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Abstract Segmenting images with occluded and missing intensity information is
still a difficult task. Intensity based segmentation approaches often lead to wrong
results. High vision prior information such as prior shape has been proven to be ef-
fective in solving this problem. Most existing shape prior approaches assume known
prior shape and segmentation results rely on the selection of prior shape. In this pa-
per, we study how to do simultaneous automatic prior shape selection and segmen-
tation in a variational scheme.

1 Introduction

Image segmentation has many important applications in object recognition, machine
learning, medical imaging, etc. In medical imaging for instance, segmentation of
anatomical structures is used to help in diagnosis, surgical planning and evaluation.
Intensity based image segmentation methods can be classified into region based,
edge-based and a combination of these two. Using image intensity information alone
however may not lead to desired results when the image to be segmented has sig-
nificant signal loss, poor image contrast and missing boundaries. Prior shape based
approaches are more effective in these cases. Most existing shape based approaches
assume the shape prior is given and a misleading prior shape might lead to wrong
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segmentation. We use sparse optimization to automatically select prior shapes from
a shape library and simultaneously segment images. The proposed variational ap-
proach is able to automatically and adaptively select prior shape which in turn guides
segmentation. It is especially beneficial when there are objects with multiple shapes
to segment.

The rest of the paper is organized as follows: Section 2 introduces the proposed
model. Numerical results are presented in Section 3. Conclusion is drawn in Section
4.

2 Model Description

In this section, we start by reviewing the Ambrosio-Tortorelli approximation of the
Mumford-Shah model, then we describe how to apply it to form the shape library.
Lastly, we present the proposed segmentation model.

2.1 Ambrosio-Tortorelli Approximation of Mumford-Shah
Segmentation Functional

Given an image g(x) defined on an open and bounded set Ω ⊂ R2 satisfying
g ∈ L∞(Ω), Mumford and Shah [1] proposed the following functional for image
segmentation

FMS(u,S) =
∫

Ω/S

(
α|∇u|2 +β |u−g|2

)
dx+H1(Ω).

whereH1 is the Hausdorff 1-dimensional measure in R2, i.e.,

H1(S)= sup
δ>0

H1
δ
(S)= lim

δ→0
H1

δ
(S)= liminf

δ→0

{
∞

∑
i=1

(diam(Ui))
d :

∞⋃
i=1

Ui ⊇ S,diam(Ui)< δ

}
.

The functional is optimized in a weak sense and can be approximated by [2]

GAT
ρ (u,v) =

∫
Ω

[
ρ|∇v|2 +αv2|∇u|2 + (v−1)2

4ρ
+β |u−g|2

]
dx.

Then the image segmentation is to find a piecewise C1 function u(x) and a function
v(x), such that v(x)→ 1 as ρ → 0 in the L2(Ω)-topology, i.e.,

lim
δ→0

∫
Ω

|v−1|2dx = 0.
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Neither Mumford-Shah model nor its Ambrosio-Tortorelli approximation can
work well for images with missing or occluded edge information. Shape prior is
required in this case to obtain a complete segmentation. We use sparse optimization
to search for prior shapes adapt to images automatically.

2.2 Shape Descriptor Library

Fig. 1 Examples of silhouette images (top row) and their edge strength functions (bottom row).

We start by reviewing edge strength functions presented in [3] to form a library.
Then we will describe how to use these functions to form our shape libraries. These
edge strength functions have distance function look and provide richer information
than the binary silhouette images (see Fig. 1). For notational simplicity, we use the
same notation to interchangeably represent a matrix and its vectorized version. For
the rest of the paper, we consider discrete models. For instance,∫

Ω

(
ρ|∇v|2 + (v−1)2

4ρ

)
dx (1)

is discretized as ρ‖∇v‖2
2 +

‖v−1‖22
4ρ

.
For each binary image, we compute its edge strength function based on the fol-

lowing diffusion model with Dirichlet boundary condition

vi = argmin
v

ρ‖∇v‖2
2 +
‖v−1‖2

2
4ρ

, v = 0 on the boundary of the ith binary image.

(2)
Given a library
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A =

 | | |
v1 v2 · · · vN
| | |

 ,
our goal is to learn a prior shape v such that

v = As+w+ e =
N

∑
i=1

sivi +w+ e,

where w is discrepancy and e is random Gaussian noise. Considering the sparsity of
s and edge-like characteristic of w, we propose the following model:

min
s,w
‖∇w‖1 +β ‖s‖0 subject to ‖As+w− v‖2 ≤ ε,

where α,β > 0 are parameters, and ε is the standard deviation of the error. By
converting into the unconstrained minimization problem, the above model reads as

min
s,d

1
2
‖As+w− v‖2

2 +α‖∇w‖1 +β ‖s‖0 .

Since the `0 problem is NP-hard, we make a relaxation and solve the following `1
problem

min
s,d

1
2
‖As+w− v‖2

2 +α ‖∇w‖1 +β ‖s‖1 .

The reason that we use the edge strength function for shape rather than any other
informative indicator function (e.g., signed distance function ) is that it has a natural
connection to the segmentation problem via Mumford and Shah. Note that the edge
strength function is nothing but the minimizer of (1). In the previous section we
have explained that the edge strength function approaches to the edge indicator in
the L2(Ω)-topology as ρ → 0. Interestingly, as we increase ρ , edge localization
weakens and v begins to act as a morphology coder: 1) v value at a domain point
is a monotonically decaying function of the distance from the point to the domain
boundary (the edge set); 2) the level curves of v are curvature dependent erosions of
the domain boundary [3]. Thus, in our model, unlike many other shape prior based
segmentation models, we do not distinguish inside and outside in the intermediate
steps.

2.3 Proposed Segmentation Model

Given a reference image g(x), we propose the following segmentation model:

min
u,v,s,d,h

1
2
‖u−g‖2

2 +
α

2
‖v ·∇u‖2

2 +
ρ

2
‖∇v‖2

2 +
‖v−1‖2

2
8ρ

+β ‖∇w‖1 + τ ‖s‖1 +W (h)

subject to As+w = v(h).
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where · represents point-wise product, W (h) is a regularization term with respect
to h. Note that to make variables consistent in the above model ‖∇u‖2

2 and ‖∇v‖2
2

are the discretized versions of
∫

Ω
|∇u|2dx and

∫
Ω
|∇v|2dx. Typically W (h) is set as

‖∇h‖2
2.

The associated Lagrangian function is

L(u,h,v,s,w, t) =
1
2
‖u−g‖2

2 +
α

2
‖v ·∇u‖2

2 +
ρ

2
‖∇v‖2

2 +
‖v−1‖2

2
8ρ

+β ‖∇w‖1 + τ ‖s‖1 +W (h)+
γ

2
‖As+w− v(h)− t‖2

2

where t is the scaled Lagrange multiplier and γ is a positive parameter. Since v and h
are related and inseparable, we cannot directly apply the ADMM to solve the above
model. As such, we consider the following modified ADMM with approximate sub-
problems:

uk+1 = argmin
u

1
2
‖u−g‖2

2 +
α

2

∥∥∥vk ·∇u
∥∥∥2

2
,

vk+1 = argmin
v

α

2

∥∥∥v ·∇uk+1
∥∥∥2

2
+

ρ

2
‖∇v‖2

2 +
‖v−1‖2

2
8ρ

+
γ

2

∥∥∥Ask +wk− v(hk)− tk
∥∥∥2

2

hk+1 = argmin
h

γ

2

∥∥∥Ask +wk− vk+1(h)− tk
∥∥∥2

2
+W (h)

sk+1 = argmin
s

τ ‖s‖1 +
γ

2

∥∥∥As+wk− vk+1(hk+1)− tk
∥∥∥2

2

wk+1 = argmin
d

β ‖∇w‖1 +
γ

2

∥∥∥Ask+1 +w− vk+1(hk+1)− tk
∥∥∥2

2

tk+1 = tk + γ(vk+1(hk+1)− (Ask+1 +wk+1))
(3)

The u-subproblem can be solved by applying the negative gradient flow

du
dt

=−2(u−g)+α div
(
(vk)2

∇u
)
. (4)

Likewise, the v-subproblem can be solved iteratively. The h-subproblem turns out
to be a registration problem. Moreover, the s-subproblem and the w-subproblem are
Lasso problems which can be directly solved by applying ADMM [4, 5].

3 Experiments

In this section, we show two numerical experiments to validate our proposed
method. By the assumption that the desired edge strength function v is a linear
combination of atoms in the library A, the atoms have to be linearly independent
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which ensures the unique representation of v in the column space of A. In addition,
to avoid the interruptions of background during the learning process, we also restrict
the data fidelity term in the s-subproblem to the union of shape interiors associated
with atoms, which can be done by introducing the corresponding mask. In all our
experiments, the library consists of 5 independent atoms which are generated by
applying the model (2) to 5 binary shapes (see Fig. 2). The parameters for both
experiments are set as ρ = 8, α = γ = 1, and β = 10−2.

Fig. 2 Atoms in the library used in the experiments

At the first experiment, we test an image where a star is partially occluded by the
background rectangles. After running 13 iterations, the desired atom corresponding
to the star shape is learned from the library. The input image, the obtained edge
strength function v and the extracted boundary by thresholding v with 0.015 re-
spectively are shown in Fig. 3. This example shows that the proposed algorithm
is able to find a matching shape from the library. At the second experiment, we
test an image where a star with missing parts is contaminated by uniformly dis-
tributed Gaussian noise with zero mean and standard deviation σ = 0.8. After 60
iterations, the desired edge strength function v is obtained with noise reduction. The
extracted boundary by thresholding v with 0.04 is shown in Fig. 4. One can see that
the proposed method has a potential to supplement the insufficiency of input data by
learning a prior shape from the library. The resultant edge strength images can be
further processed to obtain sharp boundaries of the objects by thresholding or other
more sophisticated algorithms.

Fig. 3 From left to right: the input image which has a star occluded partially by the background,
the output edge strength function v, and the extracted boundary.
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Fig. 4 From left to right: the input image which has a star in a noisy background with missing
parts, the output edge strength function v, and the extracted boundary.

4 Conclusion

Shape prior plays an important role in segmenting images with occlusive and miss-
ing information. In this paper, we used edge strength functions as atoms of a library
and applied sparse optimization methods to automatically and adaptively search for
a shape prior from the library to guide segmentation in a variational scheme. Numer-
ical experiments show that the proposed approach has some potentials in segmenting
images with missing information, random noise and structure noise.
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