
UCLA

COMPUTATIONAL AND APPLIED MATHEMATICS

High Order Expanding Domain Methods for the Solution of
Laplace’s Equation In Infinite Domains

Christopher R. Anderson

April 2014

CAM Report 14-44

Department of Mathematics

University of California, Los Angeles

Los Angeles, CA. 90095-1555

Abstract

In this paper we describe a discrete Fourier transform based procedure to evaluate a solution
of Laplace’s equation in R2 or R3 at points in a rectangular computational region. The
numerical procedure is a modification of an “expanding domain” type method where one
obtains approximations of increasing accuracy by expanding the computational domain.
The modification presented here is one that leads to approximations that converge with high
order rates of convergence with respect to domain size. Spectrally accurate approximations
are used to approximate differential operators and so the method possess very high rates of
convergence with respect to mesh size as well. Computational results on both two and three
dimensional test problems are presented that demonstrate the accuracy and computational
efficiency of the procedure.

0.1 Introduction

In this paper we present a numerical technique for the evaluation of the solution of Laplace’s
equation

∆u = f x ∈ RN (1)

for N = 2, 3 at the grid points associated with a uniform discretization of a rectangular
subregion Ω0 ⊂ RN with edges of characteristic length L0. It is assumed that f vanishes
outside of Ω0.

There are many families of methods in use for computing the solution of Laplace’s equa-
tion in infinite domains. The general idea behind one family of these methods [8] [14] [11] [13]
is to create the solution as a sum of two components, one component that is due to a solution
of Poisson’s equation in the computational domain with pre-specified boundary conditions
(typically homogeneous Dirichlet or Neumann conditions), and the other component a func-
tion harmonic in the computational domain and constructed so that the sum of the two
components is a good approximation to the values of the infinite domain solution within
the computational domain. Another family of methods are based upon convolution with the
Greens’ functions [7], with higher order spatial accuracy obtained either by using specially
designed convolution algorithms [12] or using a regularized free-space Greens’ function [6].
All these methods have the desirable property that the domain used for the construction of
these component solutions is of the same size (or double in the case of convolution based
approaches), than the original domain size. Accuracy is improved by improving the order of
accuracy of the approximations to the differential operators involved and by decreasing the
mesh size used.

Another family of methods, sharing many of the features of the convolution method
approach, are of the “expanding domain” type. In these methods one trades accuracy for
algorithmic simplicity and computes the solution to (1) by modifying the right hand side to
have zero average value, solves a periodic problem on an extended computational domain,
and then adds to that solution a component to account for the modification of the right
hand side. The size of the extended domain used is typically determined experimentally,
e.g. it’s chosen large enough so that the finite size errors are acceptably small. When
the solution procedure on the extended domain is implemented using FFT’s this method is
computationally efficient, especially when the requisite transforms are computed using high
performance FFT implementations [4]. Moreover, since the procedure is based upon Fourier
transform techniques, it implicitly uses spectrally accurate discretization procedures, and
thus for problems with smooth right hand sides the rate of convergence of the errors due
to spatial discretization are not fixed, but only limited by the smoothness of the right hand
side. This aspect of the method has the consequence that for smooth problems one can use
coarse grids to obtain accurate solutions and thus the cost of using an expanding domain
may be acceptable.

This simple expanding domain procedure is observed to converge to the approximate
solution values as the domain size is increased with a rate that is O(η−2) in two dimensions
and O(η−3) in three dimensions where η = (L/L0) is the non-dimensional domain expansion
factor and L is a measure of the expanded domain size. While this might be considered
“fast” since it’s better than a linear convergence rate, the cost of the computational effort
and memory requirements grow quadratically in two dimensions and cubically in three di-
mensions with respect to the expansion factor η. This growth in computational and memory

1

2

requirements restricts the size of the expanded domain that can be used, and hence restricts
the accuracy that can be obtained. In this paper, we show how one can modify the simple
expanded domain approach and create “higher order” expanding domain methods in which
the finite domain size errors are reduced at a rate proportional to to O(η−q) with q > 2.
In the specific implementation described here the decay is observed to be O(η−4) for two
dimensional problems and O(η−5) for three dimensional problems. For the problems which
motivated this work, that of evaluating two-electron integrals arising in Ab-initio quantum
chemistry computations, this proved sufficient. However, if one assumes sufficient differen-
tiability of the right hand side and sufficient differentiability of the Fourier transform of the
right hand side, there is nothing preventing one from obtaining arbitrarily high order rates
of convergence provided one is willing to expend more computational effort.

The motivation for the modifications required to improve the simple expanding domain
procedure arises from an understanding of the errors that are associated with the approxi-
mation of an inverse Fourier transform on an infinite domain by a discrete Fourier transform
on an expanding finite domain. In the first section we present a general discussion of these
errors and in the second section propose a Fourier transform solution procedure for (1) that
is specifically constructed so that the errors introduced by it’s discrete approximation on
an expanding finite domain converge to zero with a high order rates of convergence. The
proposed procedure shares ideas similar to those in [6]; both rely on numerical procedures for
explicitly accommodating the singular nature of the integrand arising in a Fourier transform
based procedure. The main difference in the methods is the specific technique by which
this singularity is accommodated. In [6], the singularity in the integrand is removed by
explicit regularization, whereas in the method proposed here the singular nature is avoided
by subtracting off a component that leads to a singular integrand and then adding back in
its contribution analytically. This different treatment of the singularity has implications for
the amount and nature of computational work that needs to be expended to improve the
accuracy of a given solution. The advantage of one technique over the other can be expected
to be problem and implementation specific. For example, in the procedure presented here
the mesh sized used resolve the solution in the computational domain is decoupled from
the errors associated with finite domain size effects, and thus the procedure presented here
is most efficient for problems with smooth right hand sides or for problems where modest
sized systematic errors associated with finite size domain effects can be tolerated. On the
other hand, in [6], the errors associated with resolving the solution and the finite domain
size effects are implicitly intertwined and both reduced by refining the mesh size in the com-
putational domain. This fact suggests that the procedure in [6] will likely be more efficient
for problems with less smooth right hand sides.

The Fourier transform based solution procedure is described in general terms; a numer-
ical method results when the procedure is discretized. We have developed two different
discretizations and in this paper, we present the first version, a version that is a modification
of the simple expanded domain procedure already in use. This procedure has the virtue
of being easy to implement and works very well when modest finite size domain errors can
be tolerated. The computational costs and memory requirements still grow approximately
O(η 2) in two dimensions and O(η 3) in three dimensions, so this version will have limited
utility for problems where the finite size effects must be reduced to very small values. In
a companion paper [1], we describe a ”recursive expanded domain” method, which is more
algorithmically complex, but has computational costs and memory requirements that scale

3

much more favorably with η.
In last section we present results for both two and three dimensional problems that

demonstrate the high order spatial accuracy that can be achieved as well as the high order
convergence with respect to domain size.

0.2 Approximate Inverse Fourier Transforms

A key ingredient to the solution procedure for the two and three dimensional problems is the
use of discrete Fourier transforms to approximate the inverse of a continuous Fourier trans-
form. In this section we discuss the nature of such an approximation and bring attention
to those aspects that contribute to the errors of such approximations. To keep the expo-
sition simple we focus on one dimensional transforms, but the following observations and
conclusions can equally be made about the errors associated with approximating continuous
multi-dimensional inverse Fourier transforms.

Given a continuous Fourier transform f̂(ξ) with it’s inverse Fourier transform defined by

f(x) =
1

2π

∫ ∞
−∞

f̂(ξ)e i x ξ dξ (2)

consider the task of creating approximations to the inverse transform at a set of P points
associated with a uniform discretization of an interval [−L,L] with mesh size h = 2L

P
, e.g.

values fj = f(xj) where xj = −L + j h, j = 0 . . . P − 1. One approximation that can be
used is a Fourier series approximation of the form

fj =
1

2L

k=[L/h]∑
k=−[L/h]

f̂(
k π

L
)e i xj

k π
L (3)

Here [L/h] refers to the integer part of the value. This approximation has the advantage
that the required sums can be evaluated using a discrete Fast Fourier transform routine with
appropriate scaling and coefficient re-arrangement.

The derivation of (3) as an approximation to (2) arises when one denotes δξ = π
L

and
considers the following sequence of equalities and approximations;

fj =
1

2π

∫ ∞
−∞

f̂(ξ)e i xjξ dξ (4)

≈ 1

2π

k=∞∑
k=−∞

f̂(k δξ)e i xj k δξδξ (5)

=
1

2L

k=∞∑
k=−∞

f̂(
k π

L
)e i xj

k π
L (6)

≈ 1

2L

k=[L/h]∑
k=−[L/h]

f̂(
k π

L
)e i xj

k π
L (7)

From this sequence of approximations, one can infer two primary sources of error that
are introduced when using (3) to approximate (2). At a specific point xj, the first source of
error is the approximation of a continuous integral (4) by an infinite discrete sum (5). This

4

approximate integration error is expected to be O((δξ)q) for some q > 1, and thus, to reduce
the size of the errors one reduces δξ. Since δξ = π

L
, this implies increasing L. Utilizing

asymptotic error estimates based upon the Euler-MacLauren summation formula [3], one
finds that the rate at which the error decreases, q, is related to the differentiability of f̂(ξ),
e.g. the smoothness of f̂(ξ). For example, assuming that f̂(ξ) decays exponentially and is
2m + 2 times continuously differentiable, then the error is O(δξ)2m+2. When the function
is not sufficiently differentiable to allow one to make use of the standard asymptotic error
expansions one can utilize other error expansions [10], but the conclusion is the same, the
more differentiable the transform the faster the rate of convergence of the computed values
with respect to domain size.

The second source of the error is introduced by limiting the infinite sum (6) to a finite
sum (7). For a fixed L, the number of terms kept in the finite sum is inversely related to the
mesh size h, so as the mesh size is decreased this error is decreased. The rate at which this
error decreases is directly related to the decay of f̂(ξ) as ξ → ±∞, e.g. the differentiability
of the function f associated with f̂ .

In addition to these two primary sources of error, there is an important secondary source
of error due to the magnitude of the derivatives of the integrand in (2). Specifically, the rth
derivative of the integrand in (3) with respect to ξ has factors that depend on xr, so that
when x is near the perimeter of computational domain the integrand has large derivatives
and consequently the error in the approximation can be expected to be larger. For this
reason, when evaluating the errors in the approximation of an inverse transform, one is
typically concerned with the convergence of the errors at a set of points restricted to a fixed
sub-interval Ω0 = [−L0, L0] ⊆ [−L,L] as L→∞.

Thus, to reduce the errors associated with an approximation of the inverse transform
that is computed with a discrete inverse Fourier transform, one needs to refine the mesh size
used in physical space and increase the domain size L. The rate at which the errors decrease
with mesh size in physical space is related to the differentiability of the function f(x), and,
if one restricts the evaluation points to a fixed sub-domain as L → ∞, the rate at which
the errors decrease with increasing L is related the differentiability of it’s Fourier transform,
f̂(ξ).

A simple example that demonstrates these errors is the approximation of the inverse

transform of f̂(ξ) = π ξ2 e |ξ| corresponding to f(x) =
2− 6x2

(x2 + 1)3
. In Figure 1 we show the

convergence behavior of the error in f(x) for points x ∈ Ω0 = [−1, 1] and x ∈ [−L,L] with
respect to the mesh size and computational domain size. The mesh size used is given by

h =
2

M
, where M is the number of grid panels in [−1, 1] and the computational domain

used to evaluate the approximate inverse transform is [−L,L] with L ≥ 1.

5

Figure 1: Maximal inverse transform errors for points in Ω0 = [−1, 1] and points in ΩL =
[−L,L]

.

Each of the curves in Figure 1 correspond to the error in f(x) as a function of mesh size for
values of L = 5, 10, 20. When the mesh width is large the error in the approximate inverse is
dominated by the truncation of the infinite sum (6) to a finite sum (7). Since f(x) is infinitely
differentiable one expects rapid convergence with respect to the mesh width. This behavior
is clearly observed in error curves towards the left side of Figure 1. As one decreases the
mesh size one observes that the errors decay as h−10. (Even though the function is infinitely
differentiable, the growth in the size of the higher derivatives of the function ultimately limits
the rate of convergence).

After convergence with respect to mesh size occurs, the dominant error becomes that of
the domain size used to approximate the inverse transform. The behavior of this error is
indicated by the behavior of the error curves towards the right hand side of Figure 1. If one
uses the data at the finest mesh size and values L = 10 and L = 20, an estimate the rate of
convergence of the error in Ω0 is approximately L−4.4. This rate is close to that predicted by
a Trapezoidal method asymptotic error estimate of O(L−4); an estimate that arises because
the integrand and the derivative of the integrand in (2) both vanish at ξ = 0.

The non-uniformity of the errors in physical space are also evident. For a given domain
size L, after convergence with respect to the mesh width one observes that the maximal error
over the whole domain [−L,L] is essentially an order of magnitude larger than the maximal
error over the sub-interval [−1, 1].

0.3 A High Order Expanding Domain Procedure

The procedure we propose for two and three dimensional problems are discretized versions of
a Fourier transform based procedure for the constructing a solution to the continuous prob-
lem (1). With an understanding of the nature of the errors associated with approximations

6

of inverse transforms, the continuous procedure is designed so that when discrete approxi-
mations are used for the transforms, the errors associated with this discretization have the
property that there is rapid convergence of the solution as the mesh size is decreased and
rapid convergence as the domain size is increased.

Given a function f(~x) which vanishes for ~x /∈ Ω0, a Fourier transform based procedure
for solving

∆u = f ~x ∈ RN (8)

consists of the following steps

(i) Create a modification function f̃(~x) so that the moments of ~g(~x) = f(~x)− f̃(~x) vanish
up to mth order; ∫

RN
g(~x) ~xα = 0 |α| = 0, 1, . . .m (9)

where α = α1α2 . . . αN is a multi-index, |α| = α1+α2+· · ·αN , and ~xα = xα1
1 x

α2
2 · · ·xαNN .

(ii) Compute the solution to ∆v = g using Fourier transforms. Specifically, if ĝ(~ξ) is the
Fourier transform of ~g(~x), evaluate v(~x), the solution to ∆v = g, using the inverse
transform

v(~x) =
∫ ĝ(~ξ)

||~ξ||2
ei~x·

~ξ d~ξ (10)

(iii) Create the solution u(~x) to (8) by setting

u(~x) = v(~x) + w(~x) (11)

for ~x ∈ Ω0, where w(~x) is the solution to ∆w = f̃ in RN . It is assumed that the form
of f̃(~x) is chosen so that an analytic representation of w is readily available.

The motivation for decomposing the task of constructing u(~x) into two components is
so that the integrand in the inverse transform (10) required for Step (ii) is well behaved at
~ξ = 0. The reason for reducing the singular behavior of the Fourier transform at the origin is
so that when the Fourier transform solution of ∆v = g is approximated using a Fourier series
solution over an expanding domain, the Fourier series solution will converge more rapidly as
the domain size increases.

The reduction in the singular behavior of the transform at ~ξ = 0 follows from the fact
that

∂ αĝ

∂ξα

∣∣∣∣∣
~ξ=0

=
∫

RN
g(~x) ~xα (12)

so that the vanishing of the moments of g(~x) up to order m implies that all terms in the

Taylor expansion of ĝ(~ξ) up to mth order vanish and therefore

ĝ(~ξ) =
∑
|α|>m

1

α!

∂ αĝ

∂ξα

∣∣∣∣∣
~ξ=0

~ξ
α

(13)

If the moment conditions in Step (i) hold, the integrand in (10) will be O(||~ξ||m−1). This

implies that at ~ξ = 0 the integrand will be bounded if m = 1, and the integrand will vanish

7

along with it’s first m − 2 derivatives when m ≥ 2. Therefore, the use of the modification
function, f̃ , leads to a reduction in the singular behavior of the integrand in the inverse
Fourier transform (10).

In order that the procedure just described be viable as a basis for a computational
method, it is necessary to identify a specific procedure for constructing the function f̃(~x)
and the potential that it induces, w(~x). There are many ways to construct such a function,
one choice that we found that works particularly well is to use a function of the general form

f̃(x̃) =
m∑
|α|=0

γα
∂ αBδ(~x)

∂xα
(14)

Here Bδ(~x) is a member of the family of polynomial mollifiers described in [2] of radius δ,

Bδ(r) =



1

δN
σq(N)

ωN
(1 −

(
r

δ

) 2

)q r ≤ δ

0 r > δ

(15)

where r = ||~x|| and the radius of the mollifier δ is taken to be the minimum distance from the
origin to the boundary of Ω0. The value of q in the mollifier determines it’s differentiability;
Bδ(r) is q− 1 times continuously differentiable. This fact implies that f̃(~x) will be q−m− 1
times continuously differentiable. The coefficients σq(N) and ωN of the mollifiers appearing
in (15) are determined by the condition that the mollifier have unit integral in RN and are
given in Appendix I.

The coefficients γα of f̃(~x) are determined so that the conditions in (9) are satisfied.
Specifically, γα are determined by solving the linear system of equations

m∑
|α|=0

[∫
RN

∂ αBδ(~x)

∂xα
~xβ
]
γα =

∫
RN

f(~x) ~xβ for |β| = 0 . . .m (16)

If the equations (16) are ordered by increasing |β| and one applies integration by parts to
the integrals on the left hand side of these equations, one finds that this system of equations
is lower triangular with non-zero integer coefficients on the diagonal. The equations deter-
mining γα’s are therefore non-singular and the evaluation of the solution to these equations
is a matter of back-substitution. The non-zero coefficients on the left hand side of the system
of equations (16) can be computed analytically.

With the coefficients γα determined, one must then have a means of evaluating the
solution to ∆w = f̃ . The piecewise polynomial form of Bδ(~x) leads to a solution of ∆Wδ = Bδ

that has an analytic representation; Wδ(~x) is a polynomial in r2 for r < δ and for r ≥ δ has

the value
1

2π
log(r) in two dimensions and the value − 1

4πr
in three dimensions. Since

∆
∂ αWδ(~x)

∂xα
=
∂ α∆Wδ(~x)

∂xα
=
∂ αBδ(~x)

∂xα
(17)

it follows that

w(~x) =
m∑
|α|=0

γα
∂ αWδ(~x)

∂xα
(18)

8

and since Wδ(~x) has an analytic representation, so does every term in the sum (18). The
required formulas for Wδ are given in Appendix I.

0.4 Discretization

A computational method results when steps (i)-(iii) are implemented using discrete approx-
imations. We describe the discretization procedure for two dimensional problems when the
moment condition (9) is satisfied with m = 2. The discretization procedure for three dimen-
sional problems or for larger or smaller values of m is similar.

We assume that the domain Ω0 is the rectangular region centered at the origin [−L0
x, L

0
x]×

[−L0
y, L

0
y]. In order to utilize FFT’s to carry out the approximate transforms, we use a

uniform grid with grid points being those of an M0
x ×M0

y panel discretization of Ω0. The

mesh widths in each direction hx and hy are defined by hx =
2L0

x

M0
x

and hy =
2L0

y

M0
y

.

Step (i) of the procedure requires the construction of the “moment matching function”
f̃ . To accomplish this, the right hand side of equations (16) must be approximated. These
values are just the moments of f up to order m, and since the mesh is uniform and f
vanishes outside of Ω0, these moments can be evaluated with spectral accuracy using a
standard Trapezoidal method approximation to the integral. After computation of these
integrals, the solution of lower triangular system of equations (16) can be obtained by back
substitution. In two dimensions, for a given choice of mollifier exponent q, if f̄α are the

approximate values of the moments of f for |α| ≤ 2 and β =
δ2

2(q + 2)
, then coefficients γα

that satisfy (16) are given by

γ1 1 = f̄1 1

γx 1 = −f̄x 1 γ1 y = −f̄1 y

γxx =
(f̄xx − βγ1 1)

2
γx y = f̄x y γy y =

(f̄y y − βγ1 1)

2

Step (ii) requires the approximation of the coefficients of the forward transform of g(~x)
and then the evaluation of the inverse transform (10). To approximate these transforms, the
domain Ω0 is expanded by a nominal expansion factor η > 1 in each direction to a domain
ΩL. This expansion is accomplished by adding panels of width hx and hy to both sides of
the domain so that Ω0 is approximately centered within ΩL. In determining the expanded
domain, one increases the size of ΩL as needed so that an integral number of panels are added.
Also, in order to improve the efficiency of discrete FFT routines one can add panels so that
the total number in each direction is product of small primes. The expanded computational
domain that results will thus be rectangular region approximately centered at the origin with
grid points those of an Mx ×My panel discretization and mesh widths hx and hy.

The function ~g(~x) = f(~x)− f̃(~x) is then evaluated at all grid points in the domain ΩL by
evaluating f(~x)− f̃(~x) at points in Ω0 and setting the values outside Ω0 to zero. Delineating

9

the array of values of g at the grid points in the domain by g(m,n) where m = 0 . . .Mx and
n = 0 . . .My, one then uses an FFT routine to construct an approximate forward transform
of these values, e.g. ĝ(k1, k2), defined by

ĝ(k1, k2) =
Mx−1∑
m=0

My−1∑
n=0

e−
2πik1m

Mx e
− 2πik2n

My g(m,n) (19)

k1 = −[Mx/2] . . . [(Mx − 1)/2]

k2 = −[My/2] . . . [(My − 1)/2]

where [∗] designates the integer part.
The array values comprising approximations to v defined by (10), v(m,n), are obtained

by using an inverse discrete Fourier transform to evaluate

v(m,n) =
[(Mx−1)/2]∑
k1=−[Mx/2]

[(My−1)/2]∑
k2=−[My/2]

e
2πik1m

Mx e
2πik2n

My
− ĝ(k1, k2)[

4π2k21
D̄2
x

+ 4π2k2
2

D̄2
y

] (20)

m = 0 . . .Mx

n = 0 . . .My

where Dx = Mxhx and Dy = Myhy. In these sums, the value of the summand at (k1, k2) = 0
is set to zero. We caution the reader that the evaluation of the sums (19) and (20) using
standard FFT routines likely requires both scaling and coefficient re-arrangement. The
coefficient re-arrangement is necessary because of our use of both positive and negative
values for k1 and k2.

In Step (iii), one obtains the final result by combining the values of v(m,n) with the
values of w(m,n) = w(~x(m,n)) where w is given by (18) for each grid point ~x(m,n) ∈ Ω0.

In three dimensional discretization procedure is completely analogous to the two dimen-
sional discretization procedure. However, in Step (i), the size of the system of equations that
must be solved to construct f̃ is larger because there are more moments of a given order
to match. If one restricts oneself to just matching moments up to second order, then for a
given choice of mollifier exponent q, if f̄α are the approximate values of the moments of f

for |α| ≤ 2 and β =
δ2

2(q + 2) + 1
, then coefficients γα that satisfy (16) are given by

γ1 1 = f̄1 1

γx 1 = −f̄x 1 γ1 y = −f̄1 y γ1 z = −f̄1 z

γxx =
(f̄xx − βγ1 1)

2
γy y =

(f̄y y − βγ1 1)

2
γz z =

(f̄z z − βγ1 1)

2

γx y = f̄x y γx z = f̄x z γy z = f̄y z

10

The main source of error in this discrete approximation is that associated with approx-
imating continuous transforms by discrete transforms. The error in the forward transform
is solely due to the use of a finite size mesh width since g has support contained within Ω0.
However, as discussed in Section 1, the error in the inverse transform is due to the use of a
finite mesh width and the error due to the use of a finite sized domain.

The error in both the forward and inverse transforms associated with finite mesh width
size is due to the limited range of wavenumbers at which the Fourier transform values can be
approximated when using discrete values on a grid. The rate of convergence of these errors
to zero is not a fixed property of the discretization but dictated by the differentiability of
f and f̃ , e.g. it is a “spectrally accurate” discretization. However, one typically fixes the
differentiability of f̃ by selecting the mollifier exponent q, thus leading to a discretization
error contribution to the final solution that has a fixed rate of convergence. Assuming the
differentiability if f is greater than that of f̃ , the expected size of this component of the error
will be O(h(q−m)+1), where h is a measure of the mesh width. The computational results
given in the next section will demonstrate the effect that the differentiability of f̃ has on the
accuracy of the computed values and, in particular, show that in computations with m = 2,
that these errors do behave as O(hq−1).

The behavior of the errors associated with the use of a domain of finite size for the
inverse transform approximation are dictated by the rate of convergence of a Trapezoidal
approximation to the integral (10). Since mesh width in this approximation, δξ, is O(1

ηL0
)

where L0 is the minimum of L0
x and L0

y, the errors associated with the use of a finite size
domain can be expected to behave as O(η−p) or O(η−p log(η)) where p is determined by the
rate of convergence of the integral approximation and η is the nominal domain expansion
factor. A general a-priori estimation of the rate of convergence is difficult because the
asymptotic error expansions for the Trapezoidal method applied to integrals of the form
(10) requires having specific knowledge about the functional form of the integrand at ~ξ = 0.
However, what can be inferred from an asymptotic error expansion of the Trapezoidal method
applied to each quadrant separately [9], is that one expects higher rates of convergence when

more terms in the local Taylor series expansion at ~ξ = 0 vanish. As will be demonstrated by
the numerical results in the next section, we find that the rate of convergence with respect to
the expansion factor η is O(η−(m+2)) in two dimensions, and O(η−(m+3)) in three dimensions
when modification functions f̃ are used that match match the moments of f to order m

As for the computational work associated with a discretization, if K is the total number
of grid points in Ω0 (e.g. K = M0

x×M0
y and K = M0

x×M0
y×M0

z in two and three dimensions
respectively), then for an expansion factor of η, the computational work in Step (i) and Step
(iii) is O(K) and is independent of η. The computational work associated with Step (ii) will
be O(ηNK log(K)) + O(ηN log(ηN)K). For modest values of η, this growth in computational
work can be acceptable, especially when the discrete Fourier transform is computed using
very efficient FFT’s. The amount of memory required also grows as ηN , which in the case
of three dimensional problems and larger values of η may be unacceptable. For such cases,
an alternate but more complicated procedure for carrying out Step (ii) described in [1] can
be used. This latter procedure has a memory scaling that is just linear in η and requires
computational work that grows as η(N−1).

11

0.5 Computational Results

The test problem consisted of determining the values of the solution to

∆u = f ~x ∈ RN (21)

in the region ~x ∈ Ω0 = [−L0, L0]N with L0 = 1 and N = 2, 3. The computational grid used
in Ω0 was taken to be a uniform grid with M panels in each direction. The function f was
chosen to be a linear combination of two mollifiers of the form (15) with width δ = 0.6,
specifically

f(~x) = Bδ=.6 (~x− ~xA) +Bδ=.6 (~x− ~xB) (22)

where ~xA = (.11, .22, (.33)) and ~xB = (−.33,−.22,−(.11)). A mollifier exponent q = 9
was specified. This choice of exponent leads to a potential u that is 10 times continuously
differentiable. An exact solution can be evaluated analytically using the formulas given in
Appendix I.

In the construction of the moment matching function f̃ in Step (i), the location and width
of the mollifiers must be chosen. It is advantageous to use mollifiers with as large a width
as possible so f̃ and it’s transform can be accurately represented with a coarse mesh. For
all of the test computations the moment matching function was constructed using mollifiers
and their derivatives centered at the origin and of width δ = 0.9.

The discrete Fourier transform computations were carried out using FFTW3 routines [4]
[5].

(a) (b)

Figure 2: The behavior of the error in Ω0 = [−L,L]N as the domain is expanded for different

orders, m = 0, 1, 2, of the moment matching modification. A mesh width of
1

40
was used in

each direction. (a) N= 2 (b) N = 3.

12

The first set of computational results concerns the behavior of the error in the potential
as the domain used in Step (ii), [−L,L]N , is increased in size (e.g. as η = L

L0
is increased).

Of particular interest is the dependence of the rate of convergence on the maximal order of
the moments matched in Step (i). In this computation, the number of panels M used in each

direction of Ω0 was fixed at 80, e.g. the mesh width was fixed at
1

40
. This mesh width was

sufficiently small to insure that the solution values were essentially converged with respect
to mesh size. A value of q = 7 was used as the mollifier exponent for the construction of
the moment correction function. In Figure 2 the relative errors in the potential evaluated
in the maximum norm are presented for values of η = 1 . . . 8 for two and three dimensional
computations. The results clearly demonstrate a well defined rate of convergence, a rate that
increases by one with each increase in the maximal order of the moments used in Step (i).
In particular, the observed rate of convergence is η−(m+2) in two dimensions and η−(m+3) in
three dimensions.

(a) (b)

Figure 3: Three dimensional test problem computational time. Time in CPU seconds (a)
and Time in FFT units (b). Ω0 FFT Time is the time for one forward and one inverse
discrete Fourier Transform applied to the values in Ω0.

In Figure 3, we show the computational time for the three dimensional test problem
as the domain expanded for different mesh sizes. Second order moment matching, m = 2,
was used and the exponent of the mollifier used in the moment matching function was
taken to be q = 7. The results are given in units of CPU seconds (a) and in FFT units
(b). The CPU seconds are those of a desktop machine with an AMD FX-8120 eight-core
processor with multi-threading execution obtained using OpenMP. The FFT unit of time
is the time required for one forward and one inverse transform of the data values in Ω0.
We give the results in both of these units, as the time in seconds gives one an idea about

13

the computational time required when using a currently available high performance desktop
machine, and the reported time in FFT units allows one to estimate the time the procedure
would take for other types of computational hardware.

If K is the total number of grid points in Ω0, then as η is increased, the computational
work is dominated by the FFT computation over the expanded domain and so formally
scales as ηNK log(ηNK). The computational timings are in approximate agreement with
this scaling. From the data in Figure 3(b) when η = 1, one can deduce that the additional
cost of implementing Step (i) and Step (iii), e.g. forming the moment correction function f̃
and then adding in the potential it induces. Specifically, one finds that computational time
is only a small multiple of the time of a single forward and inverse FFT over Ω0. Since the
computational cost of Steps (i) and (iii) does not grow with η one can conclude that if one
is already using an expanding domain procedure, very little additional computational work
need be performed in order to create a method that has higher order rates of convergence
with respect to domain size.

Figure 4: Maximal relative potential error in Ω0 = [−1, 1]3 for different computational mesh
sizes h = 2

Ω0 panel count
.

The last set of computational results concerns the behavior of the error in the potential
with respect to the use of a finite mesh size, e.g. the discretization error. If the moment
matching function f̃ were infinitely differentiable, the error component associated with the
mesh size would decrease at a rate dependent only on the smoothness of the right hand side
(e.g. spectral convergence). However, the moment matching function proposed here has a
limited differentiability, and this limits the rate of convergence which can be obtained. In
Figure 4 we show the behavior of the errors in the potential of the three dimensional test
problem with respect to decreasing mesh size for several values of the mollifier exponent q.
Second order moment matching m = 2 and an expanded domain size corresponding to η = 6
were used. For this value η, the finite domain size contribution to the total error is O(10−7),
so that over the range of mesh widths where the mesh width error dominates, the results

14

clearly indicate a rapid convergence with respect to mesh size. The rate of convergence
increases as the differentiability of the moment matching function increases. In fact for
q = 9, the rate is approximately O(h−12). For many problems, as well as the particular test
problem considered here, one finds little difference between the convergence for rates when
q ≥ 7.

In consideration of the timing results presented in Figure 3, one might be concerned about
the utility of a method for solving the three dimensional Poisson’s equation that requires
tens of seconds for a single computation to obtain an accuracy of O(10−7) (e.g. 3(a) with
h = 0.025 and η = 8). However, for smooth problems, the use of spectral approximation
leads to such a rapid rate of convergence that the mesh size required to resolve the solution
need not be particularly small and thus one can avoid such large execution times. For
example, in our test problem, Figure 4 indicates that convergence with respect to mesh size
occurs near the coarsest mesh width h = 0.1. The solution times obtained with the largest
domain η = 8 is less than a second. To obtain an error of O(10−5), one can use a domain
with η = 4 and the solution time is just tenths of a second. If one needs to have solution
values on a finer grid, one can use spectral interpolation over the original domain.

0.6 Conclusion

In the simple expanding domain procedure for computing approximate solutions of Laplace’s
equation in infinite domains, one computes the solution by modifying the right hand side to
have zero average value, solves a periodic problem on an extended computational domain,
and then adds to that solution a component to account for the modification of the right
hand side. The accuracy of the approximation is increased by both refining the computa-
tional mesh and expanding the size of the computational domain. In this paper we have
described an improved version this simple procedure, a procedure that ostensibly consists
of adding a specially constructed modification function to the right hand side before one
solves the periodic problem. Motivated by an understanding that the rate of convergence of
the expanding domain procedure with respect to the domain size is dictated by the rate of
convergence of a discrete approximation to an inverse Fourier transform, the modification
function used to alter the right hand side is a “moment matching function” and one that
leads to an integrand of the inverse transform that is less singular at the origin. The conse-
quence of this modification is a more rapid rate of reduction of the finite domain size errors
as the domain size is increased. Our computational results demonstrate that if one uses a
modification function that matches the moments of the right hand side to second order the
rate of convergence with respect to domain size is O(η−4) for two dimensional problems and
O(η−5) for three dimensional problems where η is the non-dimensional expansion factor.

The particular type of moment matching functions proposed here have the virtue that
both their values and the values of their associated potential can be efficiently evaluated.
As demonstrated by the computational results, the additional computational cost to create
and utilize this modification function is but a small factor times the cost of an FFT over
the original domain. In addition, the proposed functions have a parameterized degree of
differentiability so that when the procedure is applied to problems with smooth right hand
side the high accuracy obtainable with spectral differential operator approximation is not
adversely effected.

15

The computational work scales formally as O(ηNK log(ηNK)) where K is the total num-
ber of grid points in the non-expanded domain and N is the dimension. With the use of high
performance FFT’s to carry out the required transforms, the procedure is relatively easy to
implement, and is highly efficient for modest values of η. Since the underlying approxima-
tion of the differential operators has spectral accuracy, the proposed procedure is ideally
suited for use on problems with smooth right hand sides. For problems that require very
small finite domain size errors, the computational cost and memory requirements associated
with larger values of η can become significant, and one should consider using the ”recursive
expanded domain” method [1], a method which is more algorithmically complex, but has
computational costs and memory requirements that scale much more favorably with η.

Lastly, the method that is proposed here is one to compute a potential in an infinite
domain; the method readily extends to the computation of any derivatives of the potential.
For example, to evaluate the derivative with respect to x, one just multiplies the integrand
in (20) by an extra factor of 2πk1

Lx
before applying the approximate inverse transform and

then adds in the x-derivative of the potential induced by the moment matching function.
The required derivative of the potential induced by the moment matching function can be
evaluated analytically.

0.7 Appendix I

0.7.1 Normalization factors

For mollifiers of the form

B(r) =



σq(N)

ωN
(1 − r 2)q r ≤ 1

0 r > 1

(23)

Table 1 gives the scaling factors σq(N) for q = 1 . . . 9 so that
∫

RN B(r) dr = 1 for N = 2, 3
and ω2 = 2π and ω3 = 4π.

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9

σq(2) 4 6 8 10 12 14 16 18 20

σq(3)
15
2

105
8

315
16

3465
128

9009
256

45045
1024

109395
2048

2078505
32768

4849845
65536

Table 1: Mollifier normalization factors

0.7.2 Moments

The 0th order moment of all members of the family (23) is 1, all first order moments vanish
due to radial symmetry, but not all second order moments vanish. The moments with respect
to x2

i are non-zero and one finds that in two dimensions for a mollifier with exponent q and
width δ,

16

∫
R2
Bδ(~r)xi

2 =
δ2

2(q + 2)
i = 1, 2

and for three dimensions, one finds

∫
R3
Bδ(~r)xi

2 =
δ2

2(q + 2) + 1
i = 1, 2, 3

0.7.3 Potentials

As discussed in [2], the functions v2(r) and v3(r) defined by

v2(r) = c0(2) +
q+1∑
j=1

(−1)(j−1)

(2 j)2

(
q

j − 1

)
r 2j (24)

v3(r) = c0(3) +
q+1∑
j=1

(−1)(j−1)

(2 j)(2 j + 1)

(
q

j − 1

)
r 2j (25)

are solutions of

∆vN = (1− r2) q =
q∑

k=0

(−1)k
(
M

k

)
r 2k

for r ≤ 1 for two and three dimensions respectively. It is convenient to choose c0(N) so that
that vN(r) vanish at r = 1. Values of c0(N) are given in Table 2. The potential associated
with solutions of ∆Wδ = Bδ(r), where Wδ(r) is given by (23), are obtained by the appropriate
scaling;

Wδ(r) =



σM(2)

2π
v2(

r

δ
) +

log(δ)

2π
r ≤ δ

log(r)

2π
r > δ

in two dimensions, and in three dimensions by

Wδ(r) =



1

δ

(
σM(3)

4π
v3(

r

δ
) − 1

4π

)
r ≤ δ

− 1

4πr
r > δ

In all of the above formulas σM(2) and σM(3) are the normalization factor for B(r) whose
values are given in Table 1.

17

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9

c0(2) − 3
16

−11
72

− 25
192

− 137
1200

− 49
480

− 363
3920

− 761
8960

− 7129
90720

− 7381
100800

c0(3) − 7
60

− 19
210

− 187
2520

− 437
6930

− 1979
36036

− 4387
90090

− 76627
1750320

− 165409
4157010

− 141565
3879876

Table 2: Potential constant factors c0(N) so that vN(1) = 0, N = 2, 3.

Bibliography

[1] Christopher R. Anderson. A Recursive Expanding Domain Method for the Solution of
Laplace’s Equation In Infinite Domains. Technical Report CAM-14-45, Department of
Mathematics, UCLA, Los Angeles, California, May 2014.

[2] Christopher R. Anderson. Compact Polynomial Mollifiers For Poisson’s Equation. Tech-
nical Report CAM-14-43, Department of Mathematics, UCLA, Los Angeles, California,
May 2014.

[3] K.E. Atkinson. An Introduction To Numerical Analysis. Wiley, 2nd edition, 1978.

[4] Matteo Frigo and Steven G. Johnson. The Design and Implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[5] Matteo Frigo and Steven G. Johnson. FFTW 3.3.4. http://www.fftw.org/, 2014.

[6] Mads Mølholm Hejlesen, Johannes Tophøj Rasmussen, Philippe Chatelain, and
Jens Honoré Walther. A high order solver for the unbounded Poisson equation. Journal
of Computational Physics, 252(0):458–467, 2013.

[7] Roger W Hockney and James W Eastwood. Computer simulation using particles. CRC
Press, 1988.

[8] R.A James. The solution of poisson’s equation for isolated source distributions. Journal
of Computational Physics, 25(2):71–93, 1977.

[9] JN Lyness. Applications of extrapolation techniques to multidimensional quadrature
of some integrand functions with a singularity. Journal of Computational Physics,
20(3):346–364, 1976.

[10] JN Lyness and BW Ninham. Numerical quadrature and asymptotic expansions. Math.
comp, 21(98):162–178, 1967.

[11] P. McCorquodale, P. Colella, G.T. Balls, and S.B. Baden. A scalable parallel Poisson
solver in three dimensions with infinite-domain boundary conditions. International
Conference Workshops on Parallel Processing, ICPP 2005 Workshops, pages 163–172,
2005.

[12] Ji Qiang. A high-order fast method for computing convolution integral with smooth
kernel. Computer Physics Communications, 181(2):313–316, 2010.

18

19

[13] D.B. Serafini, P. McCorquodale, and P. Colella. Advanced 3D Poisson solvers and
particle-in-cell methods for accelerator modeling. Journal of Physics: Conference Series,
16(1):481–485, 2005. cited By (since 1996)2.

[14] Z Jane Wang. Efficient implementation of the exact numerical far field boundary con-
dition for Poisson equation on an infinite domain. Journal of Computational Physics,
153(2):666–670, 1999.

