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Abstract. We have developed a method for hyperspectral image data un-

mixing that requires neither pure pixels nor any prior knowledge about the
data. Based on the well-established Alternating Direction Method of Multipli-

ers, the problem is formulated as a biconvex constrained optimization with the

constraints enforced by Bregman splitting. The resulting algorithm estimates
the spectral and spatial structure in the image through a numerically stable

iterative approach that removes the need for separate endmember and spatial

abundance estimation steps. The method is illustrated on data collected by
the SpecTIR imaging sensor.

1. Introduction. Hyperspectral (HS) imaging is an important technology for many
commercial and military applications such as natural resource discovery and intel-
ligence gathering. Images are collected having typically hundreds of thousands of
discrete pixels, each having a wavelength spectrum of hundreds of spectral bands.
Usually, the images contain many different topographical features such as soil, veg-
etation, and water in addition to man-made features such as roads, buildings, etc.
Those features all have distinctive spectral properties that must be separated by
processing algorithms, ideally using as little prior knowledge as possible. The term
unmixing refers to the need for performing this separation.

Because many pixels will contain wavelength spectra that are a composite of two
or more basic components in the image, algorithms are needed to automatically
perform the unmixing. The usual method for doing this unmixing is to locate
the endmember pixels that have a pure spectrum from a single material. If those
pure pixels exist and can be identified, least-squares methods can be used to find
the image spatial regions associated with each material. Standard simplex-based
algorithms such as N-findr [1] and VCA [2] work reasonably well if pure pixels exist
under high SNR conditions.

The problem with standard endmember selection methods is that pure pixels may
not exist due to inadequate spatial resolution of the imaging sensor, or noise that
can lead to poor spectral estimates at a single pixel. This was already recognized by
the likely originator of the term “endmember,” Schowengerdt [3]: “... endmembers
only exist as a conceptual convenience and as idealizations in real images.” Also,
the concept of a pure pixel may not have meaning in the LWIR spectral region.

2010 Mathematics Subject Classification. xxxx.
Key words and phrases. xxxx.

1 c©2015 American Institute of Mathematical Sciences

http://dx.doi.org/10.3934/cpaa.2015.14.00


2 Russell E. Warren and Stanley J. Osher

Nevertheless, an enormous literature has been produced with endmembers as one of
the central concepts underlying contemporary hyperspectral processing. The recent
treatise on hyperspectral processing methods by Cheng [4] with over 500 references,
discusses endmember-based unmixing methods extensively and emphasizes their
importance.

Although approaches exist that do not require the pure pixel assumption, they
typically either require training data for supervised learning of the material spectra,
or the use of large dictionaries of possible spectral signatures. The latter algorithms
attempt to use sophisticated learning methods for selecting a sparse subset of spec-
tra from the dictionary that adequately captures the spectral content of the im-
age. Both methods require the use of additional information about the image that
may not exist in practice. Other methods for relaxing the pure-pixel assumption
perform endmember estimation by data transformations [5] or nonnegative matrix
factorization [6] applied to simplex models for the data mixing model. Those mod-
els constrain the abundances to be positive values summing to 1 over the number
of endmembers at each pixel. Because of this constraint, simplex-based methods
require an additional, nontrivial processing step to estimate the actual spatial con-
centrations for each endmember component once the endmember spectra are found.
Our approach performs both spectral and spatial estimations in one step.

There are several challenges to developing an efficient and reliable algorithm for
HS unmixing without prior knowledge about the spectral or spatial structure of
the data. The most significant challenge is that the unknown spectral and spatial
components enter the signal model as a product, thereby producing a biconvex op-
timization problem: convex in either component given the other, but not jointly
convex. Fortunately, there is a well-established optimization framework, the Alter-
nating Direction Method of Multipliers [7] (ADMM), that can accommodate the
biconvex unmixing problem. Its implementation here leads to a very natural al-
ternating structure with constraints on the parameter arrays enforced through an
augmented Lagrangian with Bregman splitting.

Constraints are needed to produce physically meaningful and reliable results.
Those constraints are chosen here to be positivity on the spatial and spectral esti-
mates, and a unit-vector constraint on the spectrum of each material. The latter
replaces the spatially convex constraints used for abundances, and are felt to be more
natural physically. We have used equality constraints for the unit-norms of the spec-
tra, and a Bregman splitting method SOC (Splitting Orthogonal Constraints) of Lai
and Osher [8] that introduces auxiliary variables to split the positivity constraints
from the estimation of concentration and the spectra. We have also learned that
improved results are obtained by introducing an l1 regularization of the spectral es-
timates through total variation (TV) also implemented through Bregman splitting
and soft thresholding following Goldstein and Osher [9].

Another processing challenge is the sheer size of the typical data cube. The test
data set used to illustrate our approach has 192,000 pixels, each having 360 spectral
bands. Processing these data by an iterative algorithm is indeed a challenge for a
PC. We have found that substantial computation-time saving results from using
uniform spatial subsampling to do the unmixing with little or no degradation to
the spectral estimates. The spatial structure at full resolution can then be found
by processing the full data cube with the estimated spectra.

The remainder of the paper is organized as follows. In section 2 we derive the
HS unmixing algorithm using ADMM with an augmented Lagrangian constructed
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to implement the constraints and TV regularization of the spectral array. Section 3
assesses the performance of the ADMM unmixing algorithm with respect to several
issues using HS test data collected by the SpecTIR sensor over Beltsville, MD.
We summarize and discuss generalizations in section 4. Section 5 is an appendix
deriving a spectral expansion method for numerically solving the Sylvester equation
required by the unmixing algorithm.

2. ADMM unmixing algorithm derivation. As noted above, our optimization
problem is biconvex, and as such we cannot expect to achieve globally unique esti-
mates of the spectral and spatial arrays ρ and C; we must settle for finding local
minimizers that will be dependent on the initialization of the spectral array ρ. Be-
cause of the need to estimate both ρ and C alternately from the same data cube,
ADMM is the natural framework to use for the optimization.

Given the HS image data G ∈ RM×N where M denotes the number of spectral
bands, and N = N1N2 represents the number of pixels after stacking the N1 rows
and N2 columns into a single vector, we model G as G = ρC + ν with ρ ∈ RM×L+

and C = RL×N+ . Here L is the number of assumed materials in the image, and
ν is an additive noise with zero-mean and bounded variance. We then have the
constrained problem

min
ρ,C

1

2
‖G− ρC‖2F + α‖∇ρ‖1 + 〈m, c(ρ)〉+

λm
2
‖c(ρ)‖2 s.t. ρ ≥ 0, C ≥ 0,(1)

with m a dual Lagrange multiplier, and cl(ρ) = ‖ρl‖ − 1, 1 ≤ l ≤ L, is a unit norm
equality constraint on the spectrum of each material. The first term is the data
fidelity component, the second is an l1-regularization term on the derivative (total
variation) of the spectral wavelength dependence, and the last two terms are the
augmented Lagrange terms that enforce the unit normalization. The parameter α
controls the balance between data fidelity and spectral smoothness.

An important feature of our method is the use of Bregman splitting to enforce
the non-negativity constraints on ρ and C as well as the TV regularization of ρ.
Analogous to the use of splitting for basis pursuit or other convex optimizations, the
SOC (Splitting Orthogonality Constraint) method introduces additional parameters
into the objective function that allow a difficult constrained optimization to be
broken into simpler problems that often have either analytical or easily implemented
iterative solutions.

For the HS unmixing problem we introduce three new sets of parameters: one
set r = ρ for the spectra, another set s = ∇ρ for their derivatives, and a set e = C
for the spatial concentration array. Letting ρk, rk, Ck, ek, sk denote the parameter
estimates at iteration k, we have the problem

min
ρ,r,C,e,s

J(C, ρ) + α‖s‖1 + 〈m, c(ρ)〉+
λm
2
‖c(ρ)‖2

such that ρ = r, r ≥ 0, ‖rl‖ = 1, C = e, e ≥ 0, s = ∇ρ,(2)

with J(C, ρ) =
1

2
‖G−ρC‖2F , where the subscript F denotes the Frobenius (Hilbert-

Schmidt) matrix norm.
The augmented Lagrangian for this problem is then
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L (C, e, p, ρ, r, q, s, n,m) = J (C, ρ) + α‖s‖1 + 〈m, c(ρ)〉+
λm
2
‖c(ρ)‖2+

tr〈p, e− C〉+
λC
2
‖e− C‖2F + I+(e) + I+(r)+(3)

tr〈q, r − ρ〉+
λρ
2
‖r − ρ‖2F + tr 〈n, s−∇ρ〉+

λs
2
‖s−∇ρ‖2F ,

with dual Lagrange multiplier parameters m, p, q, and n that enforce the equal-
ity constraints. The Lagrange multipliers are updated within the iterative ADMM
framework by the method of multipliers developed independently by Hestenes [10]
and Powell [11] for equality constraints, and later generalized to inequality con-
straints by Rockafellar [12]. The fourth, sixth, tenth and twelfth terms on the right
represent the quadratic penalty terms that augment the classical Lagrangian. Their
addition promotes the constraint enforcements in (2), adds numerical stability to
the solution, and provides a systematic method for locally optimizing both the mul-
tipliers and {ρ, C} in parallel. By virtue of the additional parameters e, r, and s, we
have an unconstrained optimization over C and equality-constrained optimization
over ρ with the remaining constraints easily enforced on e, r, and s analytically.
The parameters λm, λC , λρ, and λs are termed penalty parameters, and within the
context of augmented Lagrangian theory, are updated at each iteration k by a fac-
tor γ > 1 such that λki = γλk−1i . Reference [13] discusses methods for iteratively
updating the penalty parameters. Increasing the penalty functions at each iteration
has the effect of significantly improving the convergence of the algorithm. The sev-
enth and eighth terms represent indicator functions defined as I+(e) = 0, for e ≥ 0,
=∞, for e < 0.

From the structure of (3) we see that the total problem at a given iteration k
breaks into two saddle point subproblems: finding

(
Ck, ek, pk

)
given ρk−1, et al.,

and finding
(
ρk, rk, qk, sk, nk,mk

)
given Ck, et al. For the first subproblem we have(

Ck, ek, pk
)

= arg max
p

min
C,e≥0

L
(
C, e, p, ρk−1, rk−1, qk−1, sk−1, nk−1,mk−1) .(4)

To solve (4) we use an iterative approach, computing updates to C, e, and p in that
order with ‖Ck − Ck−1‖ as the convergence criterion. In more detail, from

∇CL = −ρT (G− ρC)− p+ λC (C − e)
∣∣
ρ=ρk−1,p=pk−1,e=ek−1 = 0,(5)

we find

Ck =
(
ρ(k−1)T ρk−1 + λk−1C I

)−1 (
ρ(k−1)TG+ pk−1 + λk−1C ek−1

)
.(6)

Similarly, ∇eL = pk−1 − λk−1C

(
Ck − e

)
= 0 and the positivity constraint give the

projection onto the positive halfspace

ek =
[
Ck − pk−1

/
λk−1C

]+ ≡ max
(
Ck − pk−1

/
λk−1C , 0

)
.(7)

From the general theory of augmented Lagrangians [13] we get

pk = pk−1 − λk−1C

(
Ck − ek

)
, λkC = γλk−1C .(8)

The second subproblem assumes the form

(ρk, rk, qk, sk, nk,mk) = arg max
q,n,m

min
ρ,s,r≥0

‖ri‖=1,1≤i≤L

L(Ck, ek, pk, ρ, r, q, s, n,m).(9)
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Analogous to the first subproblem, we solve (9) by iteratively updating ρ,m, r, q, s,
and n in that order with

∥∥ρk − ρk−1∥∥ as the convergence criterion. Specifically,
differentiating L with respect to ρ gives

∇ρL = −(G− ρC)CT − q + λρ (ρ− r)−∇Tn− λs∇T (s−∇ρ) +mρ/‖ρ‖+
λmρ(‖ρ‖ − 1)/‖ρ‖|C=Ck,q=qk−1,r=rk−1,ρ=ρk−1,s=sk−1,m=mk−1,n=nk−1 = 0,(10)

and, after collecting terms with the ‖ρ‖ terms evaluated at ρk−1, we find the equa-
tion for ρk

ρk
(
CkCkT + λk−1ρ IL +mk−1/∥∥ρk−1∥∥

+ λk−1m

(∥∥ρk−1∥∥− 1
)/∥∥ρk−1∥∥)+ λk−1s ∇T∇ρk

= GCkT + qk−1 + λk−1ρ rk−1 +∇T
(
nk−1 + λk−1s sk−1

)
.

(11)

Equation (11) for ρk is called Sylvester’s equation, and can be solved numerically in
Matlab using the Hessenberg-Schur algorithm [14] or the simpler but possibly less
numerically stable spectral method given in the appendix.

The associated Lagrange parameter update equations for m and λm are

mk = mk−1 + λk−1m

(∥∥ρk∥∥− 1
)
, λkm = γλk−1m .(12)

From ∇rL = qk−1 − λρ
(
ρk − r

)
= 0 and the positive orthant sphere constraint

we get

u ≡ ρk − qk−1
/
λk−1ρ , rk = [u]

+
/∥∥∥[u]

+
∥∥∥
F
.(13)

The Lagrange multiplier updates for q and λρ are then

qk = qk−1 − λk−1ρ

(
ρk − rk

)
, λkρ = γλk−1ρ .(14)

For updating s we use soft thresholding through the shrinkage mapping S(x, a) to
find

sk = S

(
∇ρk − nk−1

λk−1s

,
α

λk−1s

)
(15)

with

S(x, a) ≡

 x− a, x > a
0,−a ≤ x ≤ a
x+ a, x < −a


Finally, the Lagrange dual variable n and λs are updated as

nk = nk−1 + λk−1s

(
sk −∇ρk

)
, λks = γλk−1s .(16)

Both subproblem recursions for C by (6)-(8) and ρ by (11)-(16) are iterated to
convergence (with r, e, s, p, q,m and n initialized at 0) within an outer loop that
iterates between the subproblems. The spectral estimates ρ0 are initialized by
positive, unit-norm vectors computed from the VCA algorithm. An alternative to
VCA initialization would be random positive unit-norm vectors. VCA estimates
tend to give faster convergence. The differentiation operator ∇ is implemented
as a two-point difference approximation. Also, spatial subsampling is used with
typically every tenth pixel for estimating the spectra from (11)-(16) followed by
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a final iteration of (6)-(8) for estimating C at full resolution. A summary of the
overall algorithm is given in Box 1.

We make the following remarks about the algorithm in Box 1. The HS data
cube is denoted by the three-dimensional array [R (j, k1, k2)] where 1 ≤ j ≤ M ,
1 ≤ k1 ≤ N1, and 1 ≤ k2 ≤ N2. For the unmixing, R is subsampled by every
Nsamp pixels to get G after stacking the spatial columns into a single row vector.
This operation is denoted by 〈·〉 . The last part of the algorithm estimates C at full
resolution using the spectral estimates from the unmixing, taking G to be the full
data cube R, after spatial stacking.

Input :N1, N2,M,Nsamp, R, λ
(0)
C , λ

(0)
ρ , λ

(0)
s , λ

(0)
m , α, ε, ρ(0), L, tol,γ

Initialize :C(0) = e(0) = p(0) = 0, r(0) = q(0) = s(0) = n(0) = m(0) = 0, ρ̄(0) = 0
G = 〈R (1 : M, 1 : Nsamp : N1, 1 : Nsamp : N2)〉
Dρ = 1, k = 1
while Dρ > ε
δ= 1
while δ > tol

C(k) =
(
ρ(k−1)T ρ(k−1) + λ

(k−1)
C IL

)−1 (
ρ(k−1)TG+ p(k−1) + λ

(k−1)
C e(k−1)

)
e(k) =

[
C(k) − p(k−1)

/
λ
(k−1)
C

]+
p(k) = p(k−1) − λ(k−1)C

(
C(k) − e(k)

)
δ =

∥∥C(k) − C(k−1)
∥∥
F

end
δ = 1
while δ> tol

ρ(k)
(
C(k)C(k)T + λ

(k−1)
ρ IL +m(k−1)/‖ρ(k−1)‖+

λ
(k−1)
m

(∥∥ρ(k−1)∥∥− 1
) /∥∥ρ(k−1)∥∥)+ λ

(k−1)
s ∇T∇ρ(k)

= GC(k)T + q(k−1) + λ
(k−1)
ρ r(k−1) +∇T

(
n(k−1) + λ

(k−1)
s s(k−1)

)
m(k) = m(k−1) + λ

(k−1)
m

(∥∥ρ(k)∥∥− 1
)

u ≡ ρ(k) − q(k−1)
/
λ
(k−1)
ρ , r(k) = [u]

+
/∥∥∥[u]

+
∥∥∥
F

q(k) = q(k−1) − λ(k−1)ρ

(
ρ(k) − r(k)

)
s(k) = S

(
∇ρ(k) − n(k−1)

/
λ
(k−1)
s , α

/
λ
(k−1)
s

)
n(k) = n(k−1) + λ

(k−1)
s

(
s(k) −∇ρ(k)

)
δ =

∥∥ρ(k) − ρ(k−1)∥∥
F

end
ρ̄(k) = ρ(k), Dρ =

∥∥ρ̄(k) − ρ̄(k−1)∥∥
F

λ
(k)
m = γλ

(k−1)
m , λ

(k)
C = γλ

(k−1)
C , λ

(k)
ρ = γλ

(k−1)
ρ , λ

(k)
s = γλ

(k−1)
s

k → k + 1
end
G = 〈R〉
δ = 1, m = 1, C(0) = ē(0) = p̄(0) = 0
while δ > tol

C(m) =
(
ρ̄(k)T ρ̄(k) + λ

(m−1)
C IL

)−1 (
ρ̄(k)TG+ p̄(m−1) + λ

(m−1)
C ē(m−1)

)
Inverse Problems and Imaging Volume 14, No. 3 (2015), 00–00
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ē(m) =
[
C(m) − p̄(m−1)

/
λ
(m−1)
C

]+
p̄(m) = p̄(m−1) − λ(m−1)C

(
C(m) − ē(m)

)
, λ

(m)
C = γλ

(m−1)
C

δ =
∥∥C(m) − C(m−1)

∥∥
F
, m→ m+ 1

end

Box 1. TV-regularized ADMM unmixing algorithm using
splitting constraint enforcement.

3. ADMM Unmixing assessment using HS data. Given the biconvexity of
the ADMM unmixing algorithm above, there are several potential issues with the
method that need to be addressed. They include:

• The dependence of the spectral estimates on the use of spatial subsampling
versus the full data cube,

• The variability of the spectral estimates to different initializations,
• The stability of the algorithm to increasing the number of materials sought,
• The physical significance of the spectral estimates,
• The value of adding a unit-vector constraint for ρ and total variation regular-

ization to the spectral estimation.

Because of the difficulty in providing analytic answers to these questions, we use
Matlab calculations on a data cube collected by the state-of-the-art SpecTIR sensor
using 360 spectral bands with about 5 nm resolution between about 393 nm and 2.5
µm. We first address the spatial subsampling question. Figure 1 shows an image of
radiance data from the Beltsville, MD cube having 600 by 320 pixels. The picture
and data were taken from the SpecTIR Website, www.spectir.com.

We compared the subsampled (by Nsamp = 10 pixels) and full resolution spectral
estimates on these data using 20 trials with VCA initialization and initial penalty
parameter choices λρ = 300, λC = 0.01, α = 0.3, λs = 0.3, λm = 0.04, and γ = 1.1
for 6 materials. Figures 2 and 3 compare the full resolution mean and standard error
estimates (top) with the spatially subsampled estimates (bottom). Although there
was some difference in the standard error estimates, the mean values are seen to be
very close. The mean unmixing times were 782.4 s (full) and 1.026 s (subsampled).
The results indicate that using only 1% of the spatial information gave satisfactory
results on these data in much shorter times.

A related concern is the variability in the spectral estimates to the initialization
spectra. We address that issue next using the Beltsville data cube with the ADMM
algorithm (with spatial subsampling) run 20 times for different VCA initializations
using the parameter choices above for 6 materials. Figure 4 plots a superposition
of the spectral estimates after permuting the color order to match that of the first
trial. We see that the spectral variability from initialization is similar to that
seen in Figure 3. It is also similar to the variability observed from running the
VCA endmember algorithm repeatedly on the same data. As a side point, we note
that the spectral variability from different initializations can be reduced greatly by
averaging the estimates from a few (3–5) trials.

Figures 5 and 6 compare the spatial estimates at the subsampled and full res-
olution from the spectra at the first trial. The discrete pixel estimates are clearly
evident in Figure 5 but not Figure 6.

Inverse Problems and Imaging Volume 14, No. 3 (2015), 00–00
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We next examine the unmixing stability as the number of material components
is increased from 2 to 20. Figure 7 plots the fitting error J at convergence with J ≡∥∥G− ρ̄C̄∥∥2

F

/
MN and C̄ computed at full spatial resolution. The error is seen to

decrease smoothly with material number. This indicates that the algorithm remains
stable as the number of materials increases. In effect, the unmixing algorithm is
extracting more information from the data set with increasing material numbers
until the noise floor in the data is reached. Evidently, about 10–12 materials are
enough to capture most of the structure in the image, but the algorithm can still
produce stable results for at least 20 materials.

Figures 8 and 9 show the spectral and spatial estimates for 20 materials. Three
plots are used for the spectra of materials 1:7, 8:14, and 15:20, respectively. The
unmixing algorithm converged in 34 iterations to a fitting error of 2.1e-5 in 8.96
s for the unmixing time. Processing was done on a Dell XPS8500 running at 3.4
GHz.

The fitting error J provides a means for selecting the number of materials, and
the results here suggest that the exact number chosen is not significant due to the
numerical stability of the algorithm. Figure 10 plots the monotonic decrease in
spectral norm difference ∆ρk ≡

∥∥ρk − ρk−1∥∥
F

between iterations for 20 materials.
This monotonic decrease is another indication of the stability of the algorithm.

The question of the physical significance of the unmixing results would best
be addressed using data having known spectral signatures. In the absence of such
data, we applied the unmixing algorithm twice, once to estimate ρ and C, and again
to unmix data made from their product ρC. Applying this idea to the Beltsville
data for 4 materials gave the results in Figures 11 and 12. Figure 11 compares
the initially inferred spectra (top) with their estimates from the second unmixing
(bottom). Figure 12 compares the spatial estimates for the first component as input
(left) and inferred (right). We see close agreement in both cases, suggesting that
the estimates have an intrinsic meaning.

Lastly, we look at the value of adding the explicit equality constraint1 for the unit
norm of ρ and the total variation l1-regularization of ρ to the unmixing algorithm.
In Figure 13 the fitting error at convergence for 20 trials of the present algorithm
(HS-8) with both unit-norm and TV regularization of ρ is compared with an earlier
algorithm [15] (HS-4) having neither, but otherwise the same. The TV norm of ρ

is defined as ‖∇ρ‖1,l ≡
∑M
j=1 |∇ρj,l|. The number of materials was 6 here. The

substantial improvement in the fitting error from adding the TV and unit-norm
terms for ρ to the augmented Lagrangian is evident.

4. Summary and generalizations. The hyperspectral unmixing algorithm de-
scribed here is based on ADMM using a biconvex augmented Lagrangian with pos-
itivity and unit-norm constraint enforcement through the splitting orthogonality
constraint (SOC) method of Lai and Osher [8] with total variation l1 regularization
of the spectral estimates. The resulting algorithm is an efficient and reliable unmix-
ing method that requires no prior information about the data such as its spectral
content or the assumption of pure pixels. We have found that the use of spatial
subsampling that uses as little as 1% of the spatial information for the unmixing can

1Our earlier unmixing algorithms (such as HS-4) enforced the spectral unit-norm constraint
only through the auxiliary variable r. The present algorithm (HS-8) supplements this with an

explicit constraint on ρ. The question then is what is gained by this extra feature and the TV
regularization.

Inverse Problems and Imaging Volume 14, No. 3 (2015), 00–00
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give almost three orders of magnitude improvement in the computation time with
little or no degradation in the quality of the spectral estimates. Spatial estimates
at full-image resolution are easily computed from the spectra by running the spatial
estimation half of the ADMM algorithm on the full data cube. We have achieved
numerically stable results from the ADMM unmixing algorithm on SpecTIR data
with up to 20 materials.

The basic method presented here for fixed data cubes can be extended in several
ways. First, the size of the cube can be generalized to data collections over arbitrar-
ily long tracks from pushbroom sensors by using overlapped blocks of row-data as
they become available for fixed numbers of columns (detectors) and spectral bands.
The approach has been applied successfully to the SHARE data set [16] having
2805 rows with 320 columns and 360 bands. Second, the spectral estimates from
the unmixing can be used as feature vectors in a support vector machine classifier.
Because different spectral initializations give similar but distinct output spectra, we
have developed an approach that uses the average of a few spectral initializations.
We have found that using only 3–5 such initializations gives excellent classification
results. The efficiency of the spatial subsampling method makes this computa-
tionally feasible. Third, the unmixing approach can be easily adapted for finding
faint or small targets by first applying the basic algorithm to estimate and remove
the clutter background, and performing the unmixing again on the residuals. The
method has been successful in detecting faint chemical plumes in background clutter
[17]. The same method could be used for small targets such as landmines. Finally,
the methods developed here for hyperspectral data have been used for processing
multispectral lidar data containing mixtures of aerosol and vapor components.

5. Appendix: Spectral solution of Sylvester’s equation. The ADMM im-
plementation of the HS unmixing algorithm in section 2 requires the solution of
Sylvester’s equation

ρA+Bρ = C,

for ρ ∈ RM×L+ , where A ∈ RL×L+ , B ∈ RM×M+ , and C ∈ RM×L are input matrices.
One method of solving this equation is to use a Kronecker matrix product construc-
tion that involves the inversion of an ML ×ML matrix. For small matrices this
works well, but for implementation with M = 360 and L = 16, say, the processing
times are too large for practical use with an iterative algorithm such as our ADMM
unmixer.

We have developed a very efficient method for solving Sylvester’s equation for the
special case of A and B symmetric matrices, as they are in our unmixing problem.
A more general algorithm could be based on the SVD expansion. In our case we
represent A and B by their spectral representations

A =
∑
k

αkφkφ
T
k , B =

∑
j

βjψjψ
T
j ,

where α and β are the eigenvalue spectra and φ and ψ are the orthonormal eigenvec-
tors of dimension L and M , respectively. We expand ρ and C in these eigenvectors
as

ρ =
∑
j,k

ajkψjφ
T
k , C =

∑
j,k

cjkψjφ
T
k

where the expansion coefficients of C are given by orthonormality as

cjk = ψTj Cφk
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Substituting the ρ expansion into those of A and B, we have

ρA =
∑
j,k

ajkψjφ
T
k

∑
k′
αk′φk′φ

T
k′ =

∑
j,k

ajkαkψjφ
T
k ,

Bρ =
∑
j′
βj′ψj′ψ

T
j′
∑
j,k

ajkψjφ
T
k =

∑
j,k

ajkβjψjφ
T
k ,

where φTk φk′ = δkk′ ≡ 1, for k = k′,≡ 0, for k 6= k′ and similarly for ψ were used.
From Sylvester’s equation we get

ρA+Bρ =
∑
j,k

ajk (αk + βj)ψjφ
T
k = C =

∑
j,k

cjkψjφ
T
k

Therefore, comparing coefficients we find

ajk =
cjk

αk + βj
, for αk 6= −βj .

However, since αk ≥ 0, and βj ≥ 0, αk = −βj would require both to vanish. This
can be avoided by retaining only eigenvalues greater than the machine precision.

We further note that for our iterative application, only A changes between it-
erations, so, since M > L, the larger matrix expansion for B needs to be done
only once. The resulting algorithm applied to random (symmetric) matrices for
M = 360 and L = 16 required 0.1 s compared to the 2.7 s needed by the Kro-
necker method. The results differed by less than 2e-10. When applied to a test
data set of hyperspectral data with just L = 4 materials and 360 spectral bands,
the Kronecker method required 1297 s for the unmixing compared with 13 s using
the eigenfunction algorithm.
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 Figure 1. Beltsville, MD data cube from the SpecTIR Website.
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Figure 2. Mean spectral estimates from full (top) and subsampled
(bottom) data.
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Figure 3. Estimated standard error from full (top) and subsam-
pled (bottom) data.
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Figure 4. Spectral estimates from 20 trials of Beltsville data unmixing.

 

 

Figure 5. Subsampled spatial estimates from the 1st trial.
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Figure 6. Spatial estimates at full resolution from the 1st trial.
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Figure 7. Fitting error at convergence versus number of assumed materials.
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Figure 8. Spectral estimates for the Beltsville data run for 20 materials.

 

 

Figure 9. Spatial estimates at full resolution for the Beltsville
data for 20 materials.
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Figure 10. Norm difference in spectral estimates for unmixing
with 20 materials.
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Figure 11. Input and inferred spectral estimates from the
Beltsville data.
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Figure 12. Input and inferred spatial estimates for the 1st mate-
rial of the Beltsville data.
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Figure 13. Fitting errors of the current unmixer (HS-8) and an
earlier version (HS-4).
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