
Multiscale Variational Imaging

Martin Burger Stanley Osher

May 6, 2014

1 Introduction

Our modern world is dominated by visual communication via digital images and videos, which
raise a variety of novel questions to mathematics. Tasks like improving image quality (de-
noising or superresolution), automatically detecting objects in images or videos (segmentation
and tracking), or detecting and analyzing movement in videos become of increasing relevance
and need to be automized due to the inflation of image data. Among the techniques used for
these problems variational methods (often called energy minimization methods in computer
vision) play a particularly prominent role.

In this article we discuss some basic properties as well as recent development of variational
methods, in particular highlighting multiscale aspects. We start with some basic motivations
for the evolution towards the special type of models marking the current state of the art.
We then proceed to iterative refinement of variational approaches and finally provide several
examples of real-life applications.

2 From Filters to Nonlinear Variational Methods

Let us start our exposition with the classical task of denoising a grey-scale image, modelled
as a function f : Ω→ R. The most classical technique to denoise respectively smoothing the
image is a diffusion filtering, i.e. f is used as the initial value for the heat equation

∂tu = ∆u (2.1)

and u(T ) at some final time is used as the denoising result. The diffusion filter constitutes a
multiscale method: for small stopping time T mainly small scales in the image are damped
out, while for increasing time larger and larger scales are damped, which can be seen easily
from a decomposition into eigenfunctions of the Laplace operator. The decomposition is
suboptimal for two reasons: First of all the eigenfunctions are smooth wave functions and
hence are not well-adapted to edges in an image, which correspond to discontinuities in the
grey-value function. Secondly, the scales represented by the coefficients in an eigenfunction
expansion are not eliminated one after the other, but are all damped with different exponential
factors.

In order to deal with edges nonlinear diffusion filters have been proposed, which use a
gradient-dependent diffusivity (cf. [40])

∂tu = ∇ · (g(|∇u|)∇u), (2.2)
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particularly relevant cases being the Perona-Malik filter g(s) = 1
1+s2

and the total variation

flow g(s) = 1
s . The decrease of the diffusivity for larger image gradients means that edges are

not necessarily removed from the image.
The first link with variational methods is established with a backward Euler discretization

of the diffusion equation, the first time step (α > 0 small) can be computed from

u ∈ arg min
u

(
1

2

∫
Ω

(u− f)2 dx+ α

∫
Ω
G(|∇u|) dx

)
(2.3)

with G defined via G′(s) = s g(s). A prominent example is the ROF-model obtained for
G(s) = s (cf. [36]). In the simple denoising case the behaviour of such variational models
is very similar to diffusion filters, in some relevant cases one can even prove that the time
discretization yields the same solution as the flow (cf. [13, 32]). However, variational methods
became popular since they are highly flexible compared to filters or others. If one wants to
solve a different imaging task one can easily adapt the variational model, e.g. by changing
the first - so-called data fidelity term. Examples are inverse problems in imaging where f
rather corresponds to an indirect measurement Ku with an operator K such as deblurring or
the Radon transform, or statistical noise models, which yield a data fidelity as a negative log
likelihood. Overall, a variational approach is of the form.

u ∈ arg min
u

(D(u, f) + αR(u)) , (2.4)

where D is a data fidelity term and R a regularization functional, weighted by a positive
parameter α > 0. In this way the influence of the data and the model for their generation
are incorporated solely in D, while the a-priori knowledge about the image and its structure
are incorporated in R, which is to be designed such that likely images yield lower values
of the functional. This clear separation allows to adapt variational methods to different
imaging tasks and different kinds of images by changing D or R. It is this fact that made
variational methods particularly attractive and popular, since analytical insights and com-
putational methods for certain problems can be transfered various other ones in an efficient
way.

While the data term can usually derived from physical modelling, e.g. of the image
formation process or motion of objects, and statistical modelling, e.g. of noise properties, there
are several different approaches to the regularization functional. Several different approaches
have evolved in the last two decades:

• Penalization of gradients as above, respectively also of higher derivatives, examples
being the total variation or infimal convolutions of total variation with some higher-
order functional to obtain decompositions into smooth and discontinuous components.

• Penalization of coefficients in a multiscale basis or frame system like wavelets or shear-
lets. A prominent example is the norm in the Besov space B1

1,1 realized by the `1-norm
wavelet coefficients.

• Penalization of nonlocal derivatives between patches, where patches are equipped with
a weighted graph structures. The weights are derived from the low frequency properties
of the patches and measure their similarity. A prominent example is the nonlocal
means filter, which can be rewritten as a variational problem with quadratic penalties.
Recent approaches generalize nonlocal means to variational problems with nonlocal total
variation type functionals.
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The major mathematical issues related to those are to understand the topological, struc-
tural, and computational properties of these regularization energies. The obvious questions
are existence and possibly uniqueness of minimizers of (2.4), the stable dependence with re-
spect to the data f , and asymptotic behaviour with respect to the regularization parameter α.
We mention that those issues appear to be well-understood for most classical image processing
models now, but much less is known in a function-space setting when additional dimensions
are added. Those can be time (videos) or spectral dimensions, which are inherently different
than spatial dimensions. A common approach in the discrete setting is to interpret such as
matrices, where the lines relate to different pixels (spatial variable) and the rows to different
time steps or spectral values. Regularization functionals are frequently formulated on matrix
properties like the nuclear norm (sum of singular values). A natural continuum counterpart
would be the understanding of videos as linear operators from the spatial to the time di-
mension (or vice versa), but then it comes to subtle issues such as chosing the right function
spaces and topologies - an issue which appears completely open currently.

The limit α→ 0 is a classical topic in regularization theory (cf. [26]), but recently interest
shifted towards a better characterization of solutions for α > 0, i.e. the fine properties of
minimizers of the variational problem (2.4). Those rely on developing novel techniques with
the help from diverse fields, examples being optimality conditions for nonsmooth variational
problems in nonreflexive Banach spaces or geometric measure theory and differential geometry
all playing important roles just in the case of R being the total variation functional. Another
strong line of research is the numerical solution of problems like (2.4), which poses particular
challenges since often R is nonsmooth and the data term D might include additional nonlin-
earity and in some inverse problems the evaluation of a complicated nonlocal operator. We
refer to [18] for a further discussion.

Models like (2.3) or (2.4) already inherit some kind of scale via the parameter α. Increasing
α yields a stronger smoothing effect and hence eliminates smaller and smaller scales, which
is apparent from the (formal) optimality conditon of (2.3), the nonlinear partial differential
equation

−α∇ · (G′(|∇u|) ∇u
|∇u|

) + u = f. (2.5)

Hence, one might consider the solutions u(α) of the variational problem as (nonlinearly)
smoothed versions of f including smaller and smaller scales as α decreases. However, this
is not completely true: Unfortunately variational methods like (2.4) include a systematic
bias, such that the decomposition into scales is problematic. This can be seen in a theory
of ground states and eigenfunctions of the regularizers, which are the natural definitions of
solutions at different scale (cf. [10]). Those are reconstructed only up to a multiplicative
constant changing continuously with α.

The bias of standard variational methods does not only prevent a clear multiscale decom-
position, it is clearly disadvantageous in many image processing tasks and inverse problems,
where errors at all scales are introduced and the resolution of the models is limited unneces-
sarily. A systematic way to cure this issue is introduced by using Bregman iterations as we
shall see in the next section.
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3 Bregman Iterations and Multiscale Decomposition

The main idea of Bregman iterations is to successively change the regularization via Bregman
distances related to the regularization functional. For a convex functional R a (generalized)
Bregman distance is given by

Dp
R(v, u) = R(v)−R(u)− 〈p, v − u〉 (3.1)

for a subgradient p ∈ ∂R(u). Bregman distances for convex functionals are nowadays em-
ployed frequently in several areas of optimization (cf. [12, 21]), in machine learning (cf. [22])
for error estimates in inverse problems (cf. [17]), and under the name relative entropy also in
partial differential equations (cf. [2], albeit usually in situations where the last term vanishes
or p = 0). In imaging, Bregman iterations are of particular interest for the frequently used
degenerate functionals like the total variation or the `1-norm of coefficients in certain bases
or frames.

The Bregman iteration succesively reconstructs u via

uk+1 ∈ arg min
u

(
D(u, f) + αDpk

R (u, uk)
)
, (3.2)

with subgradient

pk = pk−1 − 1

α
∂uD(uk, f) ∈ ∂R(uk). (3.3)

In the frequently investigated case of a quadratic fidelity

D(u, f) =
1

2
‖Ku− f‖2,

with a linear forward operator K, it can be shown that the Bregman iteration is equivalent to
the augmented Lagrangian method for the constrained problem of minimizing R(u) subject
to Ku = f . The Lagrange parameter is then related to pk via pk = K∗λk (cf. [34]). This
equivalence is not true for a general fidelity D (still convex with respect to u), interestingly
there the augmented Lagrangian corresponds to a Bregman iteration for a dual problem.
In any case one can show that in the case of attainable data f ∈ R(K), the Bregman
iteration converges to the solution of Ku = f with minimal R. Of higher relevance for
image reconstruction is however the semiconvergence property of the Bregman iteration. In
the case of noisy data relevant in practice, i.e. f differing from the ideal value Kû by a
noise perturbation, the Bregman iteration yields a sequence such that the Bregman distance
between uk and û decreases until the data term becomes to small (compareable to the noise
measure D(Kû, f)). The advantageous property of the iteration is that in early iteration
steps large scales are reconstructed without bias, while finer and finer scales are introduced
in further iterations, which results in strongly improved reconstructions. The scale properties
will be made more precise below

When interpreting τ = 1
α as a time step, the Bregman iteration can be interpreted as a

backward Euler discretization of the time-continuous flow

∂tp(t) = −∂uD(u(t), f), p(t) ∈ ∂R(u(t)), (3.4)

which was introduced in [15] and termed nonlinear inverse scale space method due to similari-
ties with earlier algorithms (cf. [37]). From a theoretical point of view, the inverse scale space
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has the advantage that no additional parameter (compared to α in the Bregman iteration) is
needed.

Let us make the scale decomposition more explicit in the case of the simple data term
D(u, f) = 1

2‖u− f‖
2, restricting ourselves to the inverse scale space method for the moment

(similar but more tedious computations are possible for the Bregman iteration). Moreover, we
assume that R is a convex and one-homogeneous functional, which is the case for all relevant
examples. Integrating the flow in time and using p(0) = 0 we have

p(t) = tf −
∫ t

0
u(s) ds, p(t) ∈ ∂R(u(t)). (3.5)

The first observation one can make is that there exists a time interval (0, t1) such that u ≡ 0
and p(t) = tf . This is a nice result of duality in convex optimization: For one-homogeneous
R with trivial nullspace the subdifferential ∂R(0) is a convex set with p = 0 in its interior,
hence for small t also tf remains inside this set. This relation can be made quite explicit if R
is some Banach space norm, since then t1 = 1

‖f‖∗ , where ‖ · ‖∗ denotes the norm of the dual
space. At time t1 the solution u jumps to a nonzero value, which is obtained by solving the
constrained problem

‖u− f‖2 → min
u

subject to t1f ∈ ∂R(u). (3.6)

The multiscale property of the flow is inherent in the value of t1, which is related to the largest
scale part in f . The smaller the largest scale feature contained in f , the larger t1. This relation
becomes explicit when considering eigenfunctions of the regularization, i.e., λu ∈ ∂R(u), for
which the solution of the inverse scale space flow is given by u ≡ 0 for t < t1 = λ and
u ≡ f for t ≥ t1. Hence, there is an exact scale decomposition by the inverse scale space
flow, and the eigenvalue relation also clarifies the scale definition based on the regularization
functional. Indeed large scales are related to the low frequencies (eigenfunctions for low
eigenvalues of the operator R). Further generalizations are possible, e.g. for quadratic data
terms D(u, f) = 1

2‖Ku − f‖
2 (cf. [10]) and for the behaviour of the flow at t > t1 if f is

not an eigenfunction (cf. [16, 32, 33]). Explicit results in the latter case are so far restricted
to finite-dimensional cases, detailed studies in function spaces remain an interesting future
challenge. Moreover, the analysis suggests to further study in detail eigenvalue problems
related to the regularization functional, most of which have been understood in the case of
R being the total variation of a function u ([5, 10]). For more complicated functionals, e.g.
combinations of total variation of first and higher order [11, 38] only preliminary results exist
(cf. [9] ). Another important direction for future analysis is the development of a similar
theory for D being non-quadratic.

After its introduction to the field of image processing and image reconstruction in [34]
Bregman iterations, inverse scale space, and related augmented Lagrangian techniques gave an
enormous boost to inverse problems, imaging, and data analysis. Some prominent examples
are:

• Novel approaches to iterative regularization in Banach spaces and improved methods
without systematic bias (cf. e.g. [3, 34, 39])

• Fast methods for total variation regularization and similar problems (cf. e.g. [29, 43, 19])
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• Fast methods for compressed sensing (cf. e.g. [20]), i.e. for solving problems of the
form

‖x‖1 → min
x∈Rn

subject to Ax = f (3.7)

with sensing matrix A ∈ Rm×n, m << n. A particularly interesting result is the fact
that the inverse scale space method can be computed exactly for such problems (and
a large class of related discrete problems, [16, 33]) and yields an effective methods for
computing very sparse solutions.

The fast convergence of these Bregman type methods is an `1 related phenomenon. This
fact accounts for the resurgence in popularity of these methods in recent years. There
are a few technical points which help explain this success.

First we note that if R(u) is homogeneous of degree one, R(cu) = |c|R(u), then

Dp
R(v, u) = R(v)− 〈p(u), v〉

(we use p(u) to denote an element of ∂R(u)). In the special case where R(x) =
‖x‖1, x ε Rn, we have

Dp
R(y, x) =

∑
i

(|yi| − yipi(xi))

where we use pi(xk) as the ith component of p(x).

The interesting fact is that this Bregman distance vanishes if, for every nonzero com-
ponent yi, the corresponding component xi has the same sign as yi. So if y is a sparse
vector, i.e. has only a few nonzero components, then only a few signs of the components
of x have to match up with those of y.

This leads us to an “error forgetting” property of Bregman iteration. Consider (3.2)
with

D(u, f) =
1

2
‖Ku− f‖2.

Suppose we arrive at an iterate uk which has the property that

(i) Dpk

R (u+, uk) = 0 for some u+ for which Ku+ = f

(ii) p(uk) = K∗v for some v, K∗ is the adjoint of K.

Then the next iterate, uk+1 is a minimizer of R(u) such that Ku = f .

The proof is very simple and can be found in [44].

This means, for `1 regularization, that we need only line up the signs of the components
of uk to agree with the corresponding nonzero components of u+, and the subgradients
to satisfy (ii). The first criterion is very relevant and easily satisfied in compressed
sensing type problems.

Note that for strictly convex R, the corresponding Bregman distance vanishes iff u∗ = uk

which isn’t very interesting . Also note that the rapid convergence phenomenon seems
to be valid also for R total variation, indeed for any reasonable R which is homogeneous
of degree one, see e.g. [29].
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• There has been a lot of interest in the recovery of an unknown low rank or approximately
low rank matrices from incomplete information. One example is matrix completion -
this arises, for example from partially filled out surveys. The desired unknown matrix is
assumed to be of low rank. Let M ε Rm×n be a low rank matrix whose rank r satisfies
r << min(m,n). It was shown in [45] that most low rank matrices M can be recovered
by solving the optimization problem

min
X
‖X‖∗

such that Xij = Mij for i, j in a given set R. The quantity ‖ ‖∗ is the nuclear norm,
i.e., the sum of the singular values. This is a convex optimization problem.

Another, related matrix decomposition problem involves decomposing M as a sum of a
low rank plus a sparse matrix

M + L+ S.

The convex optimization problem is

min ‖L‖∗ + λ‖S‖1

such that M = L+ S.

Here ‖S‖1 is just the sum of absolute values of the entries and λ is a tuning parameter.
This problem is of interest in many areas. The ‖ ‖1 norm is often replaced by total
variation if we are looking for sparse gradients.

Both of these problems can be solved using Bregman methods e.g. [46] with fairly rapid
convergence. The slowest part of these algorithms always seems to be computing the
nuclear norm of a large matrix at each iteration. Attempts to overcome this difficulty
can be found in [47],[48] and elsewhere.

• Statistical learning is widely used for feature selection. The `1 regularized logistic regres-
sion is a popular decoder. The inputs are a set of training dataX = [x1, . . . , xm]T ε Rm×n

where each row of X is a sample. We seek a hyperplane {x : wTx+v = 0} that separates
the data belonging to two classes. The `1 regularized logistic regressor is found via

arg min
w,v
‖w‖1 + λ`(w, v).

For θ(z) = log(1 + exp(−z)

`(w, v) =
1

m

m∑
i=1

θ(wTxi + v)yi.

The regularization parameter λ determines the level of sparsity. One typically deter-
mines a path by varying λj , solving a sequence of coresponding minimization problems,
and choosing an optimal λ via cross validation. Although each of these optimization
problems can be solved using split Bregman fairly quickly, there is a bias (analogous to
loss of contrast in images) and it seems wasteful to do these computations.
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An alternative is to use the linearized Bregman algorithm which can be written (for the
w minimization) as

p(wk+1)− p(wk) +
1

µ
(wk+1 − wk) + λ∂w`(w

k, v) = 0

for µ > 0 and as large as makes sense.

This leads to an approximate path for increasing k which has desirable properties. In
particular no inversion is needed. There is some connection here between inverse scale
space which could be written here (ignoring v) as:

∂p

∂t
(w) +

1

µ

∂w

∂t
= −∂w`

versus solving for a sequence of values t > 0

p(w)

t
+
w

µt
= −∂w`.

See [49]

Other statistical learning algorithms can also benefit from `1 regularization.

These methods have led to practical improvements in many other applications, a glimpse
of which we shall provide in the next section.

4 Impact in Applications

4.1 Biomedical Imaging: Fast Acquisition

A major aim in modern biomedical imaging is to acquire images faster and faster, for several
reasons. The first is the development towards dynamic imaging and the need to resolve smaller
and smaller time steps. A second is the increase of clinical imaging examinations and the
resulting pressure to minimize time per examination. Thus, one naturally deals with problems
with few data, but the need to reconstruct major features as with high quality data. Many of
the relevant modalities, e.g. in optical devices or emission tomography, are based on counting
photons (indirectly) related to the image intensity. The number of photons per detector
can be modeled as a Poisson-distributed random variable, whose mean naturally scales with
the measurement time. Thus, the data are not undersampled with low additive noise as
assumed in the compressed sensing literature, but indeed the signal-dependent noise is the
main source of undersampling. In order to deal with the statistical nature of the measurements
it is nowadays common to use the negative log-likelihood for the statistical noise model as
data term in variational methods. The recent development and analysis of Bregman iteration
techniques for such problems and their adaption to practice allows a dramatic reduction of
measurement time at compareable quality of reconstruction for the main features. A similar
step is not possible with standard variational methods due to their systematic errors (bias).
Note that for low count data strong regularization is needed, which yields strong bias

The potential of reducing acquisition time is illustrated in Figure 1 for an example in
Positron-Emission-Tomography (PET). Here the forward operator is the Radon transform of
the image (with some additional corrections, cf. [41]) and the statistical model with Poisson

8



distributions is well established. Regular examinations can be quite time consuming, ranging
from several minutes up to one hour, and of course it would be desirable to reduce the
acquisition time to few minutes or even less. This is driven to the extreme in the example in
Figure 1, where the standard measurement interval of 30 minutes used on the left is reduced
to 5 seconds using total variation regularization and the Bregman iteration on the right. The
main features are reconstructed with compareable quality, which can be made quite precise
in studies on software and hardware phantoms (cf. [24]). Examples of other modalities
benefiting from such multiscale variational techniques are superresolution microscopy (cf.
e.g. [14]), optical tomography (cf. [1]), and of course MR imaging (cf. e.g. [7]).

Figure 1: Illustration of image reconstruction from highly undersampled data via Bregmanized
total variation regularization in PET. The image on the left is a reconstruction with high
photon counts, using the standard measurement time interval of 30 minutes. The image on
the right is a reconstruction using only the photon counts of the first 5 seconds, but using total
variation regularization and Bregman iteration. The quality of the reconstruction from high
count data is restored. Both images show representative slices through of a 3D reconstruction.
From [24].

These applications also drive further mathematical research, e.g. they also initiated the
need to study those techniques for others than least squares data terms. Key questions
remaining for the future are a detailed analysis and understanding of recovery from Poisson-
distributed data (cf. [35] for preliminary results) and efficient computational techniques,
respectively modifications of the Bregman iteration that avoid too many (costly) evaluations
of the forward operator K.

4.2 Hyperspectral Imaging and Unmixing

Hyperspectral imaging (HSI) sensors record up to several hundred different frequencies. The
spatial resolution is low and there are multiple materials at a single location. Multiscale
variational imaging techniques can be used for clustering, finding anomalies, change detection
as well as filling in missing data and, of course, removing noise.
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Here we will discuss blind unmixing: The task of determining the abundances of different
materials in each pixel is called spectral unmixing. This ill-posed problem usually uses a
dictionary with the spectral signatures of the possible materials (denoted as endmembers).
In [28] a method was developed for simultaneously detecting the endmembers and computing
abundances. One first sets up a matrix X ε Rm,d where each column of X is the spectral
signature of one pixel in the image. Here, m is the number of spectral bands and, d is the
number of pixels.

The idea is to look for endmember maps. These can be written as

X = AS A, S ≥ 0, A ε Rm,n S ε Rn,d

We want n to be as small as possible. These columns of A are each endmembers. We require
nonnegativity since every pixel contains a nonnegative amount of each column of A.

Once again a relevant matrix optimization problem involving `1 regularization is used
to find A and can be solved using Bregman iteration with good results. The results are
illustrated by Figure 2.

Figure 2: Decomposition of a hyperspectral image of an urban scene. From [28].
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