
hybrid proximal gradient descent and Galerkin approximation algorithm described
below, which is related to the procedure described in [5].

First, let D be the diagonal part of Q). Since @ is the matrix corresponding to a
Fourier-space discretized elliptic operator, D is the matrix corresponding to a multiple
the Fourier-space discretized Laplacian. We take n ~ 10, ¢ > 0, w > 0, and initialize
the solution to be zero (i.e. @ = 0).

The Proximal-Galerkin Algorithm
for j=1:ndo .
U= shrink(ﬁ +wDHf — Qa), u);

end for
set I = supp(i);
set & = argmin $[|Qu — f||%;

w: supp(w)CI
Return 4.

The algorithm begins with a few iterations of the proximal gradient method ap-
plied to the energy

1 7 A
E(w) = pllw'ly + §w’ Quw' —w™f
where

Q/ — D_l/QQD_1/2,
f'=D""2f,
w' = DY?y.

~

This is a simple Jacobi preconditioning of the analogous energy with ), w, and f .
Rather than iterating proximal gradient to convergence, which would be too slow, the
algorithm stops after just a few iterations with rough approximation. The support of
that solution is used to identify the Fourier modes with largest magnitude coefficients,
and then a Galerkin approximation is computed over those modes. Due to sparsity
in the Fourier domain, the linear solve associated with the Galerkin part is small and
inexpensive— computational complexity depends on the grid mesh size only through
the sparsity of the solution.

7.2 Algorithm Complexity The pseudospectral approach of computing the
convolution

kax (k)
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uses an FFT, and for an N-gridpoint problem this reduces the computational com-
plexity per iteration from O(N?) to O(N log N). We now consider the computational
complexity of the sparse spectral method, which must be comparable to O(N log N)
to be practical.

Suppose that the sparsely approximated operator is defined Pi = ka' x (ka),
where the sparsity (number of nonzeros) of @’ is m, and that the sparsity of 4 is 7.
By treating the &’ * @ sparse convolution as a summation of sparse vectors, it can be
accomplished with complexity

(7.1) O(mr min(logr,logm)),

free of any dependence on the full problem size IV, by storing the sparse vectors &’ and
4 as sorted linked lists and computing the sum as a merge operation, with a priority
queue. For the modest one-time cost of initializing a length N array, the complexity
can be decreased to

(7.2) O(mr)

by leaving the sparse vectors unsorted. We iterate over the mr nonzero coeflicients
which must be added, and use an auxiliary array keep track of the partial result.
When a new coeflicient of the partial result becomes nonzero, it is placed in a growing
list of indices. After we have visited each of the mr coefficients to be added, we iterate
over the list of nonzero indices, perform the shrink operation on the corresponding
auxiliary array entry holding the partial result, and copy the outcome into a list which
holds the final result. Along the way, we ‘zero out’ the entry of the partial result array,
never incurring another O(N) cost.

Finally, if the problem is elliptic or requires implicit time steps and the Proximal-
Galerkin algorithm is used, the complexity includes a term

o),

the cost of the Galerkin linear solve over the support found with proximal gradient.

Both (7.1) and (7.2) are preferable to the O(N log N) cost of the pseudospectral
method for very sparse problems and in the homogenization limit discussed next
in Section 7.3. For the numerical examples considered in this limit, m and r stay
approximately constant, leading to computation time which does not increase as the
grid is refined.

One key to the effective application of the sparse spectral method is proper dis-
cretization. For a typical homogenization problem, we are interested in the solution
of an equation such as

—div(a(z/e)Vu) = f

for € close to zero, and we might choose the inhomogeneity coefficient
1.
alx) =1+ 5 sinmz.

This choice is ideally sparse in the Fourier domain, with only three nonzero entires

regardless of N, using the standard uniform grid. If e = 1/1000, then a still has

only three nonzeros. However, choosing ¢ = 7071 7 results in a being completely

dense. These two choices of ¢ differ by less than 1075, and the first leverages extreme
sparsity in the problem while the second does not. This example shows that it is
prudent to assume a certain relationship between the grid spacing and ¢, considered
next.
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7.3 Homogenization Limit For homogenization problems in particular, where
one is interested in the limit € — 0, we can keep Ne¢ fixed as the grid is refined. Em-
pirically, we have observed that this keeps the sparsity of the operator and of the
solution approximately constant. For a simple case of this Ne = ¢ (¢ a constant)
limit, the following theorem guarantees the sparsity of the operator remains fixed
along a subsequence.

THEOREM 7.1. Let L. be the elliptic operator defined

Lov = —div(a(z/e)Vv),
and let
Qe nu=kay * (k)

be its Fourier discretization on an N—point discretization of [0,2m). Then Q. n and
Qej2,2n are equally sparse: that is,

(7.3) #{k : laan (F)| = A} = #{k : [av (k)| = A/2}

for all A > 0.
See the appendix for a proof. Note that the theorem assumes the standard defi-
nition of the DFT on NN grid points,

Fule@l®) =3 (2;3) 2Tk

=0

which is not unitary. This accounts for the appearance of A/2 rather than A on the
right hand side of (7.3). This factor cancels out in the end because with this definition
of the DFT, the ¢! norm in Theorems 4.5 and 4.6 should be scaled by 1/N.

The complexities (7.1) and (7.2) become very favorable in the Ne = ¢ limit, where
m and r remain nearly constant or grow approximately logarithmically with N as the
grid is refined. In each case we observed, the overall algorithm complexity is linear or
sub-linear in N.

8 Numerical Examples In [13], the authors demonstrated the effective appli-
cation of the compressive spectral method to a variety of problems. Here, we expand
on those results and give examples of the additions to the method proposed in this
paper: the implicit scheme and sparse operator approximation.

8.1 Transport Equation, 1D The PDE considered is the traveling wave
equation:
us + a(x)u, =0,
x € [0, 27| periodic,

u(z,0) = sin(x)

with oscillatory coefficient
1 ( 0.6 +0.2cosx )

a@) = 5P\ T30 75in 1282
The update is given by leap frog time discretization:

a"tt = at Tt = 2dta « (ika").
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We choose the above form for a throughout this section, because it is less sparse than
simple trigonometric functions.

The grid sizes considered are N = 219, ..., 24 and the values of other parameters
are dt = 6.25x107%, ||a — a/||; = 1072, p = 1.2x 1075, and the simulation is run to a
final time ¢ = 0.5.

Figure 8.1 shows the full spectral and compressive spectral (sparse operator/sparse
solution) solutions on coarse and fine scales. The compressive scheme correctly cap-
tures the largest Fourier coefficients of the solution, discarding all but 3.7%, and the
operator approximation discards all but 2.6%. The “true" solution was computed on
a fine grid with finite difference methods.

Figure 8.2 shows the L? error and sparsity of the compressive spectral approx-
imations as the grid is refined with d¢ held constant. Error is computed as the L2
distance to the full spectral solution. The error of the sparse operator/sparse solution
scheme is dominated by the sparse approximation of the solution; spurious modes
in the leap frog scheme make a sparse approximation of it difficult. Over the range
of grids considered, sparsity of the operator eventually becomes constant while spar-
sity of the solution grows about linearly. The complexity of the compressive spectral
method is thus linear in N over the grid sizes considered.

Figure 8.3 considers the same problem but with a resonant forcing term

f(x) _ esin(m/128)2

with N = 2048 and all other parameters the same as the non-forced problem. The
solution has 11.3% nonzero Fourier coefficients, with ||ug — tsparse|l2 = 2.5x 1073,
The resonant forcing causes sharp and irregular oscillations at the fine scale, which
make the problem less sparse, but the compressive scheme still captures the correct
behavior.

8.2 Elliptic Problem, 1D The PDE considered is the elliptic problem:

—(a(2)ug), = sin2z,

x € [0, 27] periodic,

/udsz

0.6 4+0.2cosx
140.7sinz/e

with
a(x) = exp (
such that Ne = 8, and usual spectral operator discretization:
Lyt =kap = (ka) = f.
This time we consider the homogenization limit, keeping Ne = 8 with e = 6%1, %, s 10%7
and set ||@ — @'||; = 1x10~*. Parameter values for the Proximal-Galerkin algorithm
aren =10, p = 5x107%, and w = 5x 1073,

Figure 8.4 shows the full spectral and compressive spectral solutions on coarse
and fine scales. Both the sparse solution and operator approximation keep 8.5% of
the coefficients. Note that the full result and sparse operator/sparse solution result
lie almost on top of each other, even at the resolution of the fine scale.

Figure 8.5 shows error (L? distance to the full spectral solution) and sparsity
under refinement. “Sparse operator" refers to the solution obtained with the sparsely
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Fig. 8.1: Left: True (blue) and sparse operator/sparse solution (green) solutions in
physical space. The two curves lie almost on top of each other. Right: Zoomed in
true (blue) and sparse (green ‘x’) solutions. Bottom: True (blue) and sparse (red ‘o)
solutions in Fourier space. N = 4096, operator nonzeros = 107, solution nonzeros =
153.

approximated operator, using either a high accuracy conjugate gradient solve or the
Proximal-Galerkin algorithm. “Sparse solution" refers to the use of the Proximal-
Galerkin algorithm, with either the full or sparse operator.

Approximation error does not increase while both solution and operator sparsity
remain approximately constant, leading to computation time approximately indepen-
dent of N. With IV = 2!3, the sparse approximation maintains six digits of accuracy
with only 1.1% of the coefficients of both the operator and the solution.

Figure 8.6 illustrates that for a fixed number of nonzero coefficients, the sparse
operator approximation incurs smaller error than the solution approximation.
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Fig. 8.2: Left: Sparse operator/full solution (blue), full operator/sparse solution
(green, dashed), and sparse operator/sparse solution (red x) L? distance to the full
spectral solution as the grid is refined. The y axis has a log; scale. Right: Number
of nonzero Fourier coefficients of the operator (blue) and solution (green, dashed) as
the grid is refined. The y axis has a log, scale.

8.3 Parabolic Problem, 1D The PDE we consider here is the parabolic equa-
tion:

up — (a(x)ug)z =0,
x € [0, 2] periodic,
u(z,0) =1+ cos(x — )

with

<O.6 +0.2 cos:c)
a(x) = exp

1+0.7sinx/e

- - Qlimit e— 1 1 1 S -2
We again consider the Ne = 8 limit, € = &3, 155, -+ » 7037, and set [|a —a'[|; = 1x10

and dt = 1x1072 for all N. Parameter values for the Proximal-Galerkin algorithm
are n = 10, u ranges from 5x 1076 to 6.4x107°, and w = 1x1072.

Figure 8.7 compares the solutions on coarse and fine scales. The sparse solution
retains 3.2% of the coefficients and the operator is also approximated with 3.2%.
Figure 8.8 shows error and sparsity under refinement. Approximation error decreases
while sparsity of both operator and solution stay constant. The overall complexity is
thus constant in IV over the range of grid sizes considered. For this problem, sparse
approximation of the operator incurs most of the error.

8.4 Elliptic Problem, 2D We consider the elliptic problem

—div(a(x)Vu) = 10sin zsiny,
x,y € [0, 27] periodic,

/ud:z:dy =0

with
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Fig. 8.3: Left: True (blue) and sparse operator /sparse solution (green) solutions with
resonant forcing term in physical space. Right: Zoomed in true (blue) and sparse
(green ‘x’) solutions. Bottom: True (blue) and sparse (red ‘o’) solutions in Fourier
space. N = 2048, operator nonzeros = 86, solution nonzeros = 231.

0.6+0.2cosz 0.6+ 0.2 cosy)

a(z,y) = exp <1+0.7sinx/e 1+0.7siny/e

on an N x N grid such that Ne = 8, with € = 5,35, ..., 55 and [ja — a/[|; = 1.
Parameter values for the Proximal-Galerkin algorithm are n = 20, y between 4x1074
and 32x 1074, and w = 2x1072.

Because the full and spectral solutions are very close to each other in physical
space and an overlaid comparison of surfaces is difficult, Figure 8.9 shows the solutions
on a log scale in Fourier space. Of the 220 coefficients in the full solution, the sparse
solution and operator retain just 0.2% while maintaining four digits of accuracy. Fig-
ure 8.10 shows that approximation error decreases slightly with constant sparsity and

computation time. For some grid sizes, the sparse operator/sparse solution scheme
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Fig. 8.4: Left: True (blue) and sparse operator/sparse solution (green) solutions in
physical space. The small rectangle shows the axis limits of the zoomed in plot to the
right. Right: Zoomed in true (blue) and sparse (green ‘x’) solutions. Bottom: True
(blue) and sparse (red ‘o’) solutions in Fourier space. N = 1024, operator nonzeros =
86, solution nonzeros = 87.

actually attains a lower error than the sparse operator /full solution scheme, evidence
of the denoising effect discussed in Section 6.

To compare the Fourier coefficients of the full and sparse solutions more accu-
rately, the left panel of Figure 8.11 shows the magnitude of the 4500 largest Fourier
coefficients of the true solution sorted in descending order. The magnitude of the
corresponding sparse solution Fourier coefficients is also shown, with an upward bias
to account for all the wave numbers not present. The right panel shows the fraction of
full solution wave numbers which are captured by the sparse scheme. The compressive
scheme correctly identifies all 500 of the largest modes in the full solution, and about
68% of the full solution’s largest 1800 modes.



20

Mackey, Schaeffer, and Osher

192
oo . L o - —
65 ool
) Il ,N'//
7.5 | [Tmm——
255 35 4 84 9 19 v - )

3
log 4 0(gridpoints)

Iogz(gridpoints)

Fig. 8.5: Left: Sparse operator/full solution (blue), full operator/sparse solution
(green, dashed), and sparse operator /sparse solution (red x) error under the homog-
enization limit. The y axis has a log;, scale. Right: Number of nonzero Fourier
coefficients of the operator (blue) and solution (green, dashed) as the grid is refined.
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Fig. 8.6: Pareto curves showing the tradeoff between approximation error and sparsity
of the operator (blue) and solution (green, dashed).

9 Conclusion In this paper, we have proposed a sparse operator approxima-
tion and an efficient method for extending the work of [13] to implicit solvers (Section
3). We have proven the convergence of the original compressive spectral scheme [13]
and the new variants, including a modified equation which shows the effect of soft
thresholding is equivalent to including an L' subgradient term in the PDE. Also,
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Fig. 8.7: Left: True (blue) and sparse operator/sparse solution (green) solutions
in physical space. Right: Zoomed in true (blue) and sparse (green ‘Xx’) so-
lutions. Bottom: True (blue) and sparse (red ‘o’) solutions in Fourier space.
N = 2048, operator nonzeros = 64, solution nonzeros = 65.

we connect the homogenization problem with that of signal denoising via wavelet
thresholding. For PDE with sparse initial data or forcing terms, the new methods
are asymptotically preferable to the pseudospectral approach. The methodology pre-
sented here could be translated to other psuedospectral methods which employ alter-
native bases. Computationally, this amounts to replacing the Fast Fourier transforms
in the psuedo-codes above with the appropriate transformation. This could be useful
in cases where the solutions are sparse against another known basis.

Acknowledgments The authors would like to thank Will Feldman, Inwon Kim,
Chris Anderson, and Russel Caflisch for insightful discussions regarding the above.
A. Mackey was funded by UC Lab grant 12-LR-236660, and in part by the National



22 Mackey, Schaeffer, and Osher

x‘ : : 1 68
671
661

[ e E e L L P L PP L PP EP PP

64
63

62

2.5 3 3.5 48 9 10 11 12 13
log, ,(gridpoints) log,(gridpoints)

Fig. 8.8: Left: Approximation error of the sparse operator/full solution (blue), full
operator /sparse solution (green, dashed), and sparse operator/sparse solution (red x)
error under the homogenization limit. The y axis has a log;, scale. Right: Number
of nonzero Fourier coefficients of the operator (blue) and solution (green, dashed) are

constant as the grid is refined.
5
0
-5
-10
-15

200 400 600 800 1000 200 400 600 800 1000

Fig. 8.9: Full (left) and sparse (right) solutions on a log scale in Fourier space. Note
that the great majority of coefficients in the sparse solution are exactly zero. N =

1024, € = ﬁ, operator nonzeros = 1972, solution nonzeros = 1874.

Science Foundation through DMS 0907931. H. Schaeffer was supported by NSF DMS
1303892 and University of California President’s Postdoctoral Fellowship Program. S.
Osher was supported by ONR Grant N00014-11-1-719.

Appendix.
Before giving the proofs of the theorems from Section 4.1, we recall the definition
of Bregman Distance (also known as Bregman Divergence).

DEFINITION 9.1. Let J be a convex function and u,v be points in the domain of
J. Also let p be an element of the subdifferential of J, i.e. p € 0J(v). We define the
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Fig. 8.11: Left: energy spectrum decay of the full and sparse solutions. The plot
shows just the largest 4500 coeflicients of the full solution, the support of which con-
tains all coefficients of the sparse solution. Right: fraction of sparse modes appearing
among the largest n true modes, as a function of n.

Bregman Distance between u and v as
D (u,v) = J(u) = J(v) — (p,u — ).

In general, the Bregman Distance is not symmetric and does not obey the triangle
inequality, so it is not a distance in the typical sense.
In what follows, we will also use basic facts regarding monotone operators.
DEFINITION 9.2. Let A be a multi-valued map from V into itself. We call A
monotone if and only if for any u,v € Dom(A) and any values Au and Av might take
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on,
(u—v, Au— Av) > 0.

If A= OF is the subdifferential of a convex function, then it is monotone.

We can now give the proof of theorem 4.1, in which we omit hats for notational

clarity.
Proof. Consider the iterations for arbitrary points u™ and v™:

un+1 —un .
up(u"“) + T = _Lhun + f

vn+1 — " R
pp(v™ ) + —u = —Lpv"™ + f.

By taking the difference between these two equations we arrive at

1
M(p(un+1) _p(vn-i-l)) + g(un-&-l _ ,Un+1) _

and taking the inner product of this equation with u"*! — v"*+1 yields

un+1 _ Un—i-l’un—i-l _ Un,+1> _

m <p(un+1) _ p(vn-i-l)’ un-{—l _ Un+1> + é <
1

- <un — " un+1 _ Un+1> — <_£h(un _ Un) un+l _ Un+l>
dt b ) -
Rearranging terms and taking upper bounds we get the following:
/Ldt <p(un+1) _p(vn+1)’un+1 _ ,Un+1> + ||un+1 o vn+1||2
= (u" =" u" T — ") 4 <—dtih(u” — ™), u" !t — v"+1>
— <(I _ dtﬁh)(u" _ Un)7un+1 _ vn+1>
< = dtLp) (" —o")|[[Ju" T ="
< |1 = dtLp)|lopllu™ = o™[[[[u™ " = o™,

Note that pdt (p(u™t!) — p(v™+1),u" ™! — v"*1) is non-negative by monotonicity of
the subgradient of a convex function. We show this here by using the nonnegativity
of Bregman distance:

0 < DV (u™th o™ty 4 DP (vt
— F(unJrl) o F(,Un+1) o <p(vn+1)’un+1 o vn+1> + F(,Un+1) o F(un+1) o <p(un+1)7,0n+1

— <p(un+1) _ p(vn+1)7un+1 _ ,Un+1> .

Combining the positivity of the subgradient terms with equation above provides us
with the following bound (assuming |[(I — dtLp)||op < 1):

[t = 0" < I = dtLp)lopllu” —v"[] < [|u™ — "]

as desired. 0

o un+1>
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Proof of theorem 4.2.
Proof. Cousidering the optimality condition for the energy (3.2) defining the
implicit scheme, we see that the iterations for u™ and v™ can be written

u

pp(u™*h) + ———— = —Lpu" " + f
Un+1 _ Un R
pp(v™ ) + — = —Lpo"™ T 4 f

(If the operator Ly, being considered in (3.2) is not positive semidefinite, then use
(3.1) instead.) By taking the difference between these two equations we arrive at

P ) = p(" ) () -

1 ~
%(u" — ™) = —Ly(u" Tt — o™t

Next, taking the inner product of this equation with 4t — v *! yields

1
L <p(un+1) _ p(?}n+1), un+1 _ Un+1> + %
1 .

% <un _ ,Un’un-&-l _ ,Un-&-1> — <—Lh(u"+1 _ Un+1)’un+1 _ Un+1.>

<un+1 _ Un+17un+1 _ Un+1> _

Re-arranging terms and taking upper bounds we get the following:

Mdt <p(un+1) _p(qﬂl+1)’ un+1 _ Un+1> + ||un+1 - Un+1H2

= (u" — "t — v"+1> + <—dtﬁh(u"+1 — ") T v"+1> )
As in the explicit timestep case, (p(u"*!) — p(v" 1), u" !t — v 1) > 0 and so
[Ju™ Tt — "2 < (u™ — " u Tt — U"+1> + <—dtf1h(u"+1 — "y gyt v"+1> .
If Ly, is positive semidefinite then we have
L N A s B | Ol [ M|
and by canceling out terms we get the contractive inequality
[t — 0" T < " — "]

as desired. O

Proof of Theorem 4.3:
Proof. We assume that S is stable in the following sense:

[l ] < lam ]

for some [P norm; common choices would be the {2 or [* norms. Because the shrink
operator decreases the magnitude of each component of a vector, it will (strictly,
because p > 0) decrease whatever norm is chosen (in fact, the shrink operator is a
contraction in all [? norms). It follows easily that

a1 < Qg - . ap~ "I < Il
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so that the stability of S implies the stability of S,,. In fact S, is more stable than S.
The key observation for showing consistency of S, is that while shrink(-, x) is
nonlinear, the amount of this nonlinearity is bounded. In particular,

shrink(z, p) = 2 + O(p)

for any x, with |O(u)| < p. Applying this observation to the definition of the sparse
scheme and assuming (for the purpose of local truncation analysis) that both schemes

have the same starting points uy, = a", ... ,QZ”“ ="k,
~n+1 __ : ~n ~n—Fk
dy, " = shrink(Q(dy, ..., 4y, "), 1)

=Q(al,.... 0 %)+ 0(n)
=Q(u",..., 0" ®) + O(u
=a"" +O0().

~—

This shows that locally, S and S, differ only by a O(u) quantity. This quantity may
naively be accounted as part of the local truncation error for the sparse scheme, in
which case

="+ O()

where 7" denotes the local truncation error of S and 77 the local truncation error of
Sy

For the consistency of S, we need the local truncation error to be greater than
first order; assuming the consistency of S and that u = O(dt'*%) yields this result.
When p = O(dtP) for some p such that 7" = O(dt?) as well, 7} = O(dt?) and the
order of convergence of the scheme is unchanged. ]

Proof of Theorem 4.4:
Proof. First, recall that the optimality condition for (3.2) is

(9.1) pp () + (I + dtLy )i ™ — a7 + dtfy, =0

where p(a;t!) € 9||apt|;. For simplicity of notation, let w := (apt! — a"*h).
Assuming (again for the purpose of local truncation analysis) that both schemes have
the same starting point 4j, = 4", subtracting the ordinary backward Euler update
from this gives

(I +dtLp)w = pp(ag+")
which implies
(I + dtLp)wl| o < pr.
Then, using the fact that Ly, is positive definite, we get

I+ dtn)wlse o |+ dtLywl)s
lwllz/N2 [[wll2

>1

which gives

[[wll2
Nl/2 — H

Hw||L2(Q) ~
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So, as with the explicit scheme,

4t =a"" + 0 (in L*(Q))
= 7, =7"+0(u)
which yields consistency if u = O(dt'*®) with § > 0, and implies the order of conver-
gence is the same as that of the ordinary spectral scheme if p = O(dt?) with p such
that 7" = O(dt?).

To prove stability of the scheme, return to (9.1) with f = 0 and take the inner

product with a7+ to get

M||un+1||1+( n+1) (I+dtLh) n+1 (AZJrl)TﬁZ =0

which leads to

lap ™5 < (aptt,ap) — pllag )l — dt(ag )" Lyag ™
< (ap*t,ap)
< lag 2l |l
and
a2 < llagla,
as desired. 0

Proof of theorem 5.2:
Proof. We have

—=|lult, ) = us(t, )15 = (u— us, dpu — Byus)

= (u—us,—Lu+ f — (=Lus + f — 69||a(t)||1))
—{u — ug, Lu — Lug) + & {(u — ug, Oo||ts||1)

< 6 (u — us, Ool|ts|[1)

< 0)|u — uell2.

It follows that

d
Zpllut, ) —ue(t, )l < 26

from which the result follows. 0

Proof of theorem 7.1:
Proof. Let Fnla(z/€)](k) denote the DFT of a(z/€) on the grid; that is,

N-1 9
m/e a( W]) e 2mijk/N
i=0

<.
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Then

so that the even coefficients of Fon

oo ) 0= o) o

_ a(%ﬂ> 7271'2]14:/N —27ri(j+N)k/N:|
Jj=0 ¢
N1,

— a(ﬁ) |:€727m]k/N_|_e 2mijk/N 727rzk}
Jj=0 ¢

= 2Fn[a(z/e)](k),

—

a(exz)} are just those of Fyla(x/€)]. Also,

2Nt 27Tj 2k+1
F: 2k+1) = —2miNd
o) er 0= 2 o)
N-1,
_ a(ﬂj) —2m2;§ i 4 2wt (3+N)}
Jj=0 ¢
N1,
_ a(m) —27i 2 2N Lj |:1 +e—27ri2k2+1:|
Ne
7=0
N-1 o
_ —2mi2 T
- S of) e
7=0
=0
so that all odd coefficients vanish. These equalities give 7.3. ]
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