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Abstract. We consider the solutions to a modification of the Courant’s minimax characteriza-
tion of the Dirichlet eigenfunctions of second order linear symmetric elliptic operators in a bounded
domain Ω in Rd. In particular, we perturb the objective functional by an arbitrary bounded penalty
term. Without perturbation, it is well-known that Courant minimax principle yields the eigenfunc-
tions, which form an orthonormal basis for L2(Ω). We prove that the solutions of the perturbed
problem still form an orthonormal basis in the case of d = 1, and d = 2, provided that the per-
turbation is sufficiently small in the latter case. As an application, we prove completeness results
for compressed plane waves and compressed modes, which are the solutions to analogous variational
problems with perturbations being an L1-regularization term. The completeness theory for these
functions sets a foundation for finding a computationally efficient basis for the representation of the
solution of differential equations.
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1. Introduction. For a second-order symmetric elliptic operator L on a bounded
domain Ω ⊂ Rd, consider the following Dirichlet eigenvalue problem

Lu = λu in Ω,

u = 0 on ∂Ω.

The spectral theorem for the second-order elliptic operators asserts that the
Dirichet eigenfunctions of L forms an orthonormal basis for L2(Ω). Furthermore,
the eigenvalues and eigenfunctions can be characterized via a hierarchical variational
procedure involving the minimization of the functional B[u, u] = 〈Lu, u〉L2 , known as
Courant variational method (see e.g. [6, 8]).

In this paper, we consider the Courant variational problem under a non-negative
perturbation, and prove for it an analogue of the spectral theorem. We treat this
problem in a general Hilbert space setting, where we consider an arbitrary self-adjoint
operator T whose inverse is compact. Namely, we rather minimize the functional

J (u) := P (u) + 〈Tu, u〉,

in the domain of definition for T , where P is a non-negative penalty term. We verify
that the spectral theorem still holds, as long as the eigenvalues of the original problem
grow sufficiently fast. In particular, the growth condition holds when T is the the weak
realization of an elliptic operator on a bounded domain Ω lying inside R, or R2.

As an application, we consider the spatially localized (“sparse”) modes introduced
in [9, 10]. In [5, 7], it was proven that perturbing the variational quantity of certain
elliptic and parabolic PDEs would result in compact support. In [9, 10], the authors
consider variational problems corresponding to Schrödinger’s equation, or Laplace’s
equation, whose functional is modified by an L1 regularization term. Namely, their
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construction involves the minimization of the functional

J (u) :=
1

µ
||u||1 + 〈Lu, u〉L2 ,

where L = − 1
2∆, or L = − 1

2∆ + V (x). By minimizing the above functional subject
to the orthogonality constraint, so-called “compressed modes” are obtained by the
authors in [9]. In a different formulation, where shift-orthogonality is imposed in
addition to orthogonality, the minimizers are called the “compressed plane waves”
[10]. Numerical experiments suggest that the regularization parameter µ for the L1

term is used to balance between the consistency with the original problem and the
sparsity of the solution. The consistency and the sparsity of compressed modes as µ
varies have been verified in [1, 2, 3].

Our results yield a further consistency results for compressed modes and com-
pressed plane waves, as we conclude that the analogous spectral properties are pre-
served under perturbation. Such “completeness” conjectures are proposed in [9, 10].
In [9], the authors predicted that the compressed modes approximate the true eigen-
states with high precision, whereas in [10], they conjectured that the compressed plane
waves form a basis in L2(Ω), where Ω is some bounded rectangular domain in Rd. We
will provide an affirmative answer to these conjectures in dimensions one and two,
and propose Conjecture 1, which is phrased in a general Hilbert space setting. We
note that this conjecture implies the above mentioned conjectures.

This paper is organized as follows. In Section 2, we study the theory of complete-
ness for the solutions of perturbed Courant-Fisher variational problem for arbitrary
linear operators defined on a Hilbert space. We prove the completeness in Theo-
rems 2.8 and 2.9 under linear and super-linear growth conditions on the eigenvalues
of the original operator. Without the completeness, we still have Theorem 2.10, which
yields an estimation of the deviation from the true solutions. Lemma 2.6 is the essen-
tial tool in the proof of these results. In the Sections 3, and 4, we apply the theory
developed in Section 2 to the second-order linear symmetric elliptic operators.

2. Perturbed variational problems associated to linear operators. The
proof of the spectral theorem for elliptic operators relies on the fact that the “inverse”
of the elliptic differential operator is compact, hence the following spectral theorem
for symmetric compact operators holds:

Theorem 2.1 (Spectral Theorem for Compact Operators). Let H be a Hilbert
space, and K : H → H be a symmetric compact operator. Then,

1. K has real eigenvalues νk, and νk → 0 as k →∞,
2. The (normalized) eigenvectors {φk}∞k=1, with Kφk = νkφk, form a complete

orthonormal system in H.
As a consequence of this version of the spectral theorem, the inverse T , of a

positive compact operator K satisfies the following spectral theorem:
Theorem 2.2 (Spectral Theorem for Inverse-Compact Operators). Let H be

a Hilbert space, and K : H → H be a bijective symmetric compact operator. Then,
T = K−1 satisfies the following properties:

1. T has real eigenvalues λk, with {λk}∞k=1 in increasing order, and λk → +∞
as k →∞,

2. The (normalized) eigenvectors {φk}∞k=1, with Tφk = λkφk, form a complete
orthonormal system.

Remark 2.3. Notice that the operator T defined in Theorem 2.2 is unbounded,
hence T must have a domain of definition, D(T ), for which it is self-adjoint. We
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consider the following natural choice of the domain of definition,

D(T ) = {α =
∑
n∈N

α̂nφn ∈ H|
∑
n∈N

λnα̂nφn ∈ H, or equivalently,
∑
n∈N

λ2
n|α̂n|2 <∞},

in which there will be no ambiguity of the definition of T .
We will now work with the operators T that can be represented as the inverse of

some bijective symmetric compact operator. The eigenvalues and eigenvectors of T
can be characterized via the following Courant-Fisher variational formulae (see e.g.
[6]):

λ1 = min
u∈D(T )
||u||=1

〈Tu, u〉,

φ1 = argmin
u∈D(T )
||u||=1

〈Tu, u〉,

λk = min
u∈D(T )

u∈{φ1,...,φk−1}⊥
||u||=1

〈Tu, u〉,

φk = argmin
u∈D(T )

u∈{φ1,...,φk−1}⊥
||u||=1

〈Tu, u〉.

We consider a similar variational problem, where we perturb the objective functional
〈Tu, u〉. Strictly speaking, we define

J [u] = 〈Tu, u〉+ P (u),

where P : H → R is a non-negative penalty term. We view the term J [u] as the
“energy” of the element u, and run a progressive energy-minimization procedure as
in the Courant-Fisher formulae. In other words, we define

ζ1 = argmin
u∈D(T )
||u||=1

J [u],

(2.1)
ζk = argmin

u∈D(T )

u∈{ζ1,...,ζk−1}⊥
||u||=1

J [u].

In case of a non-uniqueness in the minimization above, we define ζk to be one of
the solutions to the corresponding minimization problem. To ensure the existence
of ζk’s, we impose that P is bounded and lower semi-continuous with respect to the
norm-convergence, in the sense that

P (u) ≤ C||u||,
(2.2)

||un − u|| → 0 =⇒ P (u)≤ lim inf P (un).

The smallest constant C satisfying the boundedness of P is the functional norm of P ,
and is denoted by ||P ||.
We require that the eigenvectors of T , i.e. {φn}n∈N, form a complete orthonormal
system in H. We conjecture that as long as the perturbation satisfies the existence
criteria (2.2), such a spectral result still holds:
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Conjecture 1. The set {ζn}n∈N obtained via the variational procedure (2.1)
forms a complete orthonormal system in H.

This section mainly focuses on verifying this conjecture under certain growth
assumptions on the eigenvalues λn. In order to verify this conjecture, one needs to
show that

(2.3) φk ∈ span{ζn}n∈N ∀k ∈ N,

where spanE denotes the space consisting of the finite linear combinations of the
elements in E. The following Hilbert theoretic result quantifies the relation (2.3):

Lemma 2.4. Let {en}n∈N be a maximal orthonormal system in a Hilbert space
H. Let {fn}n∈N be some orthonormal system in H. Assume that each fn has the
expansion

fn =
∑
k∈N

an,kek, an,k ∈ C.

Then, for each k ∈ N,

d(ek, span{fn})2 = 1−
∑
n∈N
|an,k|2,

where d(e,M) denotes the distance between some e ∈ H, and some linear subspace M
of H.
Proof: Let w be the projection of ek onto span{fn}n∈N. Then, since {fn}n∈N is an
orthonormal system, w is given by

w =
∑
n∈N
〈ek, fn〉fn

=
∑
n∈N
〈ek,

∑
j

an,jej〉fn

=
∑
n∈N

an,kfn.

Hence, we can compute the size of w:

(2.4) ||w||2 =
∑
n∈N
|an,k|2.

Note by the property of the projection that ek−w ⊥ w, therefore, by the Pythagorean
identity, we have

(2.5) ||ek||2 = ||ek − w||2 + ||w||2.

Notice also that w, being the projection of ek onto span{fn}n∈N, is the closest point
to ek inside span{fn}n∈N, so that

(2.6) d(ek, span{fn})2 = ||ek − w||2.

Combining (2.4)-(2.6), we get

d(ek, span{fn})2 = ||ek||2 − ||w||2 = 1−
∑
n∈N
|an,k|2,
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as desired.

Corollary 2.5. Let {en}n∈N, {fn}n∈N, an,k be as in Lemma 2.4. Then, for
each k ∈ N,

(2.7)
∑
n∈N
|an,k|2 ≤ 1,

and

ek ∈ span{fn} ⇐⇒
∑
n∈N
|an,k|2 = 1.

The following lemma yields an estimate for the elements that are lying inside the
orthogonal complement of any arbitrary orthonormal system, in terms of the deviation
of their functional values from the sum of the eigenvalues corresponding to the true
eigenstates. We denote the deviation of the first N elements by F (N).

Lemma 2.6. Let φn be the eigenvectors of the operator T , with the corresponding
eigenvalues {λn}n∈N being in increasing order. Let {en}n∈N be an orthonormal system
satisfying

(2.8)

N∑
n=1

〈Ten, en〉 ≤ F (N) +

N∑
n=1

λn ∀N ∈ N.

Suppose that there exists f ∈ {en}⊥n∈N, ||f || = 1, with the expansion

f =
∑
n∈N

fnφn, fn ∈ C.

Then, we have

(2.9)

N∑
n=1

|fn|2(λN+1 − λn) ≤ F (N), ∀N ∈ N.

Proof: Let the {an,k}n,k∈N denote the coefficients when en expanded in the basis
{φk}k∈N, i.e.

en =
∑
k∈N

an,kφk.

Applying the result (2.7) of Lemma 2.4 to the orthonormal systems {en}n∈N ∪ {f},
and {φn}n∈N, for each k ∈ N, we get

(2.10)
∑
n∈N
|an,k|2 ≤ 1− |fk|2.

By the bilinearity of the inner product,

〈Ten, en〉 =

∞∑
k=1

|an,k|2λk.
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Hence,

(2.11)

N∑
n=1

〈Ten, en〉 =

∞∑
k=1

(
N∑
n=1

|an,k|2
)
λk.

Since en’s have norm 1, in the expression (2.11), the coefficients of λk summed over
k equals N . Given that the λk’s are in the increasing order, the expression (2.11)
is minimized when the coefficients of λk are maximized for small k. Having the
constraint (2.10), we get

N∑
n=1

〈Ten, en〉 =

∞∑
k=1

(
N∑
n=1

|an,k|2
)
λk ≥

N∑
k=1

(
1− |fk|2

)
λk + λN+1

N∑
k=1

|fk|2.

Combining this, with the inequality (2.8) we get

N∑
n=1

λn + F (N) ≥
N∑
n=1

〈Ten, en〉 ≥
N∑
n=1

(
1− |fn|2

)
λn + λN+1

N∑
n=1

|fn|2,

which implies

N∑
n=1

|fn|2(λN+1 − λn) ≤ F (N),

as desired.
Lemma 2.6 will be essential for proving the completeness result. The estimate (2.9)

provides us an understanding of the elements lying inside the orthogonal complement
in terms of F (N), and the eigenvalues of T . If the estimate (2.9) is incompatible with
the growth of eigenvalues, then we deduce that the orthogonal complement is empty,
and hence the orthonormal system is maximal.
The next lemma provides an estimate for the deviation of the functional values of
ζn, from the eigenvalues corresponding to the true eigenstates, so that Lemma 2.6 is
applicable.

Lemma 2.7. Let {ζn}n∈N be the solutions to the variational procedure (2.1). Let
{λn}n∈N be the eigenvalues of T , in increasing order. Then,

J [ζn] ≤ λn + ||P ||.

In particular, we have

(2.12)

N∑
n=1

〈Tζn, ζn〉 ≤
N∑
n=1

J [ζn] ≤
N∑
n=1

λn + ||P ||N.

Proof: Let {an,k}n,k∈N denote the coefficients when ζn expanded in the basis
{φk}k∈N:

ζn =
∑
k∈N

an,kφk.

Let n ∈ N be fixed. For integers j with 1 ≤ j ≤ n− 1, define

ηj =

n∑
k=1

aj,kφk.
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Clearly, {η1, η2, . . . , ηn−1} ⊂ span{φ1, φ2, . . . , φn}. Furthermore,

dim span{φ1, φ2, . . . , φn} = n,

i.e. the space span{φ1, φ2, . . . , φn} has dimension larger than the cardinality of
{η1, η2, . . . , ηn−1}, so that we can find η ∈ span{φ1, φ2, . . . , φn}, η 6= 0, such that

η ⊥ ηj , ∀j : 1 ≤ j ≤ n− 1.

Now, since ηj ’s and η lie inside span{φ1, φ2, . . . , φn}, we get

〈η, ζj〉 = 〈η, ηj〉 = 0, ∀j : 1 ≤ j ≤ n− 1,

so that

η ⊥ ζj , ∀j : 1 ≤ j ≤ n− 1.

By rescaling, we may assume ||η|| = 1, so that η lies precisely in the class of functions
where we look for a minimizer to determine ζn. The function η is a sub-solution to
the variational problem (2.1) at the nth step, hence

(2.13) J [ζn] ≤ J [η] = 〈Tη, η〉+ P (η).

Note first by the boundedness of P that

(2.14) P (η) ≤ ||P || ||η|| = ||P ||.

Suppose η has the expansion

η =

n∑
k=1

bkφk.

Since, ||η|| = 1, we have
∑n
k=1 |bk|2 = 1. Furthermore, by the bilinearity of the inner

product,

〈Tη, η〉 =

n∑
k=1

|bk|2λk.

We also have that λk’s are in increasing order, so that

(2.15) 〈Tη, η〉 =
n∑
k=1

|bk|2λk ≤ λn
n∑
k=1

|bk|2 = λn.

Combining (2.13)-(2.15), we obtain

(2.16) J [ζn] ≤ λn + ||P ||.

Summing up the inequality (2.16) for n = 1, 2, . . . , N , and combining with the non-
negativity of P , we verify (2.12).

The following theorem provides the completeness of the orthonormal system
{ζn}n∈N, provided the eigenvalues satisfy the super-linear growth:

Theorem 2.8. Suppose the eigenvalues of T satisfy

(2.17) lim
n→∞

λn
n

=∞.



8

Then, {ζn}n∈N, which is defined by the variational procedure (2.1), forms a complete
orthonormal system in H.
Proof: Lemma 2.7 implies

N∑
n=1

〈Tζn, ζn〉 ≤
N∑
n=1

λn + ||P ||N,

so that Lemma 2.6 is applicable to the orthonormal system {ζn}n∈N with the function
F (N) = ||P ||N . That is, assuming the existence of an f ∈ {ζn}⊥n∈N, ||f || = 1 with
the expansion

f =
∑

fnφn, fn ∈ C,

we obtain the estimate

(2.18)
N∑
n=1

|fn|2(λN+1 − λn) ≤ ||P ||N, ∀N ∈ N.

This last inequality implies (assuming fn 6= 0)

λN+1 − λn ≤
||P ||N
|fn|2

, ∀N ∈ N,

which yields a contradiction by violating the growth condition (2.17) on λN+1, as we
pass to limit as N → ∞. Therefore, there is no non-zero function f ∈ {ζn}⊥n∈N, so
that the orthonormal system {ζn}n∈N is complete, as desired.

By trading the magnitude of the penalty term with the growth of λn, we can
generalize the Theorem 2.8 so that it holds under a weaker growth condition on λn:

Theorem 2.9. Suppose that the eigenvalues λn grows linearly in the sense that
they satisfy

(2.19) λn = Mn+ o(n), as n→∞

for some constant M . Suppose also that the penalty term P satisfies the following
bound

(2.20) ||P || < M.

Then, {ζn}n∈N forms a complete orthonormal system in H.
Proof: Proceeding similarly as in the proof of Theorem 2.8, we get the inequal-
ity (2.18), namely that if f is a function with unit norm, lying in the orthogonal
complement of {ζn}n∈N, then we have

(2.21)

N∑
n=1

|fn|2(λN+1 − λn) ≤ ||P ||N, ∀N ∈ N.

Now, for m < N , by the monotonicity of λk, we can lower-bound the LHS of (2.21)
by

(λN+1 − λm)

m∑
n=1

|fn|2,
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so that

(2.22)
λN+1 − λm

N

m∑
n=1

|fn|2 ≤ ||P ||, ∀N ∈ N, ∀m : 0 < m < N.

Taking limit in (2.22) as N → ∞, with the aid of the growth condition (2.19), we
obtain

M

m∑
n=1

|fn|2 ≤ ||P ||, ∀m ∈ N.

Now, taking limit as m→∞, and keeping in mind that ||f || = 1, we obtain

M ≤ ||P ||,

contradicting (2.20).
The following theorem establishes how close the functions ζn approximate the

subspaces generated by the first few eigenvectors of the operator T :
Theorem 2.10. Let Vm be the subspace generated by the functions {ζ1, ζ2, . . . , ζm}.

Then, for any n ≤ m, we have

n∑
k=1

d(φk, Vm)2 ≤ m||P ||
λm+1 − λn

,

provided λm+1 6= λn.
Proof: Recall from Lemma 2.7 that

(2.23)

m∑
j=1

〈Tζj , ζj〉 ≤
m∑
j=1

J [ζj ] ≤ m||P ||+
m∑
j=1

λj .

Recall by the bilinearity of the inner product that

(2.24) 〈Tζj , ζj〉 =

∞∑
k=1

|aj,k|2λk.

Combining (2.24) and (2.23), yields that

(2.25)

m∑
j=1

∞∑
k=1

|aj,k|2λk ≤ m||P ||+
m∑
j=1

λj .

Rearranging (2.25), we obtain

∞∑
k=m+1

m∑
j=1

|aj,k|2λk −
m∑
k=1

1−
m∑
j=1

|aj,k|2
λk ≤ m||P ||.

Lower-bounding the terms λk with k > m, by λm+1 in the last expression, we obtain

(2.26) λm+1

∞∑
k=m+1

m∑
j=1

|aj,k|2 −
m∑
k=1

1−
m∑
j=1

|aj,k|2
λk ≤ m||P ||.
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Since
∑∞
k=1 |aj,k|2 = 1 for j = 1, 2, . . . ,m, we conclude that

∞∑
k=m+1

m∑
j=1

|aj,k|2 =

m∑
k=1

1−
m∑
j=1

|aj,k|2
 .

Substituting this into the inequality (2.26), and rearranging further we obtain

(2.27)

m∑
k=1

1−
m∑
j=1

|aj,k|2
 (λm+1 − λk) ≤ m||P ||.

Notice by Lemma 2.4 that the coefficient in front of λm+1 − λk in (2.27) is equal to
d(φk, Vm)2, so that (2.27) becomes

m∑
k=1

d(φk, Vm)2(λm+1 − λk) ≤ m||P ||.

Exploiting the monotonicity of λk once more, we obtain

n∑
k=1

d(φk, Vm)2(λm+1 − λn) ≤
m∑
k=1

d(φk, Vm)2(λm+1 − λk) ≤ m||P ||,

implying

n∑
k=1

d(φk, Vm)2 ≤ m||P ||
λm+1 − λn

,

as desired.

3. Perturbed variational problems associated to elliptic operators. The
results of Section 2 can now be applied to second-order linear symmetric elliptic
operators. Let L be a second-order linear symmetric elliptic operator defined on a
bounded domain Ω in Rd. For simplicity we will consider elliptic operators with
principal parts −∆, i.e.

Lu = −∆u+~b · ∇u+ cu,

where ~b : Ω→ Rd, c : Ω→ R, are bounded measurable functions.
As we noted in the beginning of Section 2, according to the spectral theorem for
second-order linear symmetric elliptic operators, L satisfies the following properties:

1. L has real (Dirichlet) eigenvalues, λk, with {λk}∞k=1 in increasing order, and
λk → +∞ as k →∞,

2. The (normalized) eigenfunctions {φk}∞k=1, with Lφk = λkφk, form a complete
orthonormal system in L2(Ω).
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Furthermore, the Courant-Fisher principle applies to L, so that the eigenvalues
and eigenfunctions of L is found by the following variational formulae:

λ1 = min
u∈H1

0 (Ω)
||u||2=1

B[u, u],

φ1 = argmin
u∈H1

0 (Ω)
||u||2=1

B[u, u],

λk = min
u∈H1

0 (Ω)

u∈{φ1,...,φk−1}⊥
||u||2=1

B[u, u],

φk = argmin
u∈H1

0 (Ω)

u∈{φ1,...,φk−1}⊥
||u||2=1

B[u, u],

where

B[u, v] = 〈Lu, v〉 =

∫
Ω

∇u · ∇v + (~b · ∇u)v + cuv dx

is the bilinear form associated to L.
We proceed similarly as in Section 2, where we perturb the functional B[u, u]. This
time, we restrict ourselves to the penalty terms given by a constant multiple of the
L1 norm. Namely, we consider the energy functional

Jµ[u] = B[u, u] +
1

µ
||u||L1 ,

and analogously define the functions {ψk}k∈N via

ψ1 = argmin
u∈H1

0 (Ω)
||u||2=1

Jµ[u],

(3.1)
ψk = argmin

u∈H1
0 (Ω)

u∈{ψ1,...,ψk−1}⊥
||u||2=1

Jµ[u].

We call these functions {ψk}k∈N “compressed modes of type two” by analogy to the
“compressed modes” defined in [9]. The following lemma establishes the existence
of {ψk}k∈N by verifying the existence criteria (2.2) for the L1 penalty term in the
definition of Jµ:

Lemma 3.1. Let P : L2(Ω)→ R be defined by P (u) = 1
µ ||u||L1 . Then, P satisfies

the criteria (2.2). Furthermore,

||P || = |Ω|
1
2

µ
.

Proof: By Cauchy-Schwarz inequality,

1

µ
||u||L1 ≤ 1

µ
||u||L2 ||1Ω||L2 =

|Ω| 12
µ
||u||L2 ,(3.2)
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with equality when u is a non-zero constant function. Therefore, P is bounded with

functional norm |Ω|
1
2

µ .

As for the lower semi-continuity, consider a sequence un ∈ L2(Ω) converging to some
u ∈ L2(Ω) in L2. The inequality 3.2 implies that un converges to u also in L1, so that
P (u) = limP (un), as desired.

Now, the Theorems 2.8, 2.9, 2.10, can be derived for {ψk}k∈N. Theorems 2.8, and
2.9 holds true when the eigenvalues grow super-linearly, and linearly, respectively.
Weyl’s law yields the exact asymptotic behavior of the eigenvalues of a second-order
linear symmetric elliptic operator:

Theorem 3.2 (Weyl’s Law (see e.g. [8])). Let L be a second-order linear elliptic
operator on a bounded domain Ω ⊂ Rd, of the form

Lu = −∆u+~b · ∇u+ cu,

where ~b : Ω → Rd, c : Ω → R, are bounded measurable functions. Let {λn}n∈N be the
eigenvalues of L, in increasing order. Then,

λn =
(2π)d

ωd|Ω|
n2/d + o(n2/d), as n→∞,

where ωd denotes the volume of the unit ball in Rd.
Therefore, we can deduce from the Weyl’s law that super-linear and linear growth

conditions on eigenvalues holds true precisely in dimensions 1, and 2, so that we have
the following corollaries as direct consequences of the Theorems 2.8, 2.9, 2.10:

Corollary 3.3 (Corollary to Theorem 2.8). Let L be a second-order linear
symmetric elliptic operator defined on a bounded domain Ω ⊂ R. Then, {ψn}n∈N,
which is defined by the variational procedure (3.1), forms a complete orthonormal
system in L2(Ω).

Corollary 3.4 (Corollary to Theorem 2.9). Let L be a second-order linear
symmetric elliptic operator defined on a bounded domain Ω ⊂ R2. Suppose also that
the penalty parameter µ satisfies the following bound

µ >
1

4π|Ω| 32
.

Then, {ψn}n∈N, which is defined by the variational procedure (3.1), forms a complete
orthonormal system in L2(Ω).

Corollary 3.5 (Corollary to Theorem 2.10). Let {φk}k∈N be the (Dirichlet)
eigenfunctions of a second-order linear symmetric elliptic operator L, defined on a
bounded domain Ω ⊂ R. Let {λk}k∈N be the associated eigenvalues. Let {ψn}n∈N
be the functions defined by the variational procedure (3.1), and Vm be the subspace
generated by the functions {ψ1, ψ2, . . . , ψm}. Then, for any n ≤ m, we have

n∑
k=1

d(φk, Vm)2 ≤ m|Ω| 12
µ(λm+1 − λn)

,

provided λm+1 6= λn.
The following theorem establishes that the elements that lie in the orthogonal

complement of {ψn}n∈N cannot lie inside the space H1
0 (Ω). In other words, the

orthogonal complement consists of highly irregular functions:
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Theorem 3.6. Let {ψn}n∈N be the solutions to the variational procedure (2.1).
Then,

{ψn}⊥ ∩H1
0 (Ω) = {0}.

Proof: Assume to the contrary that there is a non-zero f ∈ {ψn}⊥ ∩ H1
0 (Ω). We

may normalize f such that ||f ||2 = 1. Since f ∈ {ψ1, . . . , ψn−1}⊥ for all n, f is in the
class of functions where we look for a minimizer to obtain ψn, hence is a subsolution
to the variational problem (2.1) at nth step. As ψn is the actual solution to the
corresponding minimization problem, we have

(3.3) Jµ[ψn] ≤ Jµ[f ].

We now prove that

(3.4) lim
n→∞

Jµ[ψn] =∞,

which together with (3.3) implies

(3.5) Jµ[f ] =∞.

Recall that

(3.6)

N∑
n=1

B[ψn, ψn] =

∞∑
k=1

(
N∑
n=1

|an,k|2
)
λk,

where the coefficients in front of λk have magnitude less than or equal to 1 for each
k, and their sum over k is N . Since λk’s are in increasing order, the expression (3.6)
is minimized when the coefficients of λk are maximized for small k. Therefore,

N∑
n=1

B[ψn, ψn] ≥
N∑
k=1

λk,

and since P is non-negative

(3.7)

N∑
n=1

Jµ[ψn] =

N∑
n=1

B[ψn, ψn] + P (ψn) ≥
N∑
n=1

B[ψn, ψn] ≥
N∑
k=1

λk.

We know that lim
n→∞

λn = ∞, and both λn’s and Jµ[ψn]’s are in increasing order.

Therefore, the inequality (3.7) can hold only if (3.4) holds. Hence, we verify (3.5), i.e.

(3.8) Jµ[f ] = B[f, f ] + P (f) =∞.

Now, since P is bounded, the expression (3.8) yields

(3.9) B[f, f ] =∞.

On the other hand, as B is the bilinear form associated to a second order elliptic
operator, it is bounded in the sense that

(3.10) |B[u, v]| ≤ C||u||H1(Ω)||v||H1(Ω).

Combining (3.9), and (3.10) applied to u = v = f , we get

||f ||H1(Ω) =∞,

i.e. f /∈ H1(Ω), contradicting the assumption that f ∈ {ψn}⊥ ∩H1
0 (Ω).
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4. Applications. We now establish the analogues of the Theorems 2.8-2.10 for
the compressed modes and the compressed plane waves. We first provide the precise
definitions of CM and CPW as introduced in [9, 10], and establish their connections
to the theory we developed in Section 2, and then proceed with the verification of the
analogous theorems.

4.a. Compressed Modes. Compressed modes are defined via the following
minimization procedure

Ψ(m) = {ψ(m)
1 , . . . , ψ(m)

m } = argmin
h1,h2,...,hm

m∑
i=1

Jµ[hi] s.t. 〈hj , hk〉 = δjk,(4.1)

where

Jµ[u] =
1

µ
||u||L1 + 〈u,

(
−1

2
∆ + V

)
u〉 =

1

µ
||u||L1 +

1

2
||∇u||L2 +

∫
Ω

V u2dx,(4.2)

where V is a bounded measurable real-valued function defined on Ω. Here, the quan-
tity 〈u,

(
− 1

2∆ + V
)
u〉 corresponds to the bilinear form associated to the elliptic op-

erator − 1
2∆ + V . We denote the eigenvalues and eigenfunctions of − 1

2∆ + V by λn
and φn, with λn’s being in increasing order, as usual.
Notice here that CMs are defined as the minimizers of an energy sum under orthogo-
nality constraints, rather than as compressed modes of type two, which are solutions
to an iterative minimization procedure. However, compressed modes of type two
{ψ1, ψ2, . . . , ψm}, defined by the variational procedure (3.1), being an orthonormal
sequence, is a subsolution to the minimization problem (4.1), so that

m∑
i=1

Jµ[ψ
(m)
i ] ≤

m∑
i=1

Jµ[ψi].

Combining this with the estimate (2.12), we obtain

(4.3)

m∑
i=1

Jµ[ψ
(m)
i ] ≤ m |Ω|

1
2

µ
+

m∑
j=1

λj .

The proof of Theorem 2.10 relies essentially on the estimation (2.23), and the
orthonormality of the sequence {ψ1, . . . , ψm}. We still have the orthonormality, and
the estimation (4.3) analogous to (2.23). Hence, the following corollary holds.

Corollary 4.1 (Corollary to Theorem 2.10). Let Vm be the subspace generated

by the compressed modes Ψ = {ψ(m)
1 , ψ

(m)
2 , . . . , ψ

(m)
m }. Then, for any n ≤ m, we have

n∑
k=1

d(φk, Vm)2 ≤ m|Ω| 12
µ(λm+1 − λn)

,

provided λm+1 6= λn.
From Corollary 4.1, we deduce the following approximation result:
Corollary 4.2. Let {φk}k∈N be the (Dirichlet) eigenfunctions of a second-order

linear symmetric elliptic operator L, defined on a bounded domain Ω ⊂ R. Given
any fixed parameter µ, the first m compressed modes up to a linear transformation,

denoted by {ξ(m)
1 , . . . , ξ

(m)
m }, satisfies

lim
m→∞

‖φk − ξ(m)
k ‖2 = 0, ∀k ∈ N.
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Proof: Let ξ
(m)
k denote the projection of φ

(m)
k onto the linear subspace spanned by

{ψ(m)
1 , . . . , ψ

(m)
m }, which we denote by Vm. Then, clearly, ξ

(m)
k is a linear combination

of {ψ(m)
1 , . . . , ψ

(m)
m }. Furthermore, as a property of the projection, we have

d(φk, Vm) = ||φ(m)
k − ξ(m)

k ||2,

so that Corollary 4.1 implies

n∑
k=1

||φk − ξ(m)
k ||22 ≤

m|Ω| 12
µ(λm+1 − λn)

.(4.4)

As Ω is a bounded domain inside R, By Weyl’s law, we know that λm grows quadrati-
cally in m. Hence, passing to limit in (4.4) as m→∞, we conclude that the summands
in the LHS of (4.4) decays to zero, i.e.

(4.5) lim
m→∞

‖φk − ξ(m)
k ‖2 = 0,

as desired.
Corollary 4.2 can be viewed as a completeness result, since (4.5) yields that any

eigenfunction φk is well approximated by its projection ξ
(m)
k onto Vm. In a sense,

Vm’s trace the full space, as m→∞.

4.b. Compressed Plane Waves. The construction of compressed plane waves
is closely related to that of compressed modes, where both involve minimizing a cer-
tain functional. The difference is that compressed plane waves have multi-resolution
capabilities, which is achieved by adding the shift-orthogonality constraints. Let
w = (w1, . . . , wd) ∈ Rd+ be a basis of a d-dimensional lattice and let Ω be a rectangular
box with

Ω = [0, n1w1]×, . . . ,×[0, ndwd], (n1, . . . , nd) ∈ Nd.

Define the lattice

Γw = {jw := (j1w1, . . . , jdwd)|0 ≤ j1 < n1, . . . , 0 ≤ jd < nd}.

The first n basic compressed plane waves (BCPWs,) {ψk}nk=1, are defined via

ψ1 = argmin
ψ

Jµ[ψ] s.t. 〈ψ(x), ψ(x− jw)〉 = δj,0 ∀ jw ∈ Γw;

ψk = argmin
ψ

Jµ[ψ] s.t.

{
〈ψ(x), ψ(x− jw)〉 = δj,0 ∀ jw ∈ Γw

〈ψ(x), ψi(x− jw)〉 = 0 ∀ i : 0 < i < k,

where the functional Jµ is defined by

Jµ[u] =
1

µ
||u||L1 + 〈u,−1

2
∆u〉 =

1

µ
||u||L1 +

1

2
||∇u||L2 .

Notice that this functional is a special case of the functional (4.2), with V ≡ 0.
The translations of the BCPWs on the lattice Γw produce all CPWs. Unlike com-
pressed modes that are solved in a single minimization problem, the compressed
plane waves are constructed hierarchically. This is similar to the shift-orthogonality
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wavelets, but a distinction of CPWs is that it is adapted to the Laplace’s operator.
Existence of CPW’s essentially follows from the observation that shift orthogonality
(i.e the constraints in the definition of BCPWs) is preserved under L2-limits, so that
any minimizing sequence has a subsequential limit, which still satisfies the shift or-
thogonality properties.
The following theorem (see for example [4]) characterizes any orthonormal sequence
of shift orthogonal functions:

Theorem 4.3. Let Ω ⊂ Rd, and the lattice Γw be defined as above. Let {ξk}∞k=1

be an orthonormal sequence of shift orthogonal functions. Then, the (Hilbert) space
H = L2(Ω) can be written as a direct sum

H = H1 ⊕H2 ⊕ . . .⊕HN ,

where each Hk is the Hilbert space spanned by some eigenfunctions for the Laplace’s
equation in the rectangular box Ω, with the property that if ξk has the decomposition

√
Nξk = ek1 + ek2 + . . .+ ekN , ekj ∈ Hj ,

then E = {ekj |j = 1, 2, . . . , N ; k ∈ N} forms an orthonormal system in H. Further-
more, N = n1n2 · · ·nd = |Γw|.

A detailed discussion of Theorem 4.3, with a characterization of the Hilbert spaces
Hk is given in the appendix.

Remark 4.4. For a fixed k, both {ξkj |jw ∈ Γw}, and {ekj |j = 1, 2, . . . , N} form
an orthonormal system, and have the same cardinality, hence their linear span agree.
Therefore,

span{ξkj |jw ∈ Γw; k = 1, . . . ,M} = span{ekj |j = 1, . . . , N ; k = 1, . . . ,M}

for any M ∈ N ∪ {∞}.
With this remark and Theorem 4.3 in mind, instead of working with the CPW’s

{ψkj }, it is natural to switch to {ekj } for completeness results. Let’s define

J∞[u] =
1

2
||∇u||2L2(Ω).

Then, we can write

Jµ[u] = J∞[u] +
1

µ
||u||L1 .

As the Hilbert spaces Hj are the span of some eigenfunctions of the Laplacian, the
functional J∞ satisfies the following linearity property:

J∞[e1 + e2 + . . .+ eN ] = J∞[e1] + J∞[e2] + . . . J∞[eN ], ej ∈ Hj , j = 1, 2, . . . , N.

Now, the minimization procedure for {ekj } becomes

{e1
1, e

1
2, . . . , e

1
N} = argmin

fj∈Hj

||fj ||2=1

J∞[f1] + . . . J∞[fN ] +
1

µ
||f1 + . . .+ fN ||1,

{ek1 , ek2 , . . . , ekN} = argmin
fj∈{e1j ,...,e

k−1
j }⊥∩Hj

||fj ||2=1

J∞[f1] + . . . J∞[fN ] +
1

µ
||f1 + . . .+ fN ||1.
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This is analogous to the variational procedure (2.1), except that at each step in
the minimization, we obtain multiple functions. Nevertheless, we might view one
particular ekj , say ek1 for simplicity, as the solution to the following minimization
problem over H1:

ek1 = argmin
f∈{e11,...,e

k−1
1 }⊥∩H1

||f ||2=1

J∞[f ] + J∞[ek2 ] + . . . J∞[ekN ] +
1

µ
||f + ek2 + . . .+ ekN ||1.

We still have the boundedness of the penalty term P (f) = 1
µ ||f + ek2 + . . .+ ekN ||1, as

1

µ
||f + ek2 + . . .+ ekN ||1 ≤

1

µ

(
||f ||1 + ||ek2 ||1 . . .+ ||ekN ||1

)
(Cauchy-Schwarz) ≤ |Ω|

1
2

µ

(
||f ||2 + ||ek2 ||2 . . .+ ||ekN ||2

)
=
N |Ω| 12
µ

,

i.e.

(4.6) ||P || ≤ N |Ω| 12
µ

.

Therefore, {ekj }k∈N could be viewed as the solutions to an analogue of the variational
procedure (2.1), in the Hilbert space Hj , with the linear functional being the restric-
tion of −∆ on Hj .
Let’s enumerate the eigenfunctions forming each Hilbert space Hj as follows

(4.7)

Hj = span{φkj |k = 1, 2, . . .},

−1

2
∆φkj = λkjφ

k
j

λ1
j ≤ λ2

j ≤ . . . .

The following theorem establishes an analogue of the Weyl’s Law:
Theorem 4.5. Let λkj be defined as in (4.7), then

λkj =
N(2π)d

2ωd|Ω|
k2/d + o(k2/d), as k →∞,

where ωd denotes the volume of the unit ball in Rd.
A discussion of Theorem 4.5 can be found in the appendix.
We verified that the functions {ekj } are obtained via a variational procedure anal-

ogous to (2.1). We also noted in Remark 4.4 that the spans of {ekj }, and CPWs agree.
Therefore, the theory developed in Section 2 applies to CPWs, so that we obtain the
following corollaries as direct consequences of the Theorems 2.8, 2.9, and 2.10:

Corollary 4.6 (Corollary to Theorem 2.8). Let Ω be a bounded interval in R.
Then, for any lattice Γw, and parameter µ, the set of compressed plane waves {ψkj }
defined on Ω forms a complete orthonormal system in L2(Ω).
Proof: Notice that {ekj }k∈N ⊂ Hj are obtained as the solutions to a variational prob-
lem in Hj , analogous to the variational procedure (2.1). Furthermore, since Ω lies
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inside R, by Theorem 4.5, the corresponding eigenvalues grow super-linearly. There-
fore, Theorem 2.8 applies so that {ekj }k∈N forms a complete orthonormal system in

Hj , for each j = 1, 2, . . . , N . Finally, by Remark 4.4, {ψkj } is a complete orthonormal
system in H.

Corollary 4.7 (Corollary to Theorem 2.9). Let Ω be a rectangular domain
inside R2. Then, for any lattice Γw, and parameter µ satisfying

(4.8) µ >
|Ω| 32
2π

,

the set of compressed plane waves {ψkj } defined on Ω forms a complete orthonormal

system in L2(Ω).
Proof: Since Ω lies inside R2, notice by Theorem 4.5 that the corresponding eigen-
values grow linearly, with the linearity constant 2πN

|Ω| . The proof proceeds analogous

to the proof of Corollary 4.6, except that we rather apply Theorem 2.9. The bound
for the penalty term is provided in (4.6), so that Theorem 2.9 holds precisely when
the bound (4.8) is satisfied.

Corollary 4.8 (Corollary to Theorem 2.10). Let V mj be the subspace generated

by the functions {e1
j , e

2
j , . . . , e

m
j }. Then, for any n ≤ m, we have

n∑
k=1

d(φkj , V
m
j )2 ≤ mN |Ω| 12

µ(λm+1
j − λnj )

,

provided λm+1
j 6= λnj . Defining V m via

V m = span{ψkj |j ∈ Zd, k = 1, 2, . . . ,m},

we further have ∑
k≤m,j≤N

d(φkj , V
m)2 =

mN |Ω| 12
µ

∑
j≤N

1

λm+1
j − λnj

.

5. Appendix. We will provide an explicit characterization of the Hilbert spaces
Hj in Theorem 4.3. The eigenfunctions of the Laplace’s operator in a rectangular
domain Ω = [0, n1w1]×, . . . ,×[0, ndwd] is given by

φm1,...,md
(x) = e

2πi
(

m1x1
n1w1

+
m2x2
n2w2

+...+
mdxd
ndwd

)
.

where (m1,m2, . . . ,md) ∈ Zd. Hence, if we form the lattice

Πw = {
(
m1

n1w1
,
m2

n2w2
, . . . ,

md

ndwd

)
| (m1,m2, . . . ,md) ∈ Zd},

then each of the eigenfunctions of the Laplace’s operator in the domain Ω can be
represented as

φυ(x) = e2πiυ·x, υ ∈ Πw,

with the corresponding eigenvalue λυ = 4π2|υ|2. Now, we define

Λw = {
(
m1

n1w1
,
m2

n2w2
, . . . ,

md

ndwd

)
|0 ≤ m1 < n1, . . . , 0 ≤ md < nd}.
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Each ρ ∈ Λw has a natural periodic extension in Πw with respect to Γw. For each
ρ ∈ Λw, we denote such extension by Σρ. Now, the family of Hilbert spaces Hj in
Theorem 4.3 consists of the Hilbert spaces

Hρ = span{φυ|υ ∈ Σρ}.

Since Λw, and Γw each has cardinality n1n2 . . . nd; N , the cardinality of the family of
Hilbert spaces {Hj}Nj=1, satisfies N = n1n2 . . . nd = |Γw|, as asserted in Theorem 4.3.

We have already observed that the eigenvalue corresponding to φυ is λυ = 4π2|υ|2.
Weyl’s law in the rectangular domain case can be viewed as the growth of the size of
the distance between lattice points and the origin. Therefore, with all these lattice
characterization of the eigenfunctions, it is not hard to see that the growth of the
eigenvalues corresponding to the eigenfunctions in each of the Hilbert spaces Hj are
given precisely as in Theorem 4.5.

As an illustration, let’s consider Ω = [0, 2] × [0, 3] ⊂ R2, and w = (1, 1). Then,
Γw becomes

Γw = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

The eigenfunctions for the Laplace’s equation in Ω are given by

φm,n(x, y) = e2πi( mx
2 + ny

3 ),

so that

Πw = {
(m

2
,
n

3

)
|m,n ∈ Z}.

Now, the finite lattice Λw becomes

Λw = {(0, 0),

(
0,

1

3

)
,

(
0,

2

3

)
,

(
1

2
, 0

)
,

(
1

2
,

1

3

)
,

(
1

2
,

2

3

)
}

Finally, the decomposition given in Theorem 4.3 becomes

L2(Ω) = H1 ⊕H2 ⊕H3 ⊕H4 ⊕H.5 ⊕H6,

where

H1 = span{φ2k,3l}k,l∈Z, H2 = span{φ2k,3l+1}k,l∈Z, H3 = span{φ2k,3l+2}k,l∈Z,
H4 = span{φ2k+1,3l}k,l∈Z, H5 = span{φ2k+1,3l+1}k,l∈Z, H6 = span{φ2k+1,3l+2}k,l∈Z.
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