
UCLA

COMPUTATIONAL AND APPLIED MATHEMATICS

A Recursive Expanding Domain Method for the Solution of
Laplace’s Equation In Infinite Domains

Christopher R. Anderson

April 2014

CAM Report 14-45

Department of Mathematics

University of California, Los Angeles

Los Angeles, CA. 90095-1555

Abstract

In this paper we describe a discrete Fourier transform based numerical procedure to evaluate
a solution of Laplace’s equation in R2 or R3 at points in a rectangular computational re-
gion. The numerical procedure is a recursive implementation of an “expanding domain” type
method where one obtains approximations of increasing accuracy by expanding the computa-
tional domain. The method presented here leads to approximations that converge with high
order rates of convergence with respect to domain size. Spectrally accurate approximations
are used to approximate differential operators and so the method possess very high rates of
convergence with respect to mesh size as well. The computational work and memory require-
ments of the recursive implementation are much lower than the standard implementation of
an expanding domain method. The computational cost is O[ηK log(ηK)] in two dimensions
and O[η2K log(η2K)] in three dimensions where K is the total number of grid points and η
is the non-dimensional expansion factor used in the computation. The memory requirements
are reduced to O[ηK] for both two and three dimensional problems. Computational results
are presented that demonstrate the accuracy and computational efficiency of the procedure.

0.1 Introduction

In this paper we present a numerical technique for the evaluation of the solution of Laplace’s
equation

∆u = f x ∈ RN (1)

for N = 1, 2, 3 at the grid points associated with a uniform discretization of a rectangular
subregion Ω0 ⊂ RN with edges of characteristic length L0. It is assumed that f vanishes
outside of Ω0. The procedure for N = 2, 3 described here is an alternate method of im-
plementing the high order expanding domain procedure described in [2]. The background
motivation for the expanding domain procedure and references to other methods for solving
Laplace’s equation in infinite domains are given in [2].

The procedure in [2] essentially consists of creating an approximate solution of Laplace’s
equation in an infinite domain by modifying the right hand side of the equation so that
moments up to order m vanish, solving the modified problem on an extended periodic do-
main, and then adding to the modified problem solution an analytically evaluated solution
component to compensate for the modification of the right hand side. High order spatial
accuracy with respect to the mesh size is obtained because of the implicit use of spectral
approximations of the differential operators, and high order convergence rates with respect
to the non-dimensional domain expansion factor η is obtained by using the moment canceling
modifications of the right hand side. Here η = (L/L0) where L0 is a measure of the original
domain size and L is the size of the expanded domain.

When a domain expansion factor η of modest size provides an acceptably accurate solu-
tion, the simplicity of the implementation described in [2] and the use of high performance
FFT’s allows one to easily construct efficient implementations. However, when the expan-
sion factor η is larger, an alternate implementation is sought because the computational cost
and memory footprint of the procedure described in [2] scales as approximately ηN . The
procedure described here improves the CPU scaling by a factor of η so that the computa-
tional work scales approximately linearly in two dimensions and approximately quadratically
in three dimensions. The memory requirements are much improved and they scale linearly
in η for both two and three dimensional problems. The spatial accuracy of the procedure
presented here and the accuracy obtainable with a given value of η can be expected to be
either identical or a bit better than that of the implementation in [2]. In addition to better
scaling with respect to domain size, implementations can be created that effectively exploit
multi-core processors because the bulk of the computational work consists of loops over
independent tasks.

The alternate implementation presented here is a recursive procedure because for each
dimension N , the computational task is reduced to combining solutions of a collection of
infinite domain Helmholtz problems in dimension N − 1. What’s fortunate about the use
of a recursive procedure is that when N = 1 the infinite domain problem can be solved
“exactly”, e.g. the only error is a spatial discretization error and no errors are introduced
due to the use of a finite sized domain. In the first section we present the key idea behind
our alternate implementation. In the second section we describe the solution procedure for
the infinite domain Helmholtz problem when N = 1. In the following section the alternate
implementations of the procedures of [2] are presented for two and three dimensional prob-
lems. In the final section we give computational results that demonstrate the effectiveness
of the approach for both reducing the computational cost and the memory footprint of the

1

2

method.

0.2 Recursive Expanding Domain Procedure

The expanding domain method presented in [2] is a numerical discretization of the following
procedural steps to evaluate the solution of

∆u = f x ∈ RN (2)

for points in Ω0.

Step(i). Create a modification function f̃(~x) so that the moments of ~g(~x) = f(~x) − f̃(~x)
vanish up to mth order;∫

RN
g(~x) ~xα = 0 |α| = 0, 1, . . .m (3)

where α = α1α2 . . . αN is a multi-index, |α| = α1 + α2 + · · ·αN , and ~xα =
xα1

1 x
α2
2 · · ·xαN

N .

Step(ii). Evaluate the solution to
∆v = g ~x ∈ RN (4)

for values of ~x ∈ Ω0.

Step(iii). Create the solution u(~x) to (2) by setting

u(~x) = v(~x) + w(~x) (5)

for ~x ∈ Ω0, where w(~x) is the solution to ∆w = f̃ in RN . It is assumed that the
form of f̃(~x) is chosen so that an analytic representation of w is readily available.

The expanding domain aspect of the method arises in Step (ii), when discrete Fourier trans-
forms (DFT’s) on an expanding domain are used to approximate a continuous Fourier trans-
form solution on an infinite domain. As discussed in [2], the modification of the right hand
side in Step (i) is implemented so that the values of v obtained with an expanding domain
approximation converge rapidly as the domain size increases. The computational tasks re-
quired of discrete implementations of Step (i) and Step (iii) only involve data in Ω0 and
thus the increase in computational work and required memory as the domain is expanded is
solely due to the increase in work and memory requirements of discrete forward and inverse
Fourier transforms. The method presented in [2] thus has computational work that scales as
(ηNK) log(ηNK) and memory requirements that scale as ηNK where K is the total number
of grid points in Ω0 and η is the non-dimensional expansion factor.

The method we are proposing is an alternate Fourier transform based method for evalu-
ating the solution required in Step (ii). Specifically, it is a method for evaluating the solution
of

∆v = g ~x ∈ RN (6)

3

in a region Ω0 with the assumption that g vanishes outside Ω0 and that g satisfies the
moment conditions of Step (i) up to some order m > 0. This alternate procedure is designed
so that when the continuous procedure is discretized, the computational work scales as
(η (N−1)K) log(η (N−1)K) and the memory requirements scale as ηK.

We first describe the general idea behind the Fourier transform based procedure for
N = 2. If ĝ(ξ1, ξ2) is the Fourier transform of g(x, y) then a solution to (6) is given by

v(x, y) =
1

4π2

∫ ∞
∞

∫ ∞
∞
− ĝ(ξ1, ξ2)

ξ2
1 + ξ2

2

ei y ξ2 dξ2 ei x ξ1 dξ1 (7)

This solution can also be expressed as

v(x, y) =
1

2π

∫ ∞
∞

v̄(ξ1, y) ei x ξ1 dξ1 (8)

where v̄(ξ1, y) is given by

v̄(ξ1, y) =
1

2π

∫ ∞
∞
− ĝ(ξ1, ξ2)

ξ2
1 + ξ2

2

ei y ξ2 dξ2 (9)

The alternate procedure arises by observing that for any value of ξ1, v̄(ξ1, y) is also deter-
mined as the solution to an infinite domain Helmholtz problem in y. Specifically,

d2v̄(ξ1, y)

dy2
− ξ2

1 v̄(ξ1, y) = ḡ(ξ1, y) for y ∈ [−∞,∞] (10)

where ḡ(ξ1, y) is given by

ḡ(ξ1, y) =
∫ ∞
∞

g(ξ1, y) e−i x ξ1 dξ1 (11)

Since g(x, y) is assumed to vanish outside Ω0, ḡ(ξ1, y) = 0 for all y /∈ [−L0, L0].
The solution of (6) required by Step (ii) can thus be obtained by carrying out the following

sub-steps

2D-Step(ii)(a). For each y in [−L0, L0] evaluate

ḡ(ξ1, y) =
∫ ∞
∞

g(ξ1, y) e−i x ξ1 dξ1 (12)

2D-Step(ii)(b). For each ξ1 solve

d2v̄(ξ1, y)

dy2
− ξ2

1 v̄(ξ1, y) = ḡ(ξ1, y) for y ∈ [−∞,∞] (13)

2D-Step(ii)(c). Evaluate

v(x, y) =
1

2π

∫ ∞
∞

v̄(ξ1, y) ei x ξ1 dξ1 (14)

for (x, y) ∈ Ω0.

4

When discretized, this alternate procedure for evaluating (6) leads to a reduction in
computational work and memory allocation because only approximations to one dimensional
continuous Fourier transforms are required. The approximation of the Fourier transform in
the other direction of the method in [2] is replaced by the solution of an infinite domain
Helmholtz problem in one dimension.

When N = 3, the alternate procedure for evaluating (6) in Step (ii) consists of

3D-Step(ii)(a). For each (y, z) ∈ [−L0, L0]× [−L0, L0] evaluate

ḡ(ξ1, y, z) =
∫ ∞
∞

g(ξ1, y, z) e−i x ξ1 dξ1 (15)

3D-Step(ii)(b). For each ξ1 solve

d2v̄(ξ1, y, z)

dy2
+
d2v̄(ξ1, y, z)

dz2
− ξ2

1 v̄(ξ1, y, z) = ḡ(ξ1, y, z) for (y, z) ∈ [−∞,∞]× [−∞,∞]

(16)

3D-Step(ii)(c). Evaluate

v(x, y, z) =
1

2π

∫ ∞
∞

v̄(ξ1, y) ei x ξ1 dξ1 (17)

for (x, y, z) ∈ Ω0.

As with the two dimensional procedure, when discretized, a reduction in computational
work and memory allocation occurs because only approximations to one dimensional contin-
uous Fourier transforms are required. The procedure for obtaining the solutions of the two
dimensional infinite domain Helmholtz problems is a minor modification of the expanding
domain procedure for the two dimensional Laplace equation.

In the discrete approximation of these alternate evaluation procedures, the one dimen-
sional transforms are approximated by discrete one dimensional transforms on an expanding
domain. The rate of convergence of such approximations with respect to domain size is
dictated by the differentiability of v̄(ξ1, y) or v̄(ξ1, y, z) with respect to ξ1. Of particular
concern is the differentiability in the neighborhood of ξ1 = 0. As can be inferred from (9) in
two dimensions and the corresponding formula in three dimensions, the number of bounded
derivatives of these functions with respect to ξ1 at ξ1 = 0 is determined by the number of
moments of g that vanish. Thus the satisfaction of the moment condition in Step (i) gives
rise to the rapid convergence of the expanding domain approximation as m increases.

The recursive nature of the procedure arises because for dimension N it is necessary
to evaluate the solution of an infinite domain Helmholtz equation in dimension N − 1.
We therefore start with a description of a approximation procedure for the infinite domain
Helmholtz equation in N = 1 and then follow this with the descriptions of the approximation
procedure for N = 2 and N = 3.

0.3 The Infinite Domain Problem in One Dimension

For one dimensional problems of the form

d 2u

dx2
− γ2 u = f(x) x ∈ R (18)

5

where γ ≥ 0, and where the support of f is contained the interval [−L0, L0] there is a solution
procedure which has the property that the change in solution values when computed using
any expanded domain (L > L0) is of the order of errors introduced by a spectral discretization
of the solution. Thus, a spectrally accurate solution approximation can be created using the
original computational domain. This procedure is essentially a one-dimensional version of
the procedure in [5].

The computational procedure is based upon an analytical procedure in which the solution
is obtained by solving two problems in sequence and then combining the results. The first
step consists of creating v, a function that solves the following problem

d 2v

dx2
− γ2v = f(x) x ∈ [−L,L],

(19)

v(−L) = v(L) = 0

If v is extended by zero to [∞,∞], the resulting function satisfies Laplace’s equation for all
points except at the endpoints of the interval, where it can possess a discontinuous derivative.
The second step is to add to v a correction function uc so that the sum of the two is the desired
solution. The required correction is a solution of (18) with f ≡ 0 and one that possesses
a discontinuous derivatives at the endpoints of the interval that are the opposite of those
associated with the extension of v. This correction component is just a linear combination
of the Green’s functions centered at the endpoints e.g. when γ 6= 0,

uc =

(
dv

dx
|x=−L

)
1

2γ
e−γ|x−L| −

(
dv

dx
|x=L

)
1

2γ
e−γ|x+L| (20)

and when γ = 0

uc = −
(
dv

dx
|x=−L

)
|x− L|+

(
dv

dx
|x=L

)
|x+ L| (21)

Setting u = v + uc provides the desired solution of (18).
The computational procedure consists of first solving (19) using discrete sine transforms

followed by the addition of the harmonic correction in which the required derivatives are
evaluated using spectral differentiation. We assume that the interval [−L,L] has been dis-
cretized using a grid with M panels and associated grid points xj = −L + jh, h = 2L

M
and

j = 0 . . .M . It is also assumed that f(−L) = f(L) = 0.
The discrete sine transform of an approximate solution to (19) is given by

v̂(k) = − f̂(k)(
π2k2

4L2 + γ2
) k = 1 . . .M − 1 (22)

where f̂(k) is the discrete sine transform of the values f(m), m = 1 . . .M − 1. The appli-
cation of the inverse discrete sine transform to these coefficients yields a spectrally accurate
approximation to the values v(m) for m = 1 . . .M − 1.

To the values v(m), the correction solution of the form (20) or (21) is added. When γ 6= 0
the cost of evaluating the exponential functions at each grid function can be avoided by just
evaluating e−γ h and then accumulating the correction terms recursively using the fact that
e−γ xi+1 = e−γ he−γ xi .

6

The evaluation of the required derivative of v at the endpoints of the interval are computed
by evaluating

dv

dx
|xj ≈

M−1∑
k=1

v̂(k)

(
kπ

2L

)
cos(

kπ(xj + L)

2L
) (23)

x0 = −L and xM = L. At the endpoints of the interval the cosine function is ±1, so no
trigonometric functions evaluations are required in the evaluation of the sums.

0.4 Recursive Expanding Domain Procedure in Two

and Three Dimensions

We next consider the task of evaluating a discrete approximation to the values of the solution
of the infinite domain problem

∆u+ γ2u = f ~x ∈ R2 (24)

at points in Ω0 = [−L0
x, L

0
x] × [−L0

y, L
0
y]. Let M0

x and M0
y be the number of panels in a

discretization of Ω0 in the x and y directions respectively. The mesh widths in each direction

are then given by hx =
M0

x

2L0
x

and hy =
M0

y

2L0
y

. In the case when γ = 0, we assume that a value,

m, of the maximal order of the moment matching condition is specified.
For a given value of the non-dimensional expansion factor η, let ΩL be the expanded

domain of approximate width Lx = ηL0
x in the x-direction obtained by adding panels in the

x-direction of width hx on both sides of the domain and increasing Lx as needed to insure an
integral number of panels are added. For simplicity of exposition, we assume that an equal

number of panels have been added in each direction so that ΩL = [−Lx, Lx]× [−L0
y

2
,
L0
y

2
] with

the total number of panels in the x-direction given by Mx = M0
x + 2 (Lx−L0

x)
hx

. In practice the
number of panels added to each side need not be equal; all that is required is that Ω0 be
approximated centered within ΩL.

If u(m,n) is used to designate the array of values associated with the discretization of
ΩL, the computational task is to determine approximate values u(m,n) ≈ u(xm, yn) for
all (xm, yn) ∈ Ω0. In the following description the one dimensional discrete forward and
inverse Fourier transform of the values in the x-direction over [−Lx, Lx] are designated as
DFTDx and DFT−1

Dx
where Dx = Mxhx. The discrete operator described in Section 2 that

approximates the solution of Helmholtz equation in the y-direction,
d2v̄

dy2
− βv̄ = ḡ, with

“infinite” boundary conditions, is designated as H−1
β,y .

The computational procedure is a discrete implementation of the Steps (i)-(iii) with a
minor modification when γ 6= 0 and the use of (12)-(14) to approximate the solution required
in Step (ii);

2D-(i) If γ 6= 0 set g(m,n) = f(m,n) for (m,n) such that (xm, yn) ∈ Ω0. If γ = 0 use the
procedure described in [2] to create f̃(m,n) so that moments of g = f − f̃ vanish up
to order m. Extend g(m,n) to have zero value on all grid points outside of Ω0.

7

2D-(ii)(a) Compute the forward one-dimensional discrete Fourier transform in the x-direction of
g(m,n) for each value transverse grid point yn,

forn = 0 . . .M0
y

ḡ(m,n) = [DFTLx(g(:, n))]m for m = 0 . . .Mx

2D-(ii)(b) Evaluate the solution of the one-dimensional Helmholtz equation with “infinite” bound-
ary conditions for each x-direction discrete Fourier coefficient, v̄(p, :),

for p = −[Mx

2
] . . . [(Mx−1)

2
]

Dx = Mxhx, β =
(

4π2p2

D2
x

+ γ2
)

v̄(p, n) =
[
H−1
β,y (ḡ(p, :))

]
n

for n = 0 . . .M0
y

(25)

2D-(ii)(c) Compute the inverse one-dimensional discrete Fourier transform in the x-direction of
v̄(p, n) for each value transverse grid point yn,

forn = 0 . . .M0
y

v(m,n) =
[
DFT−1

Lx
(v̄(:, n))

]
m

for m = 0 . . .Mx

2D-(iii) If γ 6= 0 set u(m,n) = v(m,n) for (xm, yn) ∈ Ω0. If γ = 0 set u(m,n) = v(m,n) +
w(m,n) for (xm, yn) ∈ Ω0 where w is the analytically evaluated solution to ∆w = f̃
with “infinite” boundary conditions.

The reason one need not alter the right hand side when γ 6= 0 is due to the fact that
when γ 6= 0 the integrand of the inverse transform is non-singular at ||~ξ1|| = 0, and thus one
gets rapid convergence of the discrete inverse transform approximation as the domain size
increases. If K = M0

xM
0
y is the total number of grid points in Ω0, then the computational

work of the above procedure is O[ηK log(ηK)] and the memory required is O(ηK), since the
domain is expanded in only one direction.

The discrete approximation procedure for three dimensional problems is entirely analo-
gous to the two dimensional procedure. The required forward and inverse discrete Fourier
transforms are still one-dimensional and are performed in the x-direction for each transverse
grid point (yn, zr). However, instead of a solution to the one-dimensional Helmholtz equation
in (25), a solution of the two-dimensional Helmholtz equation is required:

3D-(ii)(b) Evaluate the solution of the two-dimensional Helmholtz equation with “in-
finite” boundary conditions for each x-direction discrete Fourier coefficient,
v̄(p, :, :),

for p = −[Mx

2
] . . . [(Mx−1)

2
]

Dx = Mxhx, β =
(

4π2p2

D2
x

+ γ2
)

v̄(p, n, r) =
[
H−1
β,y,z (ḡ(p, :, :))

]
(n,r)

n = 0 . . .M0
y r = 0 . . .M0

z

(26)

8

H−1
β,y,z designates the solution of Helmholtz equation with “infinite” boundary

conditions in the (y,z)-directions,

d2v̄

dy2
+
d2v̄

dz2
− βv̄ = ḡ (27)

IfK = M0
xM

0
yM

0
z is the total number of points in Ω0 for the three dimensional domain, the

computational work is O[η2K log(η2K)]. Even though the domain is only expanded in one
direction, the extra factor of η arises from the use of an expanded domain procedure to solve
the required two-dimensional Helmholtz equations. However, the extra memory required
to obtain any of the two-dimensional solutions is O[η K

M0
z

log(η K
M0

z
)], and thus contributes

a negligible amount to the total memory requirements. The total memory requirements
therefore scale as O(ηK).

Unlike the the two-dimensional case, the accuracy of the solution of the required lower
dimensional Helmholtz equations will depend on the expansion factor used for it’s compu-
tation. For simplicity of implementation, we’ve chosen the expansion factor used for the
two-dimensional problem to be identical to that used for the three-dimensional problem. We
expect that further computational efficiency improvements could be made by altering this
choice for the Helmholtz problems for high wave numbers.

0.5 Computational Results

To enable the comparison of the recursive expanding domain procedure, with the expanding
domain procedure in [2], the test problem used was identical to that in [2]. This test problem
consists of determining the values of the solution to

∆u = f ~x ∈ RN (28)

in the region ~x ∈ Ω0 = [−L0, L0]N with L0 = 1 and N = 2, 3. The computational grid
used in Ω0 was taken to be a uniform grid with M panels in each direction. The function f
was chosen to be a linear combination of two mollifiers Bδ(r) as described in [1] with width
δ = 0.6, specifically

f(~x) = Bδ=.6 (~x− ~xA) +Bδ=.6 (~x− ~xB) (29)

where ~xA = (.11, .22, (.33)) and ~xB = (−.33,−.22,−(.11)). A mollifier exponent q = 9
was specified. This choice of exponent leads to a potential u that is 10 times continuously
differentiable. In the construction of the moment matching function f̃ of (3) required for
Step (i), the location and width of the mollifiers must be chosen. It is advantageous to
use mollifiers with as large a width as possible so f̃ and it’s transform can be accurately
represented with a coarse mesh. In all of the computational results, the moment matching
function was constructed using mollifiers and their derivatives centered at the origin and of
width δ = 0.9.

The discrete Fourier transform computations were carried out using FFTW3 routines [3]
[4]. A reduction by a factor of two in the computational work was obtained by exploiting
the fact that the procedure involves the transform of real data, and thus one need only solve
for the coefficients in (25) and (26) for non-positive induces and obtain the positive indexed
coefficients by conjugation.

9

(a) (b)

Figure 1: The behavior of the error in Ω0 = [−L,L]×[−L0, L0]N−1 as the domain is expanded

for different orders, m = 0, 1, 2, of the moment matching modification. A mesh width of
1

40
was used in each direction. (a) N= 2 (b) N = 3.

The first set of computational results concerns the behavior of the error in the potential
as the computational domain used, [−L,L]×[−L0, L0]N−1, is increased in size (e.g. as η = L

L0

is increased). In this computation, the number of panels M used in each direction of Ω0 was

fixed at 80, e.g. the mesh width was fixed at
1

40
. This mesh width was sufficiently small to

insure that the solution values were essentially converged with respect to mesh size. A value
of q = 7 was used as the mollifier exponent for the construction of the moment correction
function. In Figure 1 the relative errors in the potential evaluated in the maximum norm
are presented for values of η = 1 . . . 8 for two and three dimensional computations. The
results demonstrate a well defined rate of convergence, a rate that increases by one with
each increase in the maximal order of the moments used. In particular, the observed rate of
convergence approximately η−(m+2) in two dimensions and η−(m+3) in three dimensions.

In Figure 2, we show the computational time for the three dimensional test problem with
different mesh sizes as the domain is expanded. Second order moment matching, m = 2,
was used and the exponent of the mollifier used in the moment matching function was taken
to be q = 7. The results are given in units of CPU seconds (a) and in FFT units (b). The
CPU seconds are those of a desktop machine with an AMD FX-8120 eight-core processor
with multi-threading execution obtained using OpenMP. The FFT unit of time is the time
required for one forward and one inverse transform of the data values in Ω0. In these plots,
the CPU time for the method presented here and the expanding domain method of [2] (3D
FFT) are both given. The benefits of using the recursive procedure are quite clear — at the
finest resolution the computational time is reduced by almost three orders of magnitude.

10

(a) (b)

Figure 2: Three dimensional test problem computational time. Time in CPU seconds (a)
and Time in FFT units (b). Ω0 FFT Time is the time for one forward and one inverse
discrete Fourier Transform applied to the values in Ω0. Timing data for the procedure of [2]
is designated as 3D FFT.

The reduced memory requirements of the recursive expanding domain method are re-
vealed by the results given in Figure 3. In this figure we show the memory required as the
domain is expanded for different mesh widths for the three dimensional test problem. As
expected, there is linear growth in the memory required for the recursive method and cubic
growth in the memory required for the procedure in [2]. For modest extension factors, a
cubic growth rate of required memory may be acceptable, but as the domain is expanded
further, the memory requirements quickly become unacceptable and the use of a recursive
procedure becomes a necessity.

The last set of computational results concerns the behavior of the error in the potential
with respect to the use of a finite mesh size, e.g. the discretization error. In Figure 4 we
show the behavior of the errors in the potential of the three dimensional test problem with
respect to decreasing mesh size for several values of the mollifier exponent q. Second order
moment matching m = 2 and an expanded domain size corresponding to η = 6 were used.
For this value η, the finite domain size contribution to the total error is O(10−7), so that
over the range of mesh widths where the mesh width error dominates, the results clearly
indicate a rapid convergence with respect to mesh size. The rate of convergence increases
as the differentiability of the moment matching function increases. In fact for q = 9, the
rate is approximately O(h−12). For many problems, as well as the particular test problem
considered here, one finds little difference between the convergence for rates when q ≥ 7.

11

Figure 3: Three dimensional test problem
memory size. Data for the procedure of [2]
is designated as 3D FFT.

Figure 4: Maximal relative potential error
in Ω0 = [−1, 1]3 for different computational
mesh sizes h = 2

Ω0 Panel Count
and expansion

factor η = 6.

0.6 Conclusion

In the simple expanding domain procedure for computing approximate solutions of Laplace’s
equation in infinite domains, one computes the solution by modifying the right hand side to
have zero average value, solves a periodic problem on an extended computational domain,
and then adds to that solution a component to account for the modification of the right hand
side. The accuracy of the approximation is increased by both refining the computational
mesh and expanding the size of the computational domain. In [2], an improved version of
this simple procedure was presented that ostensibly consists of adding a specially constructed
modification function to the right hand side before one solved a periodic problem. In this
paper we present an alternate implementation of the procedure in [2] where the solution of
the infinite domain Laplace equation in RN is reduced to a collection of computational tasks
consisting of one dimensional discrete Fourier transforms and the solution of infinite domain
Helmholtz equations in RN−1. This fact is exploited recursively so that, for example, the
three dimensional problem is reduced to solving infinite domain two dimensional problems,
which in turn are solved using infinite domain one dimensional problems. The consequences
of using a recursive strategy is a computational cost that is O[ηK log(ηK)] in two dimensions
and O[η2K log(η2K)] in three dimensions where K is the total number of grid points and η is
the non-dimensional expansion factor used in the computation. Perhaps more importantly,
the memory requirements of the procedure are reduced to O[ηK] for both two and three
dimensional problems.

The method presented here shares the same convergence behavior with respect to exten-

12

sion factor and mesh size as that of [2]. Specifically, the use of the moment modification
function leads to high order rates of reduction of the finite domain size errors as the domain
size is increased. Our computational results demonstrate that if one uses a modification
function that matches the moments of the right hand side to second order the rate of con-
vergence with respect to domain size is O(η−4) for two dimensional problems and O(η−5)
for three dimensional problems where η is the non-dimensional expansion factor. The use of
highly differentiable moment matching functions leads to discretizations which do not ad-
versely effect the high order rates of convergence that are obtainable with spectral differential
operator approximations. The method presented here readily extends to the computation of
any derivatives of the solution.

Bibliography

[1] Christopher R. Anderson. Compact Polynomial Mollifiers For Poisson’s Equation. Tech-
nical Report CAM-14-43, Department of Mathematics, UCLA, Los Angeles, California,
May 2014.

[2] Christopher R. Anderson. High Order Expanding Domain Methods for the Solution of
Laplace’s Equation In Infinite Domains. Technical Report CAM-14-44, Department of
Mathematics, UCLA, Los Angeles, California, May 2014.

[3] Matteo Frigo and Steven G. Johnson. The Design and Implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[4] Matteo Frigo and Steven G. Johnson. FFTW 3.3.4. http://www.fftw.org/, 2014.

[5] R.A James. The solution of poisson’s equation for isolated source distributions. Journal
of Computational Physics, 25(2):71–93, 1977.

13

